
 1 

No-Free-Lunch theorems for reliability analysis 1 

Mohsen Rashki1*, Matthias G.R. Faes2  
1Department of Architecture Engineering, University of Sistan and Baluchestan, Zahedan, Iran. 

2Chair for Reliability Engineering, TU Dortmund University, Dortmund, Germany. 
 

Abstract 2 

In the most of engineering problems, because of the lack of complete information about the 3 

structure of the performance function, selection of the optimal approach for efficient reliability 4 

analysis is in essence a decision under uncertainty. This issue is investigated in this paper and, by 5 

representing reliability methods as search algorithms, No-Free-Lunch theorems (NFL) of search 6 

and optimization are used to propose similarly NFL for reliability analysis. Using NFL, this study 7 

aims to answer some basic questions about the existence and the selection of optimal reliability 8 

methods for black/grey-box problems and proposes a mathematical framework for the application 9 

of detection theory in structural reliability. Black and grey-box problems in this context refer to 10 

structural reliability problems with respectively no and partial information on the topology of the 11 

limit state function. Then, by employing Dempster-Shafer theory of evidence as a generalized 12 

Bayesian decision making theorem, a practical “experts-in-the-loop” approach for the selection of 13 

an optimal reliability method in uncertain conditions is proposed. To meet this aim, providing a 14 

step-by-step solution of some selection problem examples, it is shown that knowledge of several 15 

experts can be fused into one all-encompassing knowledge representation to reduce the probability 16 

of making an error in the selection of an optimal approach for efficient reliability analysis.  17 
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INTRODUCTION 22 

Due to many developments in the last decades, structural reliability theory is considered as a 23 

rational tool for analysis and design of engineering systems in the presence of uncertainties. Most 24 

applications of structural reliability theory consist of performing safety analysis, as well as 25 

determining the probability and mode of failure of engineering systems. Nonetheless, the method 26 

can also be used to estimate the occurrence of rare events, perform the estimation of uncertain 27 

model quantities or aid decision making processes under uncertainty; see e.g., (Bartsoen et al., 28 

2023; Ghasemi et al., 2019). 29 

Many structural reliability algorithms have been developed for probability estimation. These can 30 

be roughly classified into two main groups: A) Design point-based reliability methods, that often 31 

decouple probability estimation into optimization and reliability phases, and B) one-stage 32 

simulation approaches that often estimate probability by the combination of reliability and 33 

optimization process using random sampling (Valdebenito et al., 2010). Considering this 34 

classification, ongoing discussions between supporters of each category are being had to this date. 35 

These discussions stem from the underlying beliefs that methods from category (A) outperform 36 

methods from category (B) in term of efficiency (see next section for a definition), or vice versa, 37 

that all methods from category (A) are by default less worthy than those of category (B). 38 

In this context, considering many alternative approaches for solving an in-hand problem, reliability 39 

analysts are often faced with some fundamental and important questions:  40 

• Among many available reliability approaches, which one is the best (in terms of efficiency) 41 

for solving a problem without any information about the structure of the problem (known as 42 

black-box problems)?  43 
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• Does any approach exist that presents high efficiency for solving all types of reliability 44 

problems? 45 

• How to select an optimal approach for solving a problem when some information about the 46 

structure of the problem is available (defined here as a grey-box problem)? 47 

• How to select an optimal approach for efficiently solving a problem when there is conflict 48 

among several practitioners about picking the right algorithm from a set of alternatives? 49 

The main contribution of this paper is to study these questions and provide a mathematical 50 

framework to answer the proposed basic questions. For this purpose, in the next section, we present 51 

reliability algorithms as a search process. Then, we show that No-Free-Lunch theorems (NFL) in 52 

search and optimization (D. Wolpert & Macready, 1996, 1997) can be adapted for application in 53 

probability estimation and reliability analysis. It is clarified that the reliability analysis is a human-54 

in-the-loop process and the optimization skills, reliability knowledge, sensations, emotions and 55 

capabilities of the practitioner in decision-making are also a part of a reliability problem. Further, 56 

using human reliability analysis, we develop an application of signal detection theory in structural 57 

reliability analysis. Then, the application of decision-making methods in selection of optimal 58 

reliability method is studied. Based on the available information of a problem and comments of 59 

experts, different decision-making approaches (e. g., Theory of evidence (P. Li & Wei, 2019), 60 

Analytic hierarchy process (AHP) (Ataei et al., 2013), Multiple criteria decision analysis (MCDM) 61 

(G.-D. Li et al., 2007), Bayesian inference using maximum entropy (Gull, 1988) and etc.) may be 62 

used for solving grey-box problems. Also, considering the versatility of the theory of evidence for 63 

application in selection problems, evidence theory is adapted to use in the selection of optimal 64 

algorithm. We finally provide some discussions and conclusions.  As a final note to this paper, we 65 

do acknowledge that it does not give a complete answer to the question: “which algorithm is the 66 
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best among a set of alternatives”. It rather is intended to serve as new view-point to deal with this 67 

pressing question, and aims at giving some practical tools to aid in the case-specific selection of 68 

an optimal algorithm for the problem at hand. 69 

 70 

RELIABILITY METHODS AS SEARCH ALGORITHMS 71 

Let 𝐹 ⊂ ℛ! be the failure domain of a system with standard normal random variables. Then, the 72 

failure probability of the system under consideration can be presented as a multinormal integral as 73 

follows:  74 

P(F) = ∫ 𝜑!(𝒖)𝑑𝒖
	
#${&(𝒖)*+} ,        (1) 75 

where 𝑔(. ) is the performance function, 𝐹 = {𝑔(𝒖) ≤ 0}  represents the failure of the system and, 76 

𝜑!(. ) is the probability density function (PDF) of the random variables U. Here, a point that is 77 

located in the limit state surface 𝑔(𝒖) = 0 and for which 𝜑!(𝒖) is maximal, is defined as the 78 

design point 𝒖∗ (generally known as most probable point of failure, MPP, if it is in failure domain 79 

F) and its distance to the origin is known as reliability index 𝛽 (e.g., 𝛽 = |𝒖∗|). To solve the 80 

problem introduced in Eq. (1), two theories have been developed: 81 

• For efficiently solving the proposed integral, Asymptotic approximation theory represents 82 

the design point as 𝒖∗ = 𝛽𝒖, where |𝒖| = 1, and proves: if for a problem there are k design 83 

points 𝒖., i=1, …, k given with |𝒖.| = 1, then the probability content is concentrated in the 84 

asymptotically neighborhoods of design points and we have: 85 

P(𝛽F)	~∑ 𝑃;𝛽(𝐷./ ∩ 𝐹)>0
.$1 ,				𝛽 ⟶ ∞,      (2) 86 

where 𝐷./ = {|𝒖 −	𝒖.| < 𝜀} are balls with radius 𝜀 around the design points 𝒖1, … , 𝒖0 87 

(Breitung, 1994, 2021). According to asymptotic approximation theory, robust algorithms 88 

are essentially the same in one elementary step, namely, they require to find a global 89 
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minimal distance point in domain F since the probability content is concentrated around it. 90 

Employing 𝑐(𝒖) = |𝒖|, this point can be determined as optimization process as follows: 91 

argmin 𝑐(𝒖)
𝒖 ∈ 𝐹 ,          (3) 92 

which is a standard constrained optimization problem.  93 

• Parallel to the asymptotic theory, a set of methods have been developed to solve the 94 

problem using a different perspective. If we consider S as the safety of system, the failure 95 

probability can be presented as P(F) = 1 − P(S). Rather than evaluating the probability 96 

weight of the entire failure region, the proposed approaches obtain some information about 97 

the failure and safe domain (usually by random sampling) and then, they provide an 98 

approximation about the failure probability by combination of results using postprocessing 99 

