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Abstract

This paper presents a novel decoupling approach to efficiently solve a class of reliability-based 1

design optimization (RBDO) problems by means of augmented Line Sampling. The proposed 2

approach can fully decouple the original RBDO by replacing the probabilistic constraint with 3

the failure probability function (FPF), which is an explicit function of the design variables. One 4

attractive feature is that the main numerical cost associated with this decoupling comes with only 5

one implementation of augmented Line Sampling, which is actually highly efficient. And for the 6

sake of accuracy, the proposed approach incorporates decoupling with the sequential optimization 7

framework to solve the RBDO problem iteratively. On top of that, an optimal combination 8

algorithm is proposed to reuse the information through aggregating the local estimates of FPF 9

obtained in different iterations to produce an improved estimate, resulting in a more accurate 10

and stable solution. Examples are given to show the effectiveness and efficiency of the proposed 11

approach. 12

Keywords: Reliability-based design optimization, Augmented Line Sampling, Decoupling,

Sequential optimization

1. Introduction 13

Reliability-based design optimization (RBDO) [1, 2] serves as an effective tool for structural 14

design optimization under uncertainty in engineering. In essence, RBDO aims at identifying 15

the optimal design in terms of reliability, given a set of uncertain or inherently variable model 16

quantities. Since uncertainty and variability are rather the norm than exception in engineering 17

cases, these methods have the potential to leverage more reliable designs. However, the widespread 18
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application of this class of methods in engineering and industrial practice is hindered by the large 19

computational burden associated with finding the optimal design due to the need for solving a 20

reliability problem at each step of the optimization. 21

Many methods have been proposed in an attempt to decrease the numerical costs associated 22

with the solution of RBDO problems. There are mainly three kinds of methods which have been 23

developed, namely double loop methods, single loop methods, and decoupling methods. Double 24

loop methods [3] carry out the reliability analysis (which corresponds to the inner loop) for each 25

step in the design optimization (i.e., the outer loop) to estimate the probability of failure of the 26

design in the current iteration. It is clear that the computational cost of this class of methods is 27

very high due to its nested nature. Single loop methods [4] replace the reliability analysis loop by its 28

Karush–Kuhn–Tucker (KKT) optimality conditions. In this way, one can efficiently handle linear 29

and moderately nonlinear performance functions. Decoupling methods replace the probabilistic 30

constraint by constructing an explicit (and usually approximate) representation of the failure 31

probability as a function of the design parameters. The latter is termed as the failure probability 32

function (FPF). The key of decoupling methods is the construction of FPF, and different ways are 33

proposed, such as making an approximation based on the sensitivity of failure probability with 34

respect to design parameters [5], the application of pre-defined functions [6, 7], employing the 35

idea of solving an augmented reliability problem [8, 9], and the weighted approach [10, 11]. These 36

methods solve the reliability and optimization problem sequentially, and as such, effectively break 37

the double loop. In addition to the three methods for solving RBDO problems described above, 38

some of the authors very recently introduced a ‘completely decoupled’ method based on Operator 39

Norm theory. This method, which is applicable for a class of linear models, is highly effective 40

in reducing the computational cost, since it just requires the solution of a single deterministic 41

optimisation problem followed by a single reliability analysis [12]. 42

Concerning the reliability analysis that is employed for RBDO, many methods adopt approx- 43

imate analytical approaches, e.g., reliability index approach [3, 13] and performance measure 44

approach [14, 15]. Although analytical methods can provide an efficient estimation of the failure 45

probability, they typically suffer from low accuracy, especially in case the governing limit-state 46

function is highly non-linear. Simulation methods evaluate the failure probability through sam- 47

pling, regardless of the nonlinearity or complexity of the structural limit state function. In this 48

context, Monte Carlo simulation or advanced variants hereof, including, Importance Sampling 49

2



[16, 17], Directional Importance Sampling [18], Subset Simulation [19] and Line Sampling [20, 21], 50

are applied. These methods are found to be (mostly) robust with respect to the problem at hand, 51

although a full review of their different capabilities is beyond the scope of this work. In any case, 52

the integration of these techniques in a double-loop scheme is hindered by the corresponding com- 53

putational expense. An alternative means for circumventing this issue involves surrogate methods 54

such as, for example, response surface [22, 23] and kriging model [24, 25]. 55

In this contribution, a new decoupling approach based on augmented Line Sampling and a 56

optimal combination algorithm is proposed to handle the RBDO problem efficiently. Augmented 57

Line Sampling (ALS) [26, 27] is utilized to estimate the FPF through a single Line Sampling 58

run in an augmented space. Thus, the proposed approach adopts ALS to decouple the original 59

RBDO by replacing the probabilistic constraint with the obtained failure probability function 60

estimate. Then, the proposed approach incorporates decoupling with the sequential optimization 61

framework to solve the RBDO problem iteratively. Further, a combination algorithm is proposed 62

to integrate the local approximations obtained in previous iterations with the current one, which 63

is expected to enhance the performance of the optimization process. The most salient features 64

of the proposed approach are, 1) it utilizes a simulation-based reliability analysis method, which 65

is expected to own higher accuracy than approximated methods; 2) it decouples the double loop 66

problem, and hence is efficient; 3) only one single run of Line Sampling is required to estimate 67

the FPF to decouple the RBDO problem, in contrast to multiple runs that would be required 68

in a double-loop implementation; 4) a optimal combination algorithm is proposed to reuse the 69

information in the current iteration which can further enhance the performance of the proposed 70

approach regarding stability and convergence speed. The aforementioned features constitute a 71

significant novelty with respect to previous contributions [26, 27]. Specifically, the work reported 72

in [26] focuses on estimating the failure probability function, while [27] aims at solving imprecise 73

reliability problems. However, this paper addresses the RBDO problem using the ALS method, 74

with special focus on deocupling, information re-use and combination of reliability estimators 75

generated at different stages. 76

The paper is organized as follows. The definition of the RBDO problem is presented in Section 77

2. Then, the mathematical formulation of the proposed decoupling approach is developed in 78

Section 3. Then, in Section 4, various examples are presented to show the performance of the 79

proposed approach. Finally, Section 5 lists the conclusions of the paper. 80
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2. Reliability-based optimization problem 81

The RBDO problem considered in this contribution is formulated as the minimization of the 82

cost of a structure subject to multiple probabilistic and deterministic constraints. In mathematical 83

terms, this is cast as 84

min W (θ)

s.t. PFl(θ) ≤ P tol
Fl (l = 1, 2, . . . , nP )

Cj(θ) ≤ 0 (j = 1, 2, . . . , nC)

θi ≤ θi ≤ θ̄i (i = 1, 2, . . . , nθ) ,

(1)

where W (θ) is the objective function, which represents the cost W as a function of a vector 85

of design parameters θ = [θ1, . . . , θnθ ], corresponding to the distribution parameters (e.g., mean 86

values) of structural random variables, the latter being denoted by x = [x1, . . . , xn]; Cj(θ) is the j 87