(e. g., using expectation theorem and/or Bayesian computations (Dang, Valdebenito, et al., 100 

2022; Rashki, 2021a)). To find the upper bound of safety probability, similar to the 101 

previous approach, these methods also need to find the failure domain but they do not 102 

require to know the accurate location of design points and their exploring often lead to have 103 

few information about the neighborhoods of MPPs.  104 

From the preceding discussion, it can be deduced that, to provide a proper probability estimation 105 

for both strategies, a search process should be included in reliability analysis. This statement is 106 

further investigated in the following subsections with more details. 107 

 108 

Categorization of reliability algorithms based on search behaviors 109 

Considering the proposed explanations, in this subsection we explain how existing reliability 110 

methods use search/optimization process in probability evaluation. 111 

Decoupled reliability approaches 112 
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In the structural reliability literature, there are some well-known reliability approaches that 113 

estimate the failure probability by employing optimization and reliability phases as two stand-114 

alone processes. In these methods, which are called decoupled approaches in this study, it does not 115 

matter how the design points (or MPPs) in the optimization phase are determined. According to 116 

the asymptotic theory, they only use design points to approximate the failure probability in a 117 

separate reliability phase. The original versions of first/second order reliability methods 118 

(FORM/SORM) (Breitung, 1984; Hasofer & Lind, 1974), line sampling (Schuëller et al., 2004), 119 

design point-based importance sampling (Bourgund, 1986), beta-sphere subset simulation (BESS) 120 

(Rashki, 2021a) and radial basis importance sampling (RBIS) (Harbitz, 1986) are examples of 121 

such decoupled reliability methods. 122 

For the case of simple problems (i.e., linear and moderate nonlinear performance functions with 123 

one MPP), it is possible to use a gradient-based optimization algorithm (which often initializes the 124 

search process from the origin) with high fidelity to find design points for reliability analysis. 125 

Having design points in hand, they provide an estimation of failure probability with a very high 126 

efficiency, which is the reason that these approaches often known as efficient reliability 127 

approaches. However, for complicated problems, and problems with several important failure 128 

regions (such as first-excursion probability problems), this tactic may give erroneous results and 129 

lead to misleading conclusions, if a solution can be even obtained at all. Therefore, for such 130 

problems, the search process should be started from several random initial points to assure the 131 

accuracy of results which reduces the efficiency of algorithm. Please note that we use the term 132 

“important failure regions” to indicate that design points may be meaningless as a proxy for 133 

calculating the failure probability in high dimensional spaces or strongly nonlinear problems. With 134 
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“important failure regions” we indicate those regions in parameter space that contribute most 135 

significantly to the calculation of the failure probability. 136 

The key drawback of these approaches is that we have not any statistical analyses regarding the 137 

correctness and accuracy of probability estimation since the reliability calculations are completely 138 

relying on the accuracy of the optimization phase. Furthermore, in the case where the optimization 139 

problem is not convex, there is no guarantee regarding the accuracy of the optimization results. 140 

Therefore, for the case of very complex or black-box problems, if a design point search process is 141 

performed using a few optimizations, the accuracy of obtained results must be always in doubt.  In 142 

recent years, also applications of meta-heuristic global optimization methods (with relatively high 143 

computations costs) have been developed for addressing the discussed issue (Elegbede, 2005; 144 

Zhong et al., 2020). Nonetheless, also here, no proof of having obtained the global optimum exists, 145 

and hence, the accuracy of the obtained design points must also be doubted. As a final remark, it 146 

should be noted that even for relatively uncomplicated problems, it is prudent to run multiple 147 

analyses from different starting points in case it cannot be proven a priori whether the optimization 148 

problem is convex. 149 

 150 

Random search-based reliability approaches 151 

In some reliability analysis approaches, in contrast with decoupled methods, probability 152 

computations and search process are merged together. As described earlier, these approaches often 153 

explore the safe region and find the important failure domains of the problem (i.e., neighborhoods 154 

of MPPs) by a sequence of random sampling and then, using the information obtained during the 155 

search process (for both S and F domain), they estimate the desired probability of failure using an 156 

ensuing post-processing step. 157 
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The most popular approach that estimates the failure probability by random sampling, is the crude 158 

Monte Carlo simulation (MCS). MCS works by drawing random samples according to 𝜑!	and 159 

mathematically will converge to the proper solution with a probability of one given sufficient 160 

samples. The MCS generator searches the entire space and does not consistently ignore any region, 161 

ensuring convergence without any prior assumptions on the topology of the limit state surface or 162 

its dimension (Zabinsky, 2009). As mentioned, MCS collects information about the safe domain 163 

by random sampling. Once sufficient samples in the failure domain are collected, it uses the 164 

obtained information during a search process to approximate the failure probability using post 165 

processing (e. g., by combining the information obtained from both safe and failure domain) as 166 

P(F) = !!
!!2!"

= !#
3

, where 𝑛4 and 𝑛5 are the number of samples generated in respectively the 167 

failure F and safety S domains and 𝑁 = 𝑛4 + 𝑛5.  Also, similar formulations exist for assessing 168 

the variance on this estimator. When MCS estimates the failure probability with suitable variance, 169 

one may find that the information on the important failure domain, as provided by algorithm, is 170 

limited. Conversely, the information about the safe domain is statistically nearly complete.  171 

MCS is generally efficient when the failure domains are located very close to the origin since few 172 

samples 𝑁 are generated to obtain a sufficiently large 𝑛4. Rather, for problems where the failure 173 

domains are located far from the origin, crude MCS is computationally extremely costly. To 174 

address this drawback, different random sampling MCS methods have been developed (the so-175 

called variance reduction methods), including, e.g., directional simulation (Melchers, 1990), 176 

subset simulation (Au & Beck, 2001), weighted average simulation (Rashki et al., 2012), 177 

sequential importance sampling (Papaioannou et al., 2016), soft Monte Carlo (Rashki, 2021c), 178 

directional importance sampling (Misraji et al., 2020), Multilevel Monte Carlo Simulation (Callens 179 

et al., 2022),  sequential space conversion methods (Rashki, 2021b), and Bayesian Optimization 180 
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methods (Dang, Wei, et al., 2022), among many other approaches. All of these approaches can be 181 

also presented as search algorithms that explore the safe domain and seek for (areas around the) 182 

MPPs to provide an approximation of the failure probability.  183 

For example, traditional subset simulation uses a modified random walk algorithm to explore the 184 

safe domain according to 𝜑! and find important failure regions. The method generates initial 185 

random samples around the origin and then, considering certain portion of generated samples as 186 

seeds, it uses a modified Metropolis Hastings algorithm to search the parameter space to find 187 

important failure domains within several subsets. Once the method has found neighborhoods of 188 

MPPs (e. g., using m search subsets in the safe domain), the method estimates the desired 189 

probability by postprocessing. Hereto, it uses the combination of results obtained from failure and 190 

safe domain as P(F) = P(𝐹1)∏ P(𝐹.21|𝐹.)671
.$1 , where P(𝐹8) can be obtained by counting the 191 

number of conditional random search points located in the factitious failure domain (Au & Beck, 192 

2001). In this formulation, ∏ P(𝐹.21|𝐹.)671
.$1  is the information obtained from exploring in the 193 

safety domain S. 194 

As a result, in these approaches, instead of computing the failure probability by only employing 195 

the failure region (e. g., design points and MPPs), a considerable part of the estimation is obtained 196 

from the information of safe/failure domain, obtained in random search process. Evidently, when 197 

the location of design points can be obtained in an efficient manner (e. g., efficient gradient-based 198 

optimization algorithm), random search may not be a clever approach for estimating small failure 199 

probabilities. The same conclusion can be found in (Breitung, 2021) and (Breitung, 2022) with 200 

more details. Note that this statement is limited to low to moderate dimensional problems. Indeed, 201 

in non-compressible high-dimensional spaces, due to their geometry and topology, the design point 202 
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in and of itself might not be a useful proxy for calculating the failure probability. Also, in these 203 

cases, the value of a potential physical interpretation of a design point is questionable. 204 

 205 

Efficiency of algorithms 206 

Efficiency is an objective parameter that is often used to compare the performance of two (or more) 207 

algorithms together. For the case of structural reliability analysis, the efficiency of an estimator �̂� 208 

for a parameter 𝜇, denoted Eff(�̂�) can be defined as (Breitung, 2021): 209 

Eff(�̂�) = [MSE(µY) × 𝐶𝑜(�̂�)]71,       (4) 210 

where MSE(µY) = var(�̂�) + (E[�̂�] − 𝜇)9 is the mean-square error of �̂�, (E[�̂�] − 𝜇)	is a term 211 

denoting the bias of the estimator and 𝐶𝑜(⋅) is a term denoting the expected function call associated 212 

with computing  �̂� (e.g., the number of samples in a Monte Carlo estimator).  In other words, when 213 

two unbiased estimators �̂�1 and �̂�9 have the same function call, then the estimator with the smallest 214 

variance is to be selected. In the case of a simple MC estimator, the efficiency is proportional to 215 

the number of samples n. In this case, it is given as Eff(�̂�) = 1/[MSE(µY) × 𝑛]	. In case the 216 

estimator is biased, the asymptotic efficiency as 𝑛 → ∞ has to be taken into account. In this paper, 217 

the efficiency is considered as a main feature of the “optimal algorithm”, compared with other 218 

alternative algorithms, for efficiently solving reliability problems. 219 

 220 

NO-FREE-LUNCH THEOREMS IN RELIABILITY ANALYSIS (NFLR) 221 

According to the explanations proposed in previous section and as discussed in (Breitung, 2021) 222 

and (Breitung, 2022), one may conclude that for small to medium sized problems, both 223 

decoupled approaches and random search-based simulation methods are searching 224 

neighborhoods of MPPs to approximate the probability of failure. Building on this result, we aim 225 
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to translate the original No-Free-Lunch (NFL) theorems in search and optimization (see (D. 226 

Wolpert & Macready, 1996, 1997)) towards reliability analysis to answer the basic questions 227 

proposed in introduction. 228 

 229 

NFLR #1: There is no-free-lunch for black-box reliability problems. 230 

According to the NFL theorem, for a black-box problem with no prior knowledge about the 231 

function at hand, the information collected with the data sample is not helpful in guiding the search 232 

in which direction is better to explore next (Serafino, 2013), (D. H. Wolpert, 2021). As a result, 233 

all algorithms that search for an extremum of a cost function perform exactly the same when 234 

averaged over all possible cost functions. Therefore, when we consider reliability algorithms as 235 

mostly consisting of a searching process, no reliability algorithm is preferable to others in term of 236 

function calls (e. g., no decoupled reliability method is preferable to a random search approach 237 

and vice versa.) (D. Wolpert & Macready, 1997). Hence, “Algorithm A outperforms algorithm B 238 

in term of efficiency” is a misleading statement since if an algorithm performs well on a certain 239 

class of problems, then, according to NFL, it necessarily will perform poorly on the set of all 240 

remaining problems. 241 

Therefore, for each newly proposed reliability algorithm, including several efficiently solved 242 

examples, the authors should specify in their publication for what set of problems the algorithm is 243 

tailored, and which of those are considered in analysis. We even would argue that there is value in 244 

highlighting to which types of examples the method does not work efficiently. 245 

Proof.  As a first step, we exclude a part of the un-important space that has very small effect on 246 

the failure probability estimation (e.g., space with failure probability less than 1079+). By doing 247 

this, we can reduce the infinite physical probability space to a finite search space 𝑋 (for instance, 248 
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bounding the physical space of two random variable to [L-1(10-20)    L-1(1-10-20)] where L-1 is 249 

inverse cumulative density function of the random variable). Based on this, we can show, as 250 

presented in the previous section, that at the core of any robust reliability approach lies an 251 

optimization algorithm 𝛼 which functions based on mapping some previously visited set of 252 

samples 𝑑	: to a single new sample in 𝑋, as: 253 

𝛼 ∶ 𝑑 ∈ 𝒟 → {𝑥|𝑥 ∉ 𝑑:},           (5) 254 

in which 𝒟 denotes the space of all (m-sized) samples and 𝛼 is determistic in the sense of every 255 

sample map to a unique new point [29]. The NFL theorem says that for any pair of algorithms 256 

𝛼1	and 𝛼9, the overall performance of algorithms over all possible cost functions 𝐶 with uniform 257 

probability density is equal to: 258 

∑ 𝑃;𝑑6
; |𝐶,𝑚, 𝛼1>< =∑ 𝑃;𝑑6

; |𝐶,𝑚, 𝛼9><  ,            (6) 259 

where 𝑃;𝑑6
; |𝐶,𝑚, 𝛼.> is the performance of algorithm i after 𝑚 iterations and 𝑑6

;  is the associated 260 

cost. The mathematical proof of Eq. (6) can be found in Ref (D. Wolpert & Macready, 1997). 261 

Remark. The number of function calls, associated in phase two of decoupled reliability methods 262 

(i.e., the post-processing) is not considered in this section. 263 

 264 

NFLR #2: Reliability analysis is a human-in-the-loop process and the importance of human 265 

reliability for efficient analysis is equal to all knowledge about the in-hand problem. 266 

As shown in Fig 1, this study emphasizes that reliability analysis is a human-in-the-loop process 267 

and hence, human reliability analysis plays a main role for achieving optimal results for a grey-268 

box problem (i.e., a problem where some knowledge on the limit state function is available). The 269 

selection of the optimal algorithm requires both proper information, as well as a thorough 270 

understanding about the geometry of the considered performance functions. On top, it requires 271 
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expertise of the analyst to use an unbiased estimator to match with the available information of the 272 

problem. Especially concerning the last point, different researchers often select different 273 

approaches to solve the same problem, based on differences in background knowledge, sensations, 274 

memories, emotions and the availability and/or implementation complexity of codes. This often 275 

leads to obtaining diverse results for the same problem, including the determined value of the 276 

failure probability and its variance and/or the required number of function evaluations. This issue 277 

is schematically illustrated in Fig 2. 278 

The NFL says when a practitioner fails to incorporate the information of the problem into the 279 

optimization algorithm, even for simple problems with complete information about the structure 280 

of the problem, there is no-free-lunch in reliability analysis (D. Wolpert & Macready, 1997). For 281 

instance, no matter how much information is available for an in-hand problem, there is no free 282 

lunch in the analysis when the analyst believes that his/her favorite algorithm is always the best 283 

solution for solving all types of reliability problems. Due to this predetermined mindset, for such 284 

analyst, there is no difference between a grey and black box problems.  285 
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 286 

Fig 1. Decision making to solve a problem under uncertainty: Different sensation, emotions and 287 

memories results in using different algorithms to solve the problem  288 

 289 

Proof. For the space 𝑋 of all cost functions, NFL represents the probability of obtaining a certain 290 