-th deterministic constraint;PFl(θ) is the probability of failure with respect to the l-th performance 88

criterion in the x space which depends on θ and P tol
F l is the corresponding lth tolerance margin, 89

also referred to as the target failure probability. The quantity PFl(θ) as a function of θ is referred 90

to as failure probability function (FPF). In this analysis, the random variables are assumed to be 91

independent. 92

In this contribution, we focus on a particular kind of problem, where the design parameters 93

refer to the distribution parameters of the uncertain quantities in the analysis. Such problems are 94

encountered when, for example, the mean value of the geometrical dimensions of a given structure 95

are taken as the design parameters in the RBDO problem. For the sake of simplicity, this paper 96

considers a single reliability constraint, that is, nP = 1. However, note that the proposed approach 97

can handle problems with multiple reliability constraints. In such case, an approximation of FPF 98

should be constructed for each reliability constraint. As such, PFl(θ) can be rewritten as PF (θ), 99

which is defined as: 100

PF (θ) =

∫
IF (x)f(x | θ)dx, (2)

where f(x | θ) is the conditioned probability density function (PDF) of x based on the parameter 101

θ; IF (x) is the indicator function of the failure domain; IF (x) = 1 if (x) ∈ F, and IF (x) = 0 if 102

(x) /∈ F ; F = {x : g(x) < 0}, is the failure domain, g(•) is the performance function. 103
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3. Proposed approach 104

An efficient decoupling approach is discussed in this section to solve the RBDO problem 105

presented in Eq. (1) without having to solve the related double-loop problem. This proposed 106

approach features three key steps. 107

• The first step explained in detail in Section 3.1 is to obtain the FPF PF (θ) based on the 108

Augmented Line Sampling (ALS) method. In essence, it is adopted to replace the ‘inner’ 109

loop of Eq. (1) by an estimated explicit relationship between θ and PF (θ). 110

• The second step is the implementation of the sequential optimization framework. This 111

is explained in detail in Section 3.2. In essence, sequential optimization implies that the 112

optimization problem is solved over a reduced domain of the design variables. This protects 113

the quality of the approximation of the probability function generated with ALS. Naturally, 114

these reduced space designs are adjusted iteratively, such that the optimization process can 115

converge towards the sought optimal solution. 116

• This last step of the proposed framework consists of a newly proposed combination algorithm, 117

as explained in detail in Section 3.3. The optimal combination algorithm is proposed to reuse 118

the information from previous iterations of sequential optimization in the current iteration. 119

This can further enhance the performance of the proposed approach regarding stability and 120

convergence speed. 121

3.1. Augmented Line Sampling for the FPF estimation 122

The Augmented Line Sampling (ALS) is first presented which has been introduced by some of 123

the authors in [26] in the context of efficiently estimating the FPF PF (θ). As a first step in ALS, 124

an instrumental sampling density function f(x|θ∗) is introduced in Eq. (2). Straighforwardly, the 125

original PDF with a fixed nominal distribution parameter θ∗ is choosen, yielding f(x|θ∗). Then 126

the formulation of the FPF PF (θ) is rewritten as 127

PF (θ) =

∫
I(x)

f(x|θ)

f(x|θ∗)
f(x|θ∗)dx, (3)

which is subsequently transformed to the standard normal space. Generally, the transformation 128

from non-normal variables to standard normal ones (denoted by Txu) and the corresponding inverse 129

transformation (Tux) are provided as: 130

u = Txu(x | θ∗),x = Tux(u | θ∗). (4)
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Then by inserting Eq. (4) into Eq. (3), the FPF can be rewritten as

PF (θ) =

∫
IF (Tux(u | θ∗))

f(Tux(u | θ∗) | θ)

f(Tux(u | θ∗) | θ∗)
φ(u)du (5)

=

∫
IF (Tux(u | θ∗))η(u,θ,θ∗)φ(u)du, (6)

where φ(u) is the standard normal PDF; and 131

η(u,θ,θ∗) =
f(Tux(u | θ∗) | θ)

f(Tux(u | θ∗) | θ∗)
, (7)

is the ratio of two PDFs. This integral formulation can be efficiently evaluated by means of Line 132

Sampling. For this purpose, consider the rotated coordinate system: 133

u = Ru⊥ +αu′′, (8)

where R is a rotation matrix of dimension n × (n − 1); u⊥ is vector of dimension (n − 1) × 1; 134

α = [α1, α2, . . . , αn] is the unit important direction which is determined when the basic random 135

variables x are distributed as f(x|θ∗); u′′ is a scalar coordinate. Note that the criterion used in 136

this work for selecting the important direction α is discussed in detail in Section 3.2. With these 137

considerations, the probability integral shown in Eq. (6) becomes: 138

PF (θ) =

∫∫
IF (Tux(Ru

⊥ +αu′′ | θ∗))η(Ru⊥ +αu′′,θ,θ∗)φ(u′′)φ(u⊥)du′′du⊥, (9)

where φ(u′′) is standard normal PDF in one dimension; φ(u⊥) is standard normal PDF in (n− 1) 139

dimensions. 140

We can evaluate this integral by generating samples of u⊥ distributed according to φ(u⊥), i.e., 141{
u⊥(j) : j = 1, 2, . . . , N

}
. The LS estimator P̂F (θ) of PF (θ) can as such be computed as: 142

PF (θ) ≈ P̂F (θ) =
1

N

N∑
j=1

(∫
IF (Tux(Ru

⊥(j) +αu′′ | θ∗))η(Ru⊥(j) +αu′′,θ,θ∗)φ(u′′)du′′
)
,

(10)

where
∫
IF (Tux(Ru

⊥(j) + αu′′ | θ∗))η(Ru⊥(j) + αu′′,θ,θ∗)φ(u′′)du′′ is a one-dimension integral. 143

Considering that 144

IF (Tux(Ru
⊥(j) +αu′′ | θ∗)) =

1 if u′′ > β(j)

0 if u′′ < β(j),
(11)

where β(j) denotes the intersection of the line Ru⊥(j) +αu′′ with the limit state function (which is 145

obtained by quadratic interpolation in this contribution [20]), the aforementioned one-dimensional 146
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integral becomes: 147

P̂F (θ) =
1

N

N∑
j=1

(∫ ∞
β(j)

η(Ru⊥(j) +αu′′,θ,θ∗)φ(u′′)du′′
)

=
1

N

N∑
j=1

q1(u
′′), (12)

where q1(u
′′) 148

q1(u
′′) =

∫ ∞
β(j)

η(Ru⊥(j) +αu′′,θ,θ∗)φ(u′′)du′′ (13)

denotes the inner integral which involves one dimensional integration with respect to u′′. 149

In this contribution, the random variables are all assumed to be independently and normally 150

distributed, i.e., xi ∼ N(µi, σ
2
i ), and the design variables θi are considered to be the mean values 151

µi. In this context, xi = Tux(ui|θ∗i ) = uiσi + µ∗i = uiσi + θ∗i , then η(u,θ,θ∗) in Eq. (7) becomes 152

η(u,θ,θ∗) =
f(Tux(u|θ∗) | θ)

f(Tux(u|θ∗) | θ∗)
=

n∏
i=1

exp

[
(θi − θ∗i )

σi
ui −

(θi − θ∗i )2

2σ2
i

]
. (14)

Substitution of Eq. (8) into Eq. (14), and letting θ = µ and θ∗ = µ∗, it is possible to show

that:

η(Ru⊥(j) +αu′′,µ,µ∗) = exp
n∑
i=1

[
(µi − µ∗i )

σi
(Riu

⊥(j) + αiu
′′)− (µi − µ∗i )2

2σ2
i

]
(15)