𝑑6
;  by algorithm 𝛼 after 𝑚 iteration as follows (D. Wolpert & Macready, 1997): 291 

𝑃;𝑑6
; |𝑚, 𝛼> = ∑ 𝑃;𝑑6

; |𝑚, 𝛼	, 𝐶>𝑃(𝐶)< ,         (8) 292 

In which P(𝐶) is the prior probability that the optimization problem in hand has cost function 𝐶. 293 

By defining vectors �⃗�=$% ,6,? ≡ 𝑃;𝑑6
; |𝑚, 𝛼, 𝐶> and 𝑠 ≡ P(𝐶), the NFL theorem represents a 294 

geometric representation of Eq. (8) as follows: 295 

𝑃;𝑑6
; |𝑚, 𝛼> = 𝝊nn⃗ =$% ,6,? ∙ 𝒔n⃗  ,            (9) 296 

which means: to get the desired behavior, prior 𝒔n⃗  (i. e., all knowledge about 𝐶) must match or 297 

aligned with algorithm 𝛼 (D. Wolpert & Macready, 1997). According to the NFL theorem, this 298 
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need for matching is necessary for an algorithm to perform well in practice on specific problems. 299 

Otherwise, there is no such thing as free-lunch in reliability analysis.  300 

Eq. (8) can be described in a different way: In this equation, P(𝐶) can be also seen as a statement 301 

concerning the practitioners’ choice of optimization algorithms (D. Wolpert & Macready, 1997). 302 

For solving a certain problem 𝐶, practitioner 𝐴	will have a list of alternative algorithms 𝛼𝒌, 𝑘 =303 

{1,2, … , 𝑁} in mind. In this perspective, 𝛼𝒌 will be a discrete random variable and its possible 304 

outcomes, denoted by 𝑉, is the set of alternative reliability approaches including the optimal 305 

approach {𝛼1, 𝛼9, … , 𝛼. , … , 𝛼3}. The proposed implementation reveals that to get desired behavior, 306 

having knowledge about 𝐶 and alternative algorithms 𝛼𝒌, practitioner 𝐴 should select the optimal 307 

algorithm 𝛼., match with 𝐶, with the probability of one 𝑃(𝑉 = 𝛼.|𝐴) = 1. However, considering 308 

inadequate background, experience, knowledge, sensations, emotions and capabilities in decision-309 

making, practitioner 𝐴 may fail to select the optimal algorithm 𝛼. even for a simple problem with 310 

complete information about the in-hand problem. Here, 𝑃(𝑉 = 𝛼.|𝐴) that is the probability of 311 

employing the optimal approach 𝛼. from practitioner 𝐴 represents the human reliability in decision 312 

making under uncertainty and can be presented as 𝑅(𝐴) = 𝑃(𝑉 = 𝛼.|𝐴). 313 

Human reliability is the probability of humans conducting specific tasks (e. g., decision making in 314 

this study) with satisfactory performance and focuses on estimating the human error probability. 315 

The human error is the opposite of human reliability and basically is described as follows (Calixto, 316 

2016): 317 

P(HE) = ABCDEF	GH	EFFGFI
ABCDEF	GH	EFFGFI	GJJGFKBL8K8EI

           (10) 318 

where P(HE) denoted the human error probability. According to the proposed implementations, 319 

we have P(HE)=	1 − 𝑅(𝐴).	320 

 321 
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DETECTION THEORY IN STRUCTURAL RELIABILITY ANALYSIS 322 

The importance of human reliability analysis in decision making was highlighted in the previous 323 

section. In this section, we connect it to detection theory as a well-developed theory for analysis 324 

and decision making under uncertainty. To meet this aim, we classify reliability problems into two 325 

broad categories: Type I) problems with simple linear and moderate nonlinear geometry whose 326 

important failure domains can be accurately determined by efficient gradient-based algorithms 327 

(e.g., initialized from origin) and, Type II) complex geometrical problems whose important failure 328 

domains should be found by random search algorithms (e.g., problems in non-linear dynamics).  329 

For a problem with incomplete structural information, determining the category of the problem 330 

and choosing an optimal search approach is a decision under uncertainty. Here, considering the 331 

available information, the practitioner should make a decision:  332 

• Decision A: The failure domains can be correctly determined by efficient gradient-based 333 

algorithms, or 334 

• Decision B: The failure domains should be searched by robust-but-costly random search 335 

algorithms. 336 
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 337 

Figure 2. Selection of a reliability method based on different attitudes: A) Having a scenario for 338 

selection of optimal algorithm, B) Using sensation to determine the optimal algorithm, C) 339 

Selecting an algorithm by chance, and D) Employing crude Monte Carlo for all problems.   340 
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Therefore, the main challenge in reliability analysis appears in this step: The practitioner should 341 

make a proper decision and select an algorithm that matches with the available information on the 342 

function. Otherwise, they will pay a too high cost for the analysis (no-free-lunch).  343 

We aim at objectifying this statement by resorting to Signal detection theory (SDT). SDT migrated 344 

from radar/communication fields to medicine (Tiwari et al., 2021) and psychology (Kingdom & 345 

Prins, 2016), is a theory that investigates this issue in a mathematical way. Consider a situation 346 

where a decision-making person is faced with a single stimulus (signal) that is either faint (i.e., the 347 

strength of the signal is low), or confusing (i.e., the stimulus contradicts prior information). Based 348 

on this stimulus, the person must decide whether the signal is there or not. In fact, the situation is 349 

even more potentially confusing in case there are multiple other, uninteresting, stimuli that are 350 

similar to the original signal (we define these from now on as ‘noise’). In particular, we are 351 

interested in two precise situations: 352 

-  The signal is present, and the person identifies it as signal or noise; we define these 353 

respectively as hits and misses (See Fig. 3 A, where the green color indicates a correct 354 

decision and the color red indicates an incorrect decision). 355 

- The signal is absent, and the person identifies it as signal or noise; we define these as false 356 

alarms or correct rejections (See Fig. 3 B).  357 

Based on these definitions, a confusion matrix (as shown in Figure 3) can be constructed based on 358 

the following definitions (Singh et al., 2021):  359 

• True positive rate (TP): the total number of correct results or predictions when the actual 360 

class was positive (i.e., “hits”). 361 

• False positive rate (FP): the total number of wrong results or predictions when the actual 362 

class was positive (i.e., “misses”)  363 
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• True negative rate (TN):  the total number of correct results or predictions when the 364 

actual class was negative (i.e., “false alarms”) 365 

• False negative rate (FN) is the total number of wrong results or predictions when the 366 

actual class was negative (i.e., “correct rejections”) 367 

By considering the former human reliability test (decision about the selection of algorithm) as a 368 

binary decision task, the same confusion matrix (Singh et al., 2021) and probability outcomes for 369 

all problem-decision (correspond to signal-response and/or positive-negative) combinations can 370 

be obtained as shown in Fig 4.  371 

 372 

 373 
Fig 3. Confusion matrix and probability outcomes: (A) Proportions of hits and misses under 374 

signal distribution (o is biased), (B) Proportions of false alarms and correct rejections represented 375 

under the noise distributions (Anderson, 2015) 376 

 377 

 378 

Fig 4. Simulating confusion matrix for reliability analysis  379 
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 380 

Here, considering the two main categories of problems presented in this section, we divide the 381 

former defined P(HE) into two types: The first one, denoted as 𝑃(𝐷(")|𝑇$,, represents the 382 

probability that decision B (𝐷(M)) is made for problem type I (𝑇N): 383 

𝑃(𝐷(")|𝑇$, =
%(&)
&(')

.            (11) 384 

Accordingly, the probability that decision B (𝐷(M)) is made for problem type I (𝑇N) is presented 385 

as: 386 

𝑃(𝐷(')|𝑇$$, =
%(')
&(&)

.           (12) 387 

An example of how one can estimate these probabilities is illustrated in Fig 5. The test may be 388 

conducted by gathering a number of benchmark problems and asking a practitioner to determine 389 

the type of the problem. Then, the proposed outcomes can be mapped to a decision space using 390 

normal distributions (Fig 6) and the obtained results provide the opportunity of employing 391 

developments in detection theory in structural reliability analysis (Fig 7).  392 

 393 

 394 

Fig 5. Human reliability test in decision making under uncertainty 395 
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               396 

Fig 6. Mapping human reliability test to decisions space  397 

 398 

Fig 7. Representing the selection of the optimal reliability method as a detection problem 399 

 400 

As a result, a portion of SDT that is developed for differentiating a person/classifier ability to 401 

discriminate the presence and absence of a stimulus (Colloca, 2013), can be used as a framework 402 

to assess the capabilities of the practitioner for selecting the correct reliability/optimization 403 

analysis algorithms. The most frequently used performance metrics for classification according to 404 

these values are accuracy (ACC), precision (P), sensitivity (Sn), specificity (Sp), F-score and 405 

Matthew Correlation Coefficient (MCC) values that can be calculated as follows (Al-Turjman & 406 

Deebak, 2020; Singh et al., 2021): 407 

𝐴𝐶𝐶 = OP2O3
OP2O32#P2#3
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𝑆𝑛 = OP
OP2#3

                         (15) 410 

𝑆𝑝 = O3
O32#P

	                        (16) 411 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 × P×R!
P2R!

               (17) 412 

𝑀𝐶𝐶 = 5STUVWXU	(OP×O3,#P×#3)P×R!
Y(#P2#3)×(OP2O3)×(OP2#3)2(OP2#P)

     (18) 413 

As another straightforward application, the detectability index (DI) (de Valk et al., 1981) 414 

provides a practical tool for conclusions about the decision-making capabilities of the 415 

practitioner for efficiently solving reliability problems: 416 

DI=−ϕ71 ~𝑃;𝐷(Z)|𝑇NN>� − ϕ71 ~𝑃;𝐷(M)|𝑇N>�              (19) 417 

=𝛽N + 𝛽NN  , 418 

in which DI can be considered as an index to separate experts among the other analysts for 419 

efficiently solving reliability problems. For instance, as shown in Fig 8, we can find that DI is 420 

close/equal to zero for analysts that: always use their favorite approach in analysis (Figs 8-A, and 421 

8-B) or select a method by mere chance (Fig 8-C). Clearly, we should avoid to employ such 422 

analysts for reliability analysis. On the other hand, how to use the evaluation of experts to obtain 423 

optimal results in analyzes is investigated in the next section. 424 

 425 
Fig 8. Zero detectability index for analyst whom only uses: A) gradient-based approaches in 426 

analysis (i.e., 𝑃(𝐷(")|𝑇$, = 0, 𝑃(𝐷(')|𝑇$$, = 1), B) Random search approaches in analysis (i.e., 427 
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𝑃(𝐷(")|𝑇$, = 1, 𝑃(𝐷(')|𝑇$$, = 0) or C) select algorithms by the chance (i.e., 𝑃(𝐷(")|𝑇$, =428 

𝑃(𝐷(')|𝑇$$, = 50% 429 

 430 

EVIDENCE THEORY FOR THE SELECTION OF OPTIMAL ALGORITHM  431 

As discussed in NFLR#2, for efficiently solving a reliability problem, a practitioner should select 432 

an optimal algorithm that matches to the information of the problem. In this section, a potential 433 

procedure for selection of such an optimal algorithm is suggested. Generally, the choice of an 434 

optimal algorithm would be a function of the dimension of the in-hand problem, the potential range 435 

of failure probability, robustness/efficiency of the alternative algorithms for solving nonlinear 436 

problems, and their complexity (in terms of hyper-parameters and the nature of search process). 437 

However, in a realistic engineering context, selecting an optimal algorithm among different 438 

alternatives may be difficult and we might be faced with the following confusing situation. For an 439 

in-hand problem, different expert practitioners suggest different approaches as being the optimal 440 

algorithm for the problem under consideration. Sometimes, we may even find that this conflict in 441 

the evaluation of experts, instead of decreasing the uncertainty, increases our doubt about the 442 

selection of potential optimal algorithm in reliability analysis.  443 

Here, considering the selection of the optimal algorithm as a decision problem under uncertainty, 444 

one may use different approaches to reduce error in analysis. For this purpose, as mentioned in the 445 

introduction, one may adapt MCDM or AHP for the proposed selection problem or use Bayesian 446 

inference in analysis. Using linguistic assessments, experts may evaluate the potential performance 447 

of a set of selected reliability algorithms for different criteria (e. g., dimension of the problem, 448 

nonlinearity of LSF and etc.). Then, MCDM or AHP may be used for ranking algorithms according 449 

to the existing decision-making methods to select optimal method. In this section, by employing 450 
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the Dempster-Shafer theory of evidence (Dempster, 1968), we offer a potential solution for this 451 

issue. Besides the simplicity, compared to MCDM or AHP, a main advantage of this theory is 452 

capability of solving decision making problems considering human reliability noting that this 453 

approach already presented promising performance for solving selection problems and reliability 454 

analysis (P. Li & Wei, 2019), (Rakowsky, 2007).  455 

In essence, Dempster-Shafer evidence theory allows us to combine information from multiple 456 

independent sources, even when the corresponding beliefs are conflicting. Based on these sources 457 

of information, the Dempster-Shafer rule combines the included information into a measure of 458 

belief that highlights portions of evidence that align, while downplaying those portions that 459 

conflict (Frittella et al., 2020).  460 

Following this approach, a practical solution for upgrading classic reliability analysis into an 461 

experts-in-the-loop process is proposed that increases the probability of choosing an optimal 462 

approach among alternatives for efficient reliability analysis.  463 

 464 

Data fusion in decision level 465 

In a general engineering context, sensors are devices that collect selected pieces of information 466 

from the environment in which they operate, which is subsequently used to infer the state of the 467 

system under consideration (Gros, 1997). However, to include the reliability and completeness of 468 

the information obtained, multiple sensors might need to be used to overcome operating range 469 

limitations. In this context, data fusion is a very useful tool to aggregate the information coming 470 

from multiple sources. In the domain of sensor fusion, it has been shown numerously that 471 

increasing the number of sensors can lead to a significant reduction in error (See Fig 9) (Gros, 472 

1997). Note that the definition of “error” is in this context highly problem-dependent. 473 
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  474 

Fig 9. Probability of errors versus number of sensors (Gros, 1997) 475 

 476 

To know how fusion theory helps us to efficiently select the right tools to solve reliability 477 

problems, it is enough to consider the evaluations of practitioners as the data obtained from the 478 

sensors. Using this approach, we can present our original selection problem (See Fig 1) as a data 479 

fusion problem (See Fig 10) where experts play the role of sensors and evidence theory plays the 480 

role of fusion center to combine different pieces of knowledge into a single knowledge base to 481 

derive a sound conclusion in a space with reduced uncertainty. In the following subsections, this 482 

theory is adapted for solving selection problems with step-by-step explanations.483 
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 484 

Fig 10. Fusing knowledge of two experts by fusion theory to make a decision about optimal 485 

reliability approach  486 

 487 

Selection of optimal algorithm by Dempster-Shafer theory of evidence 488 

Dempster-Shafer theory allows us to integrate data coming from several independent sources, even 489 

when these data are incomplete. In a sense, it can also be regarded as a general extension of 490 