= exp

[
n∑
i=1

(
(µi − µ∗i )Riu

⊥(j)

σi
− (µi − µ∗i )2

2σ2
i

)
+

n∑
i=1

(µi − µ∗i )αiu′′

σi

]
(16)

= eλ
(j)+u′′τ (j) (17)

where: 153

λ(j) =
n∑
i=1

(µi − µ∗i )Riu
⊥(j)

σi
− (µi − µ∗i )2

2σ2
i

=
n∑
i=1

χiRiu
⊥(j) − χ2

i

2
(18)

154

τ (j) =
n∑
i=1

(µi − µ∗i )αi
σi

=
n∑
i=1

χiαi (19)

where Ri is the i-th row of matrix R; αi is i-th component of vector α, and χi =
θi−θ∗i
σi

. Thus, we 155

also have u
(j)
i = Riu

⊥(j) + αiu
′′(j). 156
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The integral q1(u
′′) in Eq. (13) can be rewritten as:

q1(u
′′) =

∫ ∞
β(j)

eλ
(j)+u′′τ (j)φ(u′′)du′′ (20)

= eλ
(j)

∫ +∞

β(j)

eτu
′′
φ(u′′)du′′ (21)

= eλ
(j)

e
τ(j)2

2

∫ +∞

β(j)−τ (j)
φ1(t)dt (22)

= eλ
(j)+ τ(j)2

2 Φ(τ (j) − β(j)) (23)

Finally, this integral of the FPF can be approximated via a closed-form expression as follows: 157

P̂F (θ) =
1

N

N∑
j=1

[
eλ

(j)+ τ(j)
2

2 Φ(τ (j) − β(j))

]
(24)

It can be easily derived that the estimator P̂F (θ) in Eq. (24) is unbiased. The variance and 158

Coefficient of Variation (C.o.V.) associated with the estimator in Eq. (24) are given by 159

V ar
[
P̂F (θ)

]
≈ 1

(N − 1)

{
1

N

N∑
j=1

[
eλ

(j)+ τ(j)
2

2 Φ(τ (j) − β(j))

]2
− P̂ 2

F (θ)

}
(25)

160

Cov
[
P̂F (θ)

]
≈

√
V ar[P̂F (θ)]

P̂F (θ)
(26)

It can be seen that the FPF is estimated and expressed as a function of samples generated 161

by only a single implementation of Line Sampling with f(x|θ∗). In this way, repeated reliability 162

analyses are avoided, thus a high computational efficiency is obtained by the Augmented Line 163

Sampling approach. The details of the Augmented Line Sampling procedure can be found in 164

[26, 27]. 165

3.2. Sequential optimization framework 166

In order to ensure the convergence of the optimization process, the sequential optimization 167

framework [1, 28] is adopted to cooperate with the Augmented Line Sampling approach. Then, 168

the Augmented Line Sampling and deterministic optimization are performed iteratively, producing 169

a series of candidates that converge to the optimal solution. 170

Suppose the number of the current iteration is K, with K = 1, 2, . . .. In this iteration, Aug- 171

mented Line Sampling is applied to obtain the FPF with an updated instrumental PDF given 172

by 173

f(x|θ∗) = f(x | θ(K−1)opt ), (27)
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where θ
(K−1)
opt is the candidate solution in the (K − 1)th iteration. Note that θ

(0)
opt is the initial 174

design. As such, the important direction α(K) is also updated as 175

α(K) =
Txu(x

∗(K) | θ(K−1)opt )

||Txu(x∗(K) | θ(K−1)opt )||
, (28)

where x∗(K) is the design point solved in the Kth iteration, corresponding to the case where x 176

is distributed as f(x | θ(K−1)opt ). As a result of carrying out Line Sampling with f(x | θ(K−1)opt ), a 177

number of N (K) samples are obtained, i.e.,
{
u⊥(j) : j = 1, · · · , N (K)

}
. Then, the unbiased estimate 178

of FPF P̂
(K)
F (θ) in the Kth iteration can be obtained according to Eq. (24), which is: 179

P̂
(K)
F (θ) =

1

N (K)

N(K)∑
j=1

Φ

[
eλ

(j)+ τ(j)
2

2 Φ(τ (j) − β(j))

]
. (29)

After the FPF estimate is obtained in Eq. (29), it can be substituted into the original RBDO 180

problem in Eq. (1), transforming it to a equivalent deterministic one. Note that this estimate is a 181

local approximation around the reference point θ
(K−1)
opt . Considering this, it is more reasonable to 182

solve the optimization problem in a relatively small sub-domain instead of the original one. Thus, 183

the original optimization problem in Eq. (1) is cast as: 184

Min W (θ)

s.t. P̂
(K)
F (θ) ≤ P tol

Fl

Cj(θ) ≤ 0 (j = 1, 2, . . . , nC)

θ(K) ≤ θ ≤ θ̄(K)
.

(30)

where Θ(K) =
[
θ(K),θ

(K)
]

is the subdomain associated with the Kth iteration. Note that a proper 185

selection of the subdomain is important for the efficiency of the proposed approach. The sequence 186

of search domains for optimization Θ(K) can be selected as [1, 11]: 187

θ(K) = max
{
θ
(K−1)
opt −RK |θ(K−1)opt |,θ

}
,

θ
(K)

= min
{
θ
(K−1)
opt +RK |θ(K−1)opt |,θ

}
,

(31)

where RK is the factor that determines the size of the local optimization domain. A gradual change 188

strategy for RK = R0 × rK can be set where R0 is initial value, e.g., R0 can be chosen between 189

10% and 50%, and r is reduction factor within the range of [0.8, 1]. This gradual change strategy 190

is adopted to determine a new subdomain for identifying a candidate optimal design for next step. 191

Note that large R0 can be selected if an accurate estimator of FPF can be obtained, and vice 192
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versa. For example, when the C.o.V. of the obtained FPF estimate at the current optimal design, 193

i.e, Cov[P̂
(K)
F (θ

(K−1)
opt )], is smaller than 0.2, then R0 = 20% and r = 0.9 is suitable, otherwise 194

R0 = 10% and r = 0.95 may be better. 195

Solving this deterministic optimization in the subdomain produces a new candidate solution 196

θ
(K)
opt . Note that in Eq. (31), P̂

(K)
F (θ) is available as an explicit function of the design variables. 197

As such, any optimization algorithm can be employed in the minimization procedure without 198

additional (expensive) evaluations of the performance function. 199

In this way, rather than solving the RBDO problem by solving the nested double loop optimiza- 200

tion, the RBDO in this contribution is reduced to iteratively solving a deterministic optimization 201

problem in a subdomain, along with obtaining the FPF estimation for replacing the probabilistic 202

constraint of RBDO. The latter demands carrying out a single reliability analysis in augmented 203

space per iteration of the sequential optimization scheme. 204

3.3. Combination algorithm 205

To aggregate the information of all iterations up to the current one, a combination algorithm 206

is implemented [29, 30]. This algorithm is based on the weighted sum of the local FPF estimators 207

until iteration K. It aims at reusing the information of the k = 1, . . . , K iterations in the Kth
208

iteration, to improve the efficiency for obtaining an accurate FPF estimate. Specifically, the FPF 209

is cast as: 210

P̂
(K)
F,C (θ) =

K∑
k=1

wk(θ)P̂
(k)
F (θ), (32)

where wk(θ) is the weight function. To ensure that P̂
(K)
F,C (θ) is unbiased,

∑K
k=1wk(θ) = 1 is 211

imposed for each value of θ. Note that, as P̂
(K)
F (θ) is unbiased, thus the obtained P̂