Bayesian theory (Delavar & Sadrykia, 2020; Dempster, 1968). As mentioned before, based on 491 

these sources of information, the Dempster-Shafer rule combines the included information into a 492 

measure of belief that highlights portions of evidence that align, while downplaying those portions 493 

that conflict (Frittella et al., 2020). A brief description of the combination rule of this theory is 494 

presented here (for more details, see (Dempster, 1968; Gros, 1997; Delavar and Sadrykia, 2020)). 495 

Considering a set of hypotheses, called frame of discernments ⊝= {𝐻(, 𝐻), … , 𝐻&}, a mass function 496 

(also known as basic probability assignment, BPA) can be defined for any subset of frame of 497 

discernment having the following properties: 498 
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𝑚:𝑃(⊝) → [0,1] 499 

∑ 𝑚(𝐴)'∈+(⊝) = 1,			𝑚(∅) = 0,                (20) 500 

where each subset 𝐴 ∈⊝ such as 𝑚[(𝐴) > 0 is called a focal element of 𝑚 (Delavar & Sadrykia, 501 

2020; Dempster, 1968). The focal element shows how strongly the existing evidence supports 𝐴. 502 

DST suggests a rule for combination of two mass functions 𝑚1 and 𝑚9 to yield a new mass 503 

function with decreased uncertainty: 504 

𝑚(𝐴) = ∑ 6,(M)-∩/01 62(<)			
170

	 when 𝐴 ≠ ∅						𝑘 = ∑ 𝑚1(𝐵)M∩<$∅ 𝑚9(𝐶),     (21) 505 

where 𝐵 and 𝐶 are two focal elements of 𝑚1 and 𝑚9. In this formulation, 𝑘 is a normalization 506 

constant that measures the level of conflict between the two input belief functions in which, 𝑘 = 0 507 

represents the absence of conflict between 𝑚1 and 𝑚9, and 𝑘 = 1 implies complete inconsistency 508 

between 𝑚1 and 𝑚9 (Lepskiy, 2013; Yager, 1987). Here, to ease the understanding of the 509 

application of DST in reliability analysis, we present a step-by-step solution of the method, 510 

illustrated with examples. 511 

Assume that for the given problem 𝑔 = 𝑓(𝑢), we wish to find an optimal reliability approach 512 

among three potential optimal alternatives A, B and C. We ask two practitioners to assign a score 513 

(e. g., from 1 to 100, considering the items described in the beginning of this section) or a mass 514 

probability to each method and tabulate results as presented in Table 1. In this table, for instance, 515 

𝑆𝑐𝑜𝑟𝑒(," corresponds to the score of method B from believe of expert #1. To present the problem 516 

in the form of DST, we should convert scores to mass probabilities. Therefore, once each method 517 

is scored, result may be normalized as follows (See Tables 1 and 2): 518 

𝑆.,' =
/0123(,'

/0123(,'4/0123(,&4/0123(,*
.             (22) 519 
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Then, we have 𝑆.,' + 𝑆.," + 𝑆.,5 = 1.	For instance, Table 2 says from belief of Expert #1, there is 520 

𝑆1,Z, 𝑆9,Z, 𝑆_,Z percentage chance for methods A, B and C respectively, to be optimal algorithms 521 

for solving in-hand reliability problem. 522 

 523 

Table 1. Scoring three methods for solving a certain reliability problem using the knowledge of 524 

two experts  525 

 method A  method B method C 
Expert #1 Score(,'  Score(," Score(,5 
Expert #2 Score),'  Score)," Score),5 

 526 

Table 2. Presenting optimal selection problem in the form of Dempster-Shafer’s theory  527 

 method A  method B method C 
Expert #1 𝑆(,'  𝑆(," 𝑆(,5 
Expert #2 𝑆),'  𝑆)," 𝑆),5 

 528 

Then, a Dempster combination matrix (DCM), required for computations is then constructed as 529 

follows: 530 

	 					
																																																		Expert	#2

																																						𝑆),'								 				𝑆),"													 𝑆),5

DCM = Expert	#1
𝑆(,'	
𝑆(,"
𝑆(,5

Z
𝑆(,' ∙ 𝑆),'	 𝑆(,' ∙ 𝑆),"	 𝑆(,' ∙ 𝑆),5 	
𝑆(," ∙ 𝑆),' 𝑆(," ∙ 𝑆)," 𝑆(," ∙ 𝑆),5
𝑆(,6 ∙ 𝑆),' 𝑆(,6 ∙ 𝑆)," 𝑆(,6 ∙ 𝑆),6

[
       (23) 531 

Finally, the parameters presented in Eq. (21) can be computed as follows: 532 

K=𝑆(,' ∙ 𝑆),"+𝑆(,' ∙ 𝑆),5+𝑆(," ∙ 𝑆),'+𝑆(," ∙ 𝑆),5+𝑆(,5 ∙ 𝑆),'+𝑆(,5 ∙ 𝑆)," 533 

𝑚'=7+,'∙7,,'
(89

, 534 

𝑚"=7+,&∙7,,&
(89

, 535 

𝑚5=7+,-∙7,,-
(89

, 536 

𝑚'+𝑚"+𝑚5=1         (24) 537 
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 538 

A) Example of DST method selection taking evaluations of two experts 539 

Here, assume that scoring is performed for three approaches and the results are normalized as 540 

presented in Table 3. 541 

Table 3. The belief of two experts regarding mass probabilities of three alternative reliability 542 

algorithms (A, B and C)  543 

 method A  method B method C 
Expert #1 0.20  0.35 0.45 
Expert #2 0.10  0.40 0.50 

 544 

Having evaluations of two experts in hand, the following DCM can be obtained by multiplying 545 

the mass functions of evidences as follows:  546 

	 					
																																																			

																						0.2 				0.35			 0.45

𝐷𝐶𝑀 = 	
0.1
0.4
0.5

_
0.020 0.035 0.045
0.080 0.140 0.180
0.100 0.175 0.225

b
 547 

In the proposed matrix, we have the main diagonal of DCM as PAA=0.1 × 0.2 = 0.020, 548 

PBB=0.4 × 0.35 = 0.140 and PCC=0.5 × 0.45 = 0.225. Besides, the constant factor K can be 549 

estimated as all component of CM except main diagonal components: 550 

K=0.035+0.045+0.080+0.180+0.100+0.175=0.615, 551 

Then, a new up-dated probability for each alternative would be as follows: 552 

𝑚'=P𝐴𝐴
(89

= :.:):
(8:.<(=

= 0.052, 553 

𝑚"=P𝐵𝐵
(89

= :.(>:
(8:.<(=

= 0.36, 554 

𝑚5= P𝐶𝐶
(89

= :.))=
(8:.<(=

= 0.58, 555 

The result is tabulated in Table 4. We can find that by combining the knowledge of two 556 

practitioners: 557 
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A) the optimality probability of method A (from 20 and 10) is reduced to 5.2%, 558 

B) the optimality probability of method B (from 35 and 40) is turned into 36%, 559 

C) the optimality probability of method C (from 45 and 50) is increased to 58%. 560 

Considering the obtained results, one may conclude that Method C is the optimal approach 561 

among the three proposed alternatives.  562 

Table 4. DST decision fusion result for two experts regarding method A, B and C  563 

Methods A  B C 
Fusion result 5.2%  36% 58% 

 564 

B) Example of DST method selection taking evaluations of four experts 565 

In this example, we increased the number of practitioners from two to four and the result of the 566 

evaluations is tabulated in Table 5.  567 

Table 5. The belief of four experts regarding mass probabilities of three alternative reliability 568 

algorithms (A, B and C)  569 

 method A  method B method C 
Expert #1 0.20  0.35 0.45 
Expert #2 0.10  0.40 0.50 
Expert #3 0.30  0.20 0.50 
Expert #4 0.20  0.30 0.50 

 570 

Using DST, the evaluations of four experts are merged together and the updated probabilities are 571 

presented in Table 6. The result shows that even though the optimality probability of method C 572 

from view point of each expert is about 50%, the theory of evidence reduced uncertainty and we 573 

can consider about 85% chance for method C as optimal approach for solving the in-hand 574 

reliability problem. This issue is schematically represented in Fig 11. 575 

Table 6. DST decision fusion result for four experts regarding method A, B and C 576 

Methods A  B C 
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Fusion result 1.5%  14% 85% 
 577 

 578 
Fig 11. Reducing the uncertainty in decision making by increasing numbers and fusing 579 

evaluations of practitioners 580 

 581 

Selection of optimal algorithm by Yager’s method of fusion 582 

In the previous solution, it is assumed that practitioners are reliable and they have not any doubt 583 

in their evaluations regarding the competency of three alternative methods. However, in practice, 584 

the human reliability of practitioners is not 100% (i. e., 𝑅 < 100%). On the contrary, practitioners 585 

often have errors in their beliefs or may have some doubts in their evaluations. Even, we may find 586 

huge conflict in their judgement. In decision fusion theory, there are several solutions for solving 587 

such problems (Cuzzolin, 2021; Lepskiy, 2013) while in this study, we suggest to apply Yager’s 588 

rule of fusion to solve problems involving practitioners’ uncertainty (Yager, 1987). 589 

Yager suggested applying a reliability factor in fusion which is, in this study, representative of 590 

reliability of experts in their evaluation (denoted as 𝑅(∙) in NFLR#2). For the case of this study, 591 

the 𝑅 index can be obtained by human reliability analysis.  592 
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For instance, 𝑅1 =90% means practitioner #1 had 90% successful decisions in distinguishing 593 

optimal reliability approach in his/her previous experiences, which is equal to 10% failure 594 

probability in proper decision making, i.e., 𝑃(𝐻𝐸)=10% (or according to evidence theory: for 595 

10%, I have no any idea about the optimal approach for the subject case study). Such reliability 596 

levels can for instance be calibrated by means of pre-defined selection questions with known 597 

answers (Ayyub, 2001). By considering 𝑚′. as mass functions presented by experts and 598 

introducing ground probability mass function 𝑞, this approach updates probabilities as follows:  599 

𝑞(∅) ≥ 0,  600 

𝑆.(𝐴) = 𝑅. ×𝑚′.(𝐴),	  601 

𝑞(𝐴) = ∑ [𝑆((𝐴() × 𝑆)(𝐴)) × …× 𝑆.(𝐴.) + (1 − 𝑅.) × 𝑆.]∩'(H' , 602 

𝑚(𝐴) = I(')
(8𝑞(∅) .             (25) 603 

The step-by-step application of combination of probabilities with expert uncertainty (Yager, 1987) 604 

is as follows: Let the evaluation of two practitioners regarding three alternative approaches A, B 605 

and C be as shown in Table 7. The main difference of this table with Table 2 is that we additionally 606 

consider the reliability of practitioners 𝑅𝒊 in their analysis.  607 

 608 

Table 7. The evaluation of two experts with uncertainty in decision making 609 

Expert/Method method A  method B method C Reliability of expert 
Expert #1 𝑆′(,'  𝑆′(," 𝑆′(,5  𝑅( 
Expert #2 𝑆′),'  𝑆′)," 𝑆′),5  𝑅) 

 610 

Having mass probability of each method according to evaluation of experts with reliability 𝑅., 611 

Yager suggested a modification on the assigned probability masses as: 612 

𝑆.,K=𝑅K ∙ 𝑆′.,K            (26) 613 

Then, adapts probability outcomes as shown in Table 8. 614 
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Table 8. Adapting evaluation of experts according to Yager’s approach 615 

Expert/Method method A  method B method C Expert failure 
probability 

Expert #1 𝑆(,(  𝑆(,) 𝑆(,L 𝐸𝐹(=1-𝑅( 
Expert #2 𝑆),(  𝑆),) 𝑆),L 𝐸𝐹)=1-𝑅) 

 616 

For the updated probabilities, the updated combination matrix CM then becomes as follows: 617 

	 					
																																																		Expert	#2

																																						𝑆),'								 			𝑆),"								 	𝑆),5 	 											𝐸𝐹)

𝐶𝑀 = Expert	#1

𝑆(,'	
𝑆(,"
𝑆(,5
𝐸𝐹( ⎣

⎢
⎢
⎡
𝑆(,' ∙ 𝑆),'	 𝑆(,' ∙ 𝑆),"	 𝑆(,' ∙ 𝑆),5 	
𝑆(," ∙ 𝑆),' 𝑆(," ∙ 𝑆)," 𝑆(," ∙ 𝑆),5
𝑆(,6 ∙ 𝑆),' 𝑆(,6 ∙ 𝑆)," 𝑆(,6 ∙ 𝑆),6
𝐸𝐹( ∙ 𝑆),' 	𝐸𝐹( ∙ 𝑆)," 			𝐸𝐹( ∙ 𝑆),6

𝑆(,' ∙ 𝐸𝐹)
𝑆(," ∙ 𝐸𝐹)
𝑆(,5 ∙ 𝐸𝐹)
𝐸𝐹( ∙ 𝐸𝐹)⎦

⎥
⎥
⎤    (27) 618 

Then, the combined probability for each alternative can be estimated as follows: 619 

K=𝑆(,' ∙ 𝑆),"+𝑆(,' ∙ 𝑆),5+𝑆(," ∙ 𝑆),'+𝑆(," ∙ 𝑆),5+𝑆(,5 ∙ 𝑆),'+𝑆(,5 ∙ 𝑆)," 620 

𝑚'= I'
(89

, 621 

𝑚"= I&
(89

,                 (28) 622 

𝑚5= I*
(89

, 623 

where, 624 

𝑞'=𝑆(,' ∙ 𝑆),'+𝑆(,' ∙ 𝐸𝐹)+𝐸𝐹( ∙ 𝑆),' 625 

𝑞"=𝑆(," ∙ 𝑆),"+𝑆(," ∙ 𝐸𝐹)+𝐸𝐹( ∙ 𝑆),"       (29) 626 

𝑞5=𝑆(,5 ∙ 𝑆),5+𝑆(,5 ∙ 𝐸𝐹)+𝐸𝐹( ∙ 𝑆),5  627 

According to Yagers’ method of fusion, the ignorance factor (Ig) is as follows: 628 

Ig=1-𝑚'+𝑚"+𝑚5 .        (30) 629 

This factor reflects the reliability of practitioners in their final estimation (e. g., large value for Ig 630 

are equal to a low reliability of obtained probabilities). 631 

 632 
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A) Example of Yager method selection taking evaluations of two experts with 633 

uncertainty 634 

Consider two practitioners with reliabilities of 𝑅1 = 75% and 𝑅9 = 90% and evaluation about the 635 

optimality chance of three alternatives as presented in Table 9. Here, one may find a kind of 636 

conflict in selection of two practitioners for methods A and C. 637 

Table 9. The evaluation of two experts with uncertainty regarding the optimality probability of 638 
three desired reliability methods A, B and C 639 