(K)
F,C (θ) is also 212

unbiased. 213

The performance of the combination algorithm is quite dependent on the weights, and as a 214

consequence, dependent on which principle is used to determine the weights. In this contribution, 215

three possible ways are explored: (1) equal weights; (2) weight wk that minimizes the variance 216

of P̂
(K)
F,C (θ); and (3) weight wk that minimizes the C.o.V. of P̂

(K)
F,C (θ). These three alternatives 217

have been explored in [31], where it is shown that the last one is most effective and stable and 218

hence, it is adopted here. Indeed, imposing that P̂
(K)
F,C (θ) possesses the smallest possible C.o.V., 219

the optimal weights are determined as follows. First, as P̂
(k)
F (θ)(k = 1, . . . , K) given in Eq. (29) 220
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is unbiased, i.e., E[P̂
(k)
F (θ)] = PF (θ), the C.o.V. of the estimate of FPF, Cov[P̂

(K)
F,C (θ)], is: 221

Cov[P̂
(K)
F,C (θ)] =

√∑K
k=1w

2
k(θ)V ar[P̂

(k)
F (θ)]

PF (θ)
=

√√√√ K∑
k=1

w2
k(θ)Cov2[P̂

(k)
F (θ)] (33)

As the optimization problem of minimizing the Cov[P̂ k
F,C(θ)] is equal to minimizing the 222

Cov2[P̂ k
F,C(θ)], then the optimal weights based on minimizing the C.o.V. can be determined by 223

solving the following optimization problem: 224

min Cov2[P̂ k
F,C(θ)] =

K∑
k=1

w2
k(θ)Cov2

[
P̂

(k)
F (θ)

]
s.t.

K∑
k=1

wk(θ) = 1

(34)

The Lagrangian of the problem in Eq. (34) is: 225

L(w, λ) =
K∑
k=1

w2
k(θ)Cov2

[
P̂

(k)
F (θ)

]
+ λ

(
K∑
k=1

wk(θ)− 1

)
(35)

The first-order necessary optimality conditions read: 226

∂L(w, λ)

∂wk(θ)
= 0

∂L(w, λ)

∂λ
= 0

(36)

Solving this equation will result in the following expressions 227

wk(θ) = −λ
2
Cov−2

[
P̂

(k)
F (θ)

]
λ = − 2∑K

k=1Cov
−2
[
P̂

(k)
F (θ)

] (37)

and finally, it gives the optimal weights that minimise the C.o.V.: 228

wck(θ) =
Cov−2

[
P̂

(k)
F (θ)

]
∑k

j=1Cov
−2
[
P̂

(j)
F (θ)

] (k = 1, · · · , K) (38)

Since the objective function is convex (quadratic in w) and the constraint is affine, the result of 229

Eq. (38) is the global optimum. 230

Similarly, the optimal weights that minimise the variance, wvi (θ), can be also obtained by 231

wvi (θ) =
V ar−1

[
P̂

(k)
F (θ)

]
∑K

j=1 V ar
−1
[
P̂

(j)
F (θ)

] (k = 1, · · · , K) (39)

In addition, the average (equal) weights, wai (θ), are equal to: 232

wak(θ) =
1

K
(k = 1, · · · , K) (40)
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3.4. Decoupling the RBDO by using combination FPF 233

After the combined FPF estimator with respect to design variables, P̂
(K)
F,C (θ)(K > 1), has been 234

obtained according to Eq. (32), the RBDO can be decoupled in the Kth(K > 1) iteration as 235

Min W (θ)

s.t. P̂
(K)
F,C (θ) ≤ P tol

F

Cj(θ) ≤ 0 (j = 1, 2, . . . , nC)

θ(K) ≤ θ ≤ θ̄(K)
.

(41)

Solving this optimization problem in Eq. (41) produces a new candidate solution θ
(K)
opt . As the 236

estimate P̂
(K)
F,C (θ) is merely a function of samples (closed-form), any optimization algorithm can 237

be adopted to solve the optimization problem. Note that no additional evaluations of performance 238

function are involved. 239

3.5. Procedure of the proposed approach 240

Fig. 1 shows the procedure of the proposed strategy to solve the RBDO problem, which can 241

be summarized as follows. 242

1. Initialize the design parameters θ
(0)
opt. 243

The initial design θ
(0)
opt can be arbitrarily selected from the design domain Θ. Set K = 1. 244

2. Carry out Augmented Line Sampling. 245

Based on the former solution θ
(K−1)
opt , carry out Line Sampling with f(x|θ(K−1)opt ). 246

3. Obtain the FPF estimator. 247

Obtain the FPF P̂
(K)
F (θ) according to Eq. (29) in the current K-th iteration. And then 248

the combined FPF estimator P̂
(K)
F,C (θ) is established according to Eq. (32) by using the 249

combination weight approach (either ALS(wak(θ)), ALS(wvk(θ)) or ALS(wck(θ))). 250

4. Decouple the RBDO problem. 251

Use the obtained FPF to decouple the RBDO, then carry out the deterministic optimization 252

of Eq. (41) to obtain a new candidate solution θ
(K)
opt . 253

5. Set K = K + 1. Repeat steps 2-4, until convergence is reached. 254

12



Select initial design θ
(0)
opt, set K = 1

Carry out augmented Line Sampling

with current instrumental PDF in Eq. (27)

Build the local FPF estimator

using Eq. (24) in current iteration

Perform the optimal combination to update the

FPF estimator according to Eq. (32)

Decouple the RBDO problem by using the FPF estimator,

and obtain a new candidate solution by solving Eq. (41)

Converge? K = K + 1

Obtain the final solution

No

Yes

Figure 1: Flowchart of the procedure of the proposed approach.
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4. Examples 255

In this section, four examples are given to illustrate the performance of the proposed ap- 256

proaches. For comparison, four different approaches are adopted to solve these examples: 257

(a) The proposed approach, as described in Section 3, which includes Augmented Line Sampling 258

(ALS) (see Eq.(30)) and Augmented Line Sampling with combination algorithm (see Eq.(41)). 259

(b) A decoupling approach proposed in [7] where the logarithm of the FPF is approximated as 260

a linear polynomial (LP). The coefficients of this polynomial are evaluated in a least squares 261

sense by conducting several runs of Line Sampling in the associated local domain. This 262

approach is denoted as ‘Decoupling LP’. 263

(c) An decoupling approach denoted as ‘Decoupling QP’ where the logarithm of the FPF is 264

approximated by means of a quadratic polynomial (QP), as used in [6]. 265

(d) A double-loop approach taking original Line Sampling as the way of calculating the proba- 266

bilistic constraint. It is denoted as ‘Double-loop LS’. 267

Note that, the optimization algorithms enclosed in the Matlab R2021a function fmincon are 268

used to solve the ‘outer’ loop of RBDO in the double-loop approach. The function fmincon is also 269

used to optimize the decoupled problem when the FPF is estimated by the proposed approach 270

or by the approximation (Decoupling LP or Decoupling QP). The settings for constructing the 271

sub-domain as cast in Eq. (31) are R0 = 20% and ρ = 0.9 for all examples, which exhibits good 272

performance. The stopping criterion ||(θ(K)
opt − θ

(K−1)
opt )/θ

(K−1)
opt || ≤ θtol is set where the tolerance 273

value θtol = 2% is used for all the examples. 274

4.1. Example 1: A roof structure 275

A roof structure shown in Fig. 2 is considered here, which is revised from [32] to suit the 276

purpose of this paper. The upper chord and compression bars are made of reinforced concrete, 277

and the bottom chord and the tension bars are made of steel. A uniformly distributed load q 278

is applied on the roof truss, which is transformed into a nodal load P = ql/4 where l is the 279

length of the roof. Failure is defined as the vertical deflection of the structure’s node C exceeding 280

∆ = 0.05m, and the corresponding limit state function is given as 281

g(x) = ∆− ql2

2

(
3.81

ACEC
+

1.13

ASES

)
, (42)
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where ES and EC are the elastic modulus of steel and concrete; AS and AC are sectional areas 282

related to steel and concrete parts, respectively. The distribution information of the basic random 283

variables is given in Table 1. It is assumed that all variables follow a normal distribution and 284

truncation is applied over those parameters which admit positive values due to physical reasons. 285

Two design parameters are considered in this example, θ = [µAS , µAC ], which are the mean 286

values of AS and AC . Their corresponding design domains are θ1 ∈ [8, 12] × 10−4 m2 and θ2 ∈ 287

[0.03, 0.05] m2, respectively. The corresponding RBDO problem is 288

minθ W (θ) = 3.1112θ1 + 1.1859θ2

s.t. PF (θ) ≤ 10−4

8× 10−4 ≤ θ1 ≤ 12× 10−4

0.03 ≤ θ2 ≤ 0.05,

(43)

where the objective function W (θ) is related to the cost of the roof, which refers to the volume; 289

and the probabilistic constraint PF (θ) is the failure probability function, which should be equal 290

or smaller than 10−4. 291

Figure 2: The sketch of roof truss.

4.1.1. Comparison of combination alternatives 292

The proposed approaches (ALS, ALS(wak(θ)), ALS(wvk(θ)), ALS(wck(θ))) are applied to solve 293

this RBDO problem. For each approach, the same initial point is used which is selected as the 294

upper bounds of the design interval: θ
(0)
opt = [1.2× 10−4, 0.05]. 295
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Table 1: The distribution information of the basic random variables (Example 1).

Random variable AS(m2) Ac(m
2) ES(N/m2) EC(N/m2) q(N/m) l(m)

Mean value θ = µAs θ = µAc 1× 1011 2× 1010 20,000 12

Standard deviation 9.82× 10−5 0.004 1× 1010 2× 109 2000 0.12

Fig. 3 shows the results of the objective function, the number of iterations, the FPF estimates 296

as well as their C.o.V’s with respect to the number of samples N (K) obtained by the proposed 297

method, where N (K) is varied between 100 and 1000. The ‘Exact’ value refers to the result 298

obtained by ‘Decoupling LS’ with 1000 samples for each LS run, which is also listed in Table 2. 299

It can be seen from the figure that, ALS(wvk(θ)) and ALS(wck(θ)) can converge in less than 5 300

iterations when different number of samples are used. While ALS and ALS(wak(θ)) show some 301

variations, e.g. almost 10 iterations are required by ALS(wak(θ)) when N (K) = 900. 302

Figure 3: Evolution of different results with respect to the number of samples (N (K)) employing the proposed

approaches (Example 1).
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For demonstration purposes, Figs. 4a and 4b show respectively the one-dimensional FPF for 303

PF (θ1, θ2 = 0.04) and PF (θ1 = 1.0 × 10−4, θ2) corresponding to the K = 2nd iteration with 304

N (K) = 400. The point-wise failure probability results by adopting direct MCS with 107 samples 305

for each are taken as the ‘Exact’ values which are shown by dots in the figures. It can be seen from 306

the figure that the estimates of FPF obtained by ALS in each iteration have some error over some 307

regions. For example, when θ1 ∈ [0.8, 1.0]× 10−4 which is a little far from θ
(0)
opt = [1.2× 10−4, 0.05] 308

m2, the obtained FPF estimators by ALS shows considerable error and the corresponding C.o.V. 309

is relatively large (see Fig. 4a). Similar phenomena can be seen in Fig. 4b. The reason is that the 310

FPF estimated by ALS is valid over small region (that is, it is a local estimate). When θ is far from 311

θ
(K−1
opt , the implementation of ALS based on θ

(K−1)
opt may fail in inferring the failure probability 312

value corresponding to θ, leading to a bigger C.o.V. of FPF. Further, it can also be seen that 313

the combination algorithm may alleviate these issues by integrating multiple FPF estimators. 314

As in the second iteration, a relatively accurate FPF estimate can be obtained by using the 315

proposed combination algorithm with the different weight functions (ALS(wak(θ)), ALS(wvk(θ)) 316

and ALS(wck(θ))). However, among these combination ways, the result of wvk(θ) still has significant 317

error at the tail of the design region, for example, when θ1 ∈ [0.8, 0.9]× 10−4 m2 by ALS(wvk(θ)) 318

in Fig. 4a. The proposed combination based on wck(θ) obtains the most accurate FPF results. 319

The advantage of using wck(θ) as weights in the combination algorithm has been shown by Figs. 3 320

and 4. 321

(a) PF (θ1, θ2 = 0.04) (b) PF (θ1 = 1.0× 10−4, θ2)

Figure 4: The FPF estimation in K = 2 -th iteration by different approaches ( Example 1).
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4.1.2. Comparison with other Methods 322

The proposed approach is compared with other RBDO approaches present in literature, i.e., 323

Decoupling LP, Decoupling QP, and Double-loop LS. For the reliability part, Line Sampling with 324

N = 400 samples is adopted in each sequential optimization iteration to solve the RBDO problem. 325

For comparison, Line Sampling with the same number of samples is used in the other methods. 326

The result of Double-loop LS with N = 1000 is taken as the ‘exact’ value. 327

The results by different methods as well as the corresponding computational cost are listed in 328

Table 2. Specifically, the values of the constraint at the final optimal solution, as well as their 329

C.o.V.’s are shown in the Table. The computational cost for each method is also given. Note 330

that the value of constraint (failure probability PF (θ
(K)
opt ) ) is computed by carrying out one more 331

run of ALS to check the ‘real’ value, which is estimated by P̂
(K+1)
F (θ

(K)
opt ), but not the inferred 332

value, i.e., P
(K)
F (θ

(K)
opt ). For the compared decoupling methods (decoupling LP and QP), one more 333

reliability is also carried out to calculate the failure probability corresponding to θ
(K)
opt . Concerning 334

the computation cost, as mentioned above, only one reliability analysis (Line Sampling here) in 335

the proposed approach is required to obtain the estimation of the FPF, while for Decoupled LP, 336

nθ+1 = 3 times of Line Sampling analyses are needed, and 2nθ+1 = 5 times for Decoupled QP. It 337

can be seen that the results of different methods are quite consistent with each other. Among them, 338

the proposed approaches (ALS, ALS(wak(θ)), ALS(wvk(θ)) and ALS(wck(θ))) obtain satisfactory 339

results with less number of samples than other methods. 340

Table 2: Results of optimization by different approaches (Example 1)