Expert/Method method A  method B method C Reliability of expert 
Expert #1 0.2  0.3 0.5 0.75 
Expert #2 0.6 0.3 0.1 0.9 

 640 

According to the implementations presented in this section, the updated probability table (Table 641 

10) and combination matrix CM would be as follows: 642 

CM = �
0.081 0.121
0.040 0.061

0.202 0.135
0.101 0.067

0.013 0.020
0.015 0.022

0.034 0.022
0.037 0.025

� 643 

Accordingly, by estimating parameters presented in Eqs. (28) and (29), the final updated 644 

probabilities correspond with chance of three alternative as optimal algorithms would be as 645 

presented in Table 11 while the ignorance factor of the result is Ig=5%. 646 

Table 10. The updated evaluation matrix for two experts considering uncertainties in decision 647 
making 648 

Expert/Method method A  method B method C Failure probability of 
expert 

Expert #1 0.150	  0.225	 	0.375 0.25 
Expert #2 0.540	  	0.270 0.090	 0.1 

 649 

Table 11. Yager’s decision fusion result for two experts regarding method A, B and C 650 

Methods A  B C 
Fusion result 46%  30% 19% 

 651 
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The result of combination, which led to a reduction in uncertainty of the selection, shows that 652 

algorithm 𝐴 with 𝑚(𝐴)=46% chance, as compared to other approaches could be considered as the 653 

optimal algorithm for reliability analysis. 654 

 655 

B) Example of Yager’s method selection taking evaluations of four experts with uncertainty 656 

In this example, the number of practitioners evaluations involving uncertainty in evaluations is 657 

increased to four (See Table 12) and the decision fusion results are presented in Table 13. Result 658 

shows that among three alternative algorithms, Method A has 66% chance to be optimal approach 659 

among other approaches and considering big differences between chance of methods, the proposed 660 

algorithm could be a reliable solution for solving the problem. 661 

Table 12. The evaluation of four experts with uncertainty regarding the optimality probability of 662 

three desired reliability methods A, B and C 663 

Expert/Method method A  method B method C Reliability of expert 
Expert #1 0.20 0.30 0.50 0.75 
Expert #2 0.60 0.30 0.10 0.90 
Expert #3 0.50 0.15 0.35 0.85 
Expert #4 0.35 0.45 0.20 0.80 

 664 

Table 13. Yager’s decision fusion result for four experts regarding method A, B and C 665 

Methods A  B C 
Fusion result 66%  20% 14% 

 666 
 667 
DISCUSSION AND TOPICS FOR FUTURE RESEARCH 668 

In this paper, the potential application of different theories for improving the quality of research 669 

and analysis in structural reliability analysis are investigated: 670 

• Considering well developed studies in the literature about the presented theories (e. g., 671 

Human reliability, detection theory, decision making under uncertainty and data fusion 672 
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theory) this study highlights that investigation regarding to proposed theories and also 673 

progress in related “strategies” in uncertain condition, instead of only considering 674 

development in “algorithms”, could be subject of future studies (e. g., see Fig 12). 675 

• The lesson that has to be learned from NFL is that for the practitioner the correct 676 

question is not which algorithm I have to use but what is the geometry of the problem 677 

fitness (Serafino, 2013). Therefore, conducting a kind of meta research (Mikolajewicz & 678 

Komarova, 2019) including analysis and discussing about performance function of 679 

problems for each specific field would be highly helpful for selecting optimal algorithm 680 

for efficient reliability of structures. 681 

• Considering the recent developments in meta-models and machine leaning approaches for 682 

efficient reliability analysis, similar researches can be conducted for clarification about 683 

some aspects of these approaches that was not investigated/clarified in literature.  684 

It might be argued that applying extensive selection procedures as presented in this paper to answer 685 

these questions might be too involved for many every-day reliability problems. Indeed, when the 686 

reliability problem is trivial, the losses incurred by having no free lunch might be less than the 687 

time spent in selecting the most appropriate reliability method. However, since current computing 688 

trends are pointing more and more in the direction of high-dimensional problems (both in terms of 689 

uncertain quantities, as in degrees of freedom in the underlying models), the selection of the most 690 

appropriate method becomes a pressing issue, which has to be treated with utmost care. 691 

A further critical remark with respect to the work presented in this paper is that there are some 692 

criticisms regarding the original NFL theorem (Adam et al., 2019; McDermott, 2020). The authors 693 

can add another one to this list by highlighting the importance of size/dimension of the problem in 694 

reliability analysis. For an at-hand problem, the size/dimension of the problem is always available. 695 
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Knowing this, some approaches are preferable to others in term of performance (e.g., problem 696 

dependent algorithms that only developed for solving high dimensional problems and vice versa.).  697 

 698 

Fig 12. Hierarchical experts-in-the-loop decision fusion strategy by decoupling the skills of 699 

practitioners required for optimization and reliability  700 

Decision fusion 

Which optimization approach is fit to 
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Importance sampling, BESS etc.) 

Optimal 
method 
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Gradient-based optim
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Expert optimization researchers

Random search approach

Expert reliability researchers Expert reliability researchers

Problem 
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 701 

This specific point is not considered in the proof of original NFL theorem (e. g., one may argue 702 

that no purely black-box problem exists in real-world problems). Nonetheless, the authors are of 703 

the opinion that this does not nullify the conclusions made in this study; specially in the case of 704 

NFLR#2, namely that when a reliability analyst just uses their preferred reliability method for 705 

grey-box problems, there is no free lunch in reliability analysis. 706 

 707 

CONCLUSION 708 

According to asymptotic approximation theory, search and optimization are the core of robust 709 

reliability approaches. In this paper, it shown that the well-known No-Free-Lunch theorems 710 

(NFL) in search and optimization can therefore be used to answer basic questions regarding 711 

selection of an optimal algorithm for efficient reliability analysis.  712 

It proposed that for the case of problems with no information about the structure of performance 713 

function (so called black-boxes), no algorithm is preferable to others in terms of performance. For 714 

the case of problems where some information about the reliability problem is available (known as 715 

grey-boxes), the proposed adapted NFL theorem shows that the analyst is a key part of the 716 

reliability problem, and the importance of human reliability in this case is as all knowledge about 717 

the in-hand problem. 718 

It is shown that, parallel to statistical skills, efficient reliability analysis requires expertness of 719 

analyst in the field of optimization to distinguish which algorithm is more efficient to properly 720 

determine the important failure regions of the problem. Otherwise, even for simple problems, there 721 

is no free lunch in reliability analysis. To meet this aim, application of human reliability and 722 
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detection theory as a mathematical framework for analysis of decision making under uncertainty 723 

are investigated.  724 

Once the importance of practitioner and its reliability for efficient probabilistic analysis have been 725 

highlighted, we suggested to employ the theory of evidence and data fusion for determining the 726 

probabilities of alternative algorithms to be the optimal solution for solving a defined reliability 727 

problem. Data fusion shows that increasing the number of sensors (say practitioners), reduces the 728 

probability of error in distinguishing the state of system (selection of optimal approach in this 729 

study). Having several alternative algorithms as potential optimal approach for solving a certain 730 

problem, we show that Dempster-Shafer's theory of evidence (as a well-developed approach for 731 

fusing uncertain information) can be used straightforwardly for combining the evaluation of 732 

several practitioners regarding alternative algorithms for reducing the probability of error in 733 

selection of optimal reliability approach. For easing the understanding of the proposed approach, 734 

a step-by-step solution of the proposed experts-in-the-loop approach are illustrated for some 735 

examples with different number of practitioners. We finally wrap the developments up in a 736 

discussion section. 737 

 738 
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