W (θ
(K)
opt ) PF (θ

(K)
opt )(C.o.V.) θ

(K)
opt (×10−2) K ×N (K)

ALS 4.52× 10−2 9.9× 10−5(0.02) [0.12, 3.50] 4× 400

ALS-wak(θ) 4.54× 10−2 9.9× 10−5(0.13) [0.12, 3.52] 3× 400

ALS-wvk(θ) 4.52× 10−2 1.0× 10−4(0.01) [0.12, 3.50] 4× 400

ALS-wck(θ) 4.52× 10−2 1.0× 10−4(0.01) [0.12, 3.50] 4× 400

Decoupling LP 4.53× 10−2 1.0× 10−4(0.02) [0.12, 3.50] 4× (3× 400)#

Decoupling QP 4.53× 10−2 1.0× 10−4(0.02) [0.12, 3.50] 4× (5× 400)

Double-loop LS 4.53× 10−2 1.0× 10−4(0.02) [0.12, 3.50] 33× 400

Double-loop LS 4.53× 10−2 1.0× 10−4(0.01) [0.12, 3.50] 45× 1000

#Values in parentheses is the number of runs of LS multiplied by the number of samples in each run.
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4.1.3. Performance with respect to different initial designs 341

To illustrate the robustness of the method, the optimization is started with different initial 342

design settings, i.e., 343

• θ(0)opt = [0.12, 5]× 10−2 which is the upper bound of the design region (denoted as Case A). 344

• θ(0)opt = [0.10, 4]× 10−2 which is the midpoint of the design region (denoted as Case B); 345

• θ(0)opt = [0.08, 3]× 10−2 which is the lower bound of the design region (denoted as Case C). 346

Figure 5: Evolution of the objective function and failure probability by the proposed approach for a given number

of iterations K (Example 1).

Fig. 5 shows the evolution of the objective function and FPF estimates by ALS and ALS based 347

on a combination with wck(θ)(as well as the corresponding C.o.V.’s) with respect to the number 348

of iterations. It is can be seen from the figure that, no matter which initial design is used, the 349

combination algorithm based on the weights wck(θ) can obtain more accurate FPF estimators, as 350

shown by the lower C.ov. values. 351
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4.2. Example 2: A front axle 352

This example considers the front axle of a car, which is a crucial component for the structural 353

reliability [33]. Fig. 6 shows an illustration of the cross-section of a typical front axle. 354

Figure 6: Diagram of automobile front axle.

Considering the static strength of the front axle, the limit-state function is expressed as 355

g(x) = [σ]−
√
σ2
n(x) + 3τ 2S(x), (44)

where x = [a, t, b, h,M, T ] is the vector of random variables; [σ] is the yield stress, which is set to 356

680 MPa according to the material specifications of the front axle. The normal stress and shear 357

stress are σn(x) = M/Ws(x) and τS(x) = T/Wρ(x), where M and T are bending moment and 358

torque, respectively, Ws(x) and Wρ(x) are section factor and polar section factor, respectively, 359

which are given as: 360

Ws(x) =
a(h− 2t)3

6h
+

b

6h

[
h3 − (h− 2t)3

]
(45)

361

Wρ(x) = 0.8bt2 + 0.4
[
a3(h− 2t)/t

]
(46)

Table 3 lists the distribution information of the basic random vairables, where the geometric 362

variables of the beam, i.e., t, h, a, b are normal variables and the loads T and M are Log-normal 363

variables. Due to physical reasons, all the variables are restricted to positive values. Four design 364

parameters are included in this example, θ = [µa, µt, µb, µh], which are the mean values of a, t, b 365

and h. Their corresponding design domains are θ1 = µa ∈ [10, 14], θ2 = µt ∈ [12, 16], θ3 = µb ∈ 366
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[60, 70] and θ4 = µh ∈ [80, 90], respectively. The corresponding RBDO problem is 367

minθ W (θ) = θ1θ4 + 2 (θ3 − θ1) θ2
s.t. PF (θ) ≤ 10−3

10 ≤ θ1 ≤ 14, 12 ≤ θ2 ≤ 16

60 ≤ θ3 ≤ 70, 80 ≤ θ4 ≤ 90,

(47)

where the objective function W (θ) is related to the cost of the front axle, which refers to the cross 368

sectional area; and the probabilistic constraint is the failure probability function, which should be 369

equal or smaller than 10−3. 370

Table 3: The distribution information of the random variables in Example 2

Random variable a(mm) t(mm) b(mm) h(mm) T (kN ·m) M(kN ·m)

Mean value θ1 ∈ [10, 14] θ2 ∈ [12, 16] θ3 ∈ [60, 70] θ4 ∈ [80, 90] 3.1 3.5

Standard deviation 1.2 1.4 6.5 8.5 0.31 0.35

Distribution Normal Normal Normal Normal Log-Normal Log-Normal

Table 4: Results of optimization by different approaches (Example 2)

W (θ
(K)
opt ) PF (θ

(K)
opt )(C.o.V.) θ

(K)
opt K ×N (K)

ALS 9.60× 102 9.4× 10−4(0.024) [14.00, 12.00, 70.00, 88.55] 6× 400

ALS(wak(θ)) 9.66× 102 9.9× 10−4(0.058) [14.00, 12.00, 70.00, 88.99] 4× 400

ALS(wvk(θ)) 9.53× 102 9.9× 10−4(0.016) [14.00, 12.00, 70.00, 88.10] 4× 400

ALS(wck(θ)) 9.63× 102 9.7× 10−4(0.015) [14.00, 12.00, 70.00, 88.77] 4× 400

Decoupling LP 9.71× 102 9.9× 10−4(0.024) [14.00, 12.94, 70.00, 80.00] 3× (5× 400)

Decoupling QP 9.58× 102 1.0× 10−3(0.024) [14.00, 12.00, 70.00, 88.43] 3× (9× 400)

Double-loop LS 9.58× 103 1.0× 10−4(0.024) [14.00, 12.00, 70.00, 88.43] 30× 400

Double-loop LS 9.56× 103 1.0× 10−4(0.015) [14.00, 12.00, 70.00, 88.28] 30× 1000

The proposed approach is implemented to solve this problem involving four design parameters. 371

The results by different methods under a certain setting for the number of samples are listed in 372

Table 4. The proposed approach is applied by carrying out Augmented Line Sampling with N (k) = 373

400 samples in each sequential optimization iteration to solve the RBDO problem. The initial 374

design vector is first simply chosen as the center of the design interval, i.e., θ
(0)
opt = [12, 14, 65, 85]. In 375
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each iteration of the sequence optimization, the proposed approach carries out one Line Sampling 376

procedure to obtain the estimation of the FPF. For comparison, the other methods also use the 377

same number of samples(N = 400) in each of implementation of Line Sampling. Note that in 378

each decoupling iteration, nθ + 1 = 5 times Line Sampling analyses are needed for Decoupled LP, 379

and 2nθ + 1 = 9 times for Decoupled QP in this example (indicated in the Table). It can be seen 380

that the results are quite consistent with each other. Note further that, from all approaches, the 381

proposed approach is the most efficient. 382

Figure 7: Evolution of the objective function and failure probability by the proposed approach (Example 2).

Next, different initial design settings are set to carry out the optimization i.e., 383

• θ(0)opt = [10, 12, 60, 80] which is the lower bound of the design region(denoted as Case A). 384

• θ(0)opt = [12, 14, 65, 85] which is the midpoint of the design region (denoted as Case B); 385

• θ(0)opt = [14, 16, 70, 90] which is the upper bound of the design region(denoted as Case C). 386
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Fig. 7 shows the evolution of the objective function and FPF estimates (as well as the correspond- 387

ing C.o.V.’s) with respect to the number of iterations for a given number of iterations K = 9. A 388

similar conclusion can be drawn from the figure that, the proposed combination algorithm based 389

on the weight function wck(θ) can obtain a more accurate FPF estimate (with lowest C.o.V.’s 390

among the tested weighting approaches). 391

4.3. Example 3: A ten-bar truss 392

A ten-bar aluminum truss is considered in this example, which corresponds to a modified 393

version of the problem considered in [11]. The truss shown in Fig. 8 is subjected to two vertical 394

loads F1 and F2, and a horizontal load F3. The cross-sectional area of its members is denoted as 395

Aj (j = 1, 2, . . . , 10), the length of the vertical and horizontal bars L, the modulus of elasticity E 396

are all assumed to be basic random variables following normal distributions (quantities which do 397

not admit negative values are truncated). The performance function is defined as the difference 398

between the vertical displacement δ2 of joint 2 and the allowable displacement d0 = 0.1, that is: 399

g(x) = d0 − δ2(x), (48)

where x = [A1, · · · , A10, L,E, F1, F2, F3] is the vector of basic random variables; δ2(x) is the 400

actually displacement of joint 2, which can be computed by using a finite element analysis (see 401

Fig. 8). A number of ten design parameters are considered, i.e., θ = [µA1 , · · · , µA10 ], which are 402

the mean value of Ai(i = 1, · · · , 10) with the design domains θi ∈ [6, 10], respectively. The 403

corresponding RBDO problem is 404

minθ W (θ) =
∑6

i=1 θi +
∑10

i=7

√
2θi,

s.t. PF (θ) ≤ 10−3,

6 ≤ θi ≤ 10,

(49)

where the objective function is associated with the cost of the truss, which refers to the volume of 405

material; and the probabilistic constraint PF (θ) is the failure probability function, which should 406

be equal or smaller than 10−3. The information of basic random variables is given in Table 5. 407

This example contains nθ =10 design parameters, which in terms of RBDO is considered to 408

be considerable. The proposed approach is carried out to handle this example with ten design 409

parameters. The initial design is set as θ
(0)
opt = [8, 8, . . . , 8] which is the midpoint of the design 410

region. 411
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Figure 8: Ten-bar truss structure.

Table 5: Information of variables and parameters for ten-bar truss (Example 3)

Parameter Distribution Mean Standard deviation

A1, · · · , A10(in) Normal θ1, · · · , θ10 0.1

L(in) Normal 360 3

E(ksi) Normal 1.5× 104 1.5× 102

F1(kip) Normal 100 10

F2(kip) Normal 120 12

F3(kip) Normal 400 40
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Fig. 9 shows the results as a function of the number of samples obtained by the proposed 412

approaches (ALS and ALS(wck(θ))). Note that the combination approaches based on wak(θ) and 413

wvk(θ) are not included here as they failed to converge within a given maximum number of iterations 414

(30). It can further be seen from the figure that the final optimal solution stays stable for both 415

of the proposed ALS and ALSwck(θ) when the number of samples changes from 200 to 1600. 416

The number of iterations used in the optimization process for ALS, and ALS(wck(θ)) fluctuate for 417

the different N (K), while those of ALS(wck(θ)) exhibit relatively less fluctuation. Meanwhile, the 418

C.o.V.’s of the constraint by ALS in combination with a weighting using wck(θ) are less than those 419

of ALS. 420

Figure 9: Evolution of different results with respect to the number of samples by the proposed approach (Example

3).

The proposed approaches are also compared with other methods, i.e., Decoupling LP, Decou- 421

pling QP, and Double-loop LS. For the reliability analysis part, Line Sampling is adopted with the 422

same number of samples N = 1000. The result of another run of Double-loop LS with N = 3000 423

is taken as the exact value. The results by different methods as well as the computational cost 424

are listed in Table 6. It can be seen from the table that the results between different methods 425

are approximately consistent with each other. The proposed approach obtains a satisfied solution 426
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with reduced numerical costs. And more specifically, using the proposed weights wck(θ) in the 427

combination algorithm (Eq.(32)) shows a more stable performance with the highest efficiency. 428

Table 6: Results of optimization by different approaches (Example 3)

W (θ
(K)
opt ) PF (θ

(K)
opt )(C.o.V.) θ

(K)
opt K ×N (K)

ALS 77.32 9.9× 10−4(0.006) [8.3, 6.0, 9.0, 6.0, 6.0, 6.0, 7.5, 6.0, 6.0, 6.0] 20× 1000

ALS(wck(θ)) 77.31 1.0× 10−3(0.005) [8.3, 6.0, 9.0, 6.0, 6.0, 6.0, 7.4, 6.0, 6.0, 6.0] 9× 1000

Decoupling LP 77.36 1.0× 10−3(0.006) [8.5, 6.0, 9.0, 6.0, 6.0, 6.0, 7.2, 6.0, 6.0, 6.0] 17× (11× 1000)

Decoupling QP 77.31 1.0× 10−3(0.006) [8.2, 6.0, 8.7, 6.0, 6.0, 6.0, 7.7, 6.0, 6.0, 6.0] 9× (21× 1000)

Double-loop LS 77.31 1.0× 10−3(0.006) [8.2, 6.0, 8.9, 6.0, 6.0, 6.0, 7.6, 6.0, 6.0, 6.0] 270× 1000

Double-loop LS 77.31 1.0× 10−3(0.004) [8.2, 6.0, 8.9, 6.0, 6.0, 6.0, 7.6, 6.0, 6.0, 6.0] 108× 3000

Next, different initial design settings are set to carry out the optimization i.e., 429

• θ(0)opt = [6, 6, . . . , 6] which is the lower bound of the design region (denoted as Case A). 430

• θ(0)opt = [8, 8, . . . , 8] which is the midpoint of the design region (denoted as Case B); 431

• θ(0)opt = [10, 10, . . . , 10] which is the upper bound of the design region (denoted as Case C). 432

Fig. 10 shows the evolution of the objective function and FPF estimates (as well as the cor- 433

responding C.o.V.’s) with respect to the number of iterations for a given number of iterations 434

K = 19. It is can be seen from the figure that, no matter which initial design is considered, the 435

proposed combination algorithm with weight function wck(θ) shows advantages, as it can obtain 436

more accurate FPF estimate (with lower C.o.V.’s) and thus results in further gains on robustness 437

and efficiency over ALS. 438

4.4. Example 4: Thermal Stress Analysis of Jet Engine Turbine Blade 439

The fourth example considers a jet engine turbine blade, as shown in Fig. 11. This blade has 440

interior cooling ducts, through which the flow of cool air maintains the temperature of the blade 441

within the limit for its material. The turbine is a radial array of blades typically made of nickel 442

alloys. These alloys resist the extremely high temperatures of the gases. At such temperatures, 443

the material expands significantly, producing mechanical stress in the joints and significant de- 444

formations of several millimetres. To avoid mechanical failure and friction between the tip of the 445
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Figure 10: Evolution of the objective function and failure probability by the proposed approach (Example 3).

blade and the turbine casing, the blade design must account for the mechanical stresses and defor- 446

mations. Failure is as such in this case defined as the maximum von Mises stress of the structure 447

exceeding the given allowable value σa = 1.5GPa, and the corresponding limit state function is: 448

g(x) = σa − σmax(x) (50)

where σmax(x) is the maximum von Mises stress of the blade caused be the combination of thermal 449

and pressure effects; x = [T2, γCTE, υ, P1, P2, Kapp, T1] is the vector of basic random variables; E, 450

υ, γCTE and Kapp are the Young’s modulus, Poisson’s ratio, coefficient of thermal expansion and 451

the thermal conductivity for nickel-based alloy (NIMONIC 90), respectively; P1 and P2 are the 452

pressure loads on the pressure and suction sides of the blade which is due to the high-pressure gas 453

surrounding these sides of the blade; T1 is the temperature of the interior cooling air and T2 is 454

temperature on the pressure and suction sides. All these variables are assumed to be independent 455

truncated normal random variables and their distribution parameters are given in Table 7. 456

There are two design parameters which are of interest in this example, θ = [µT2 , µγCTE ], which 457

are the mean values of γCTE and T2, and they change over the domains θ1 ∈ [800, 1200](◦C) and 458
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θ2 ∈ [12, 16] (10−6/K), respectively. The corresponding RBDO problem is 459

minθ W (θ) = −θ1θ2,

s.t. PF (θ) ≤ 10−3,

800 ≤ θ1 ≤ 1000, 12 ≤ θ2 ≤ 16,

(51)

where W (θ) = −θ1θ2 is the objective function related to the performance of the jet engine and 460

the cost of the material. 461

Figure 11: The geometry and von Mises stress of a turbine blade (Example 4).

Table 7: The distribution information of the basic random variables (Example 4).

Random variable Mean value Standard deviation

T2(
◦C) θ1 = µT2 ∈ [800, 1200] 100

γCTE(10−6/K) θ2 = µγCTE
∈ [12, 16] 1.4

E(GPa) 250 23

υ 0.27 0.027

P1(kPa) 500 50

P2(kPa) 450 45

Kapp(W/(m · K)) 11.5 1.15

T1(
◦C) 150 15

28



Table 8: Results of optimization by different approaches (Example 4)

W (θ
(K)
opt )(×105) PF (θ

(K)
opt )(C.o.V.) θ

(K)
opt K ×N (K)

ALS(wck(θ)) (Case A) −1.3998 1.0× 10−3(0.005) [1166.5, 12.0] 5× 400

ALS(wck(θ)) (Case B) −1.3999 9.9× 10−4(0.005) [1166.6, 12.0] 3× 400

ALS(wck(θ)) (Case C) −1.4006 1.0× 10−4(0.004) [1167.1, 12.0] 5× 400

Decoupling LP −1.4005 9.9× 10−3(0.008) [1167.1, 12.0] 4× (3× 400)

Decoupling QP −1.4010 9.9× 10−3(0.008) [1167.5, 12.0] 4× (5× 400)

Brute-force approach# −1.3920 − [1160, 12] −

#The result of this brute-force approach is shown in Fig. 12.

The proposed approach with weights minimizing C.o.V. is applied to solve this challenging 462

problem involving a finite element model. A number of N = 400 samples are used for ALS in each 463

decoupling step. Different initial design settings are set to carry out the optimization i.e., 464

• θ(0)opt = [800, 12] which is the lower bound of the design region (denoted as Case A). 465

• θ(0)opt = [1000, 14] which is the midpoint of the design region (denoted as Case B); 466

• θ(0)opt = [1200, 16] which is the upper bound of the design region (denoted as Case C). 467

Table 8 lists the obtained results by different approaches. It can be seen from the table that 468

the results of different approaches are approximately consistent. Among these approaches, the 469

proposed approach is the most efficient. Note that the Double loop approach is not adopted in 470

this example due to the computational burden. Instead, another brute-force approach is applied 471

to approximate the global solution which is illustrated in Fig. 12. 472

In Fig. 12, a number of grid points are uniformly selected to fill the design region, 10 points for 473

each dimension, thus a total of 100 points are considered. And the failure probability corresponding 474

to each grid point is calculated by utilizing LS with 400 samples. Then, the points satisfying the 475

constraints are represented by a ‘circle’, which are located in the feasible region; otherwise, the grid 476

points are marked with a ‘cross’, indicating that they are located in the infeasible region. Form 477

the figure, it is straightforward to determine the approximate optimal solution θopt = [1160, 12], 478

which is quite close to the obtained solutions listed in Table. 8. Fig. 12 also shows the trajectories 479

of the optimization solutions of different cases, i.e., Cases A, B and C. It can be seen that the 480

proposed approach converges very fast as it only requires 2-3 steps to reach the optimal solution. 481
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Figure 12: The trajectories of the solutions of different cases (A, B and C) by the proposed approach (Example

4). (Crosses denote infeasible designs and circles denote feasible designs. )

4.5. Final remarks 482

The results of the above examples have demonstrated the effectiveness of the proposed decou- 483

pling approach for solving RBDO problems. The success of the approach lies in that the FPF 484

for decoupling is estimated by a single run of Line Sampling and the combination algorithm. For 485

problems with a considerable number of design parameters (for example, 10 parameters in the 486

third example), the optimal combination based on C.o.V. can further improve the efficiency of the 487

proposed approach. 488

In the proposed combination algorithm, several weight functions are introduced. Here, wck(θ) 489

can improve the performance of the proposed approach for most cases (as shown in Examples 1 and 490

3). The alternative weights wak(θ) and wvk(θ) sometimes can outperform the proposed approach. 491

However, these weight functions cause the algorithm to be not as stable as when wck(θ) is applied 492

since their performance is problem-dependent. 493

5. Conclusions 494

This contribution presents a decoupling approach for structural RBDO problems based on 495

Augmented Line Sampling (ALS) and a combination algorithm. It adopts ALS to efficiently obtain 496
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the FPF estimate, which is utilized to decouple the original RBDO problem. Further, the FPF 497

estimate is used in conjunction with the concept of sequential optimization to iteratively update 498

the FPF as the RBDO optimization progresses. To further optimize the efficiency, a combination 499

algorithm is presented to re-use the FPF’s which were evaluated in previous iterations of the 500

sequential optimization. 501

Numerical as well as engineering examples are adopted to demonstrate the performance of 502

the proposed approach. It can be concluded that the proposed approaches can obtain the opti- 503

mal RBDO solution more efficiently than the tested decoupling approach based on Linear and 504

Quadratic approximations, and the double loop approach. Further, the proposed approach based 505

on ALS and the combination algorithm is more robust than the approach that just uses ALS. 506

The overall performance of the proposed approach is quite related to the ability of Line sam- 507

pling to solve the associated reliability problem. This implies that addressing problems with highly 508

nonlinear limit state functions may be a challenging task. Therefore, future research efforts will 509

aim at expanding its range of application. Issues such as high dimensional reliability problems and 510

nonlinearities/non-Gaussianity will be further explored. In addition, with the weighted approach 511

developed herein, it is possible to construct approximations in small domains which can then be 512

easily expanded towards larger domains. 513
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