
Highlights

Robust design optimization of expensive stochastic simulators under lack-of-knowledge

Conradus van Mierlo, Augustin Persoons, Matthias G.R. Faes, David Moens
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ness simulations
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of model evaluations
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Abstract

Robust design optimisation of stochastic black-box functions is a challenging task in engineer-
ing practice. Crashworthiness optimisation qualifies as such problem especially in regards with the
high computational costs. Moreover, in early design phases there may be significant uncertainty
about the parameters used in the numerical models used to predict the systems response. There-
fore, this paper proposes an adaptive surrogate-based strategy for robust design optimisation of
noise-contaminated models under lack-of-knowledge uncertainty. This approach is a significant ex-
tension to the Robustness under Lack-of-Knowledge method (RULOK) previously introduced by
the authors, which was limited to noise-free models. In this work it is proposed to use a Gaussian
Process as a regression model based on a noisy kernel. The learning process is adapted to account
for noise variance either imposed and known or empirically learned as part of the learning process.
The method is demonstrated on three analytical benchmarks and one engineering crashworthiness
optimisation problem. In the case studies, multiple ways of determining the noise kernel are in-
vestigated: (1) based on a coefficient of variation, (2) calibration in the Gaussian Process model,
(3) based on engineering judgement, including a study of the sensitivity of the result with respect
to these parameters. The results highlight that the proposed method is able to efficiently identify
a robust design point even with extremely limited or biased prior knowledge about the noise.

Keywords: robust optimisation, interval analysis, Gaussian Process modeling, efficient global
optimisation, crashworthiness

1. Introduction1

Robust design optimisation is a methodology that aims to create products and processes that2

are insensitive to variations from, e.g., applied loads, environmental conditions, manufacturing3

processes, and was pioneered by Genichi Taguchi who first applied his methodology on electrical4

circuits [1, 2]. This methodology has since been further developed and multiple definitions of5

robustness are found in literature. Two main classes of methods can be drawn from it: the first is6

aimed at minimizing the output variance, see, e.g., [3, 4, 5], while the second is aimed at optimizing7

of both the objective function and the variance associated with this optimum, see, e.g., [6, 7, 8].8

Moreover, robust design methods differ in the conceptualisation of the source of variations that9

these designs are subjected to, which is best described by non-deterministic approaches. Typi-10

cally, these non-deterministic modelling strategies are categorised as probabilistic and possibilistic11
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approaches [9]. Where probabilistic methods are best suited for aleatory uncertainties as they12

describe non-determinism via random variables defined by their joint probability distributions,13

possibilistic approaches are usually better suited to cover both aleatory and epistemic uncertain-14

ties, which can be modelled by techniques such as: interval [10], fuzzy sets [11], information gap15

methods [12], and imprecise probabilities [13, 14].16

The authors of this work recently introduced the Robustness Under Lack-Of-Knowledge method17

(RULOK) [5]. This method is aimed at finding the design that causes the least amount of variation18

from a set of admissible design parameters z ∈ Z ⊆ Rnz with Z the set of admissible designs and19

nz ∈ N. The design parameters represent quantities that are controlled by the analyst, sutch as20

e.g., plate thickness values, hole diameters. The uncontrolled parameters are modelled as purely21

epistemic interval parameters x ∈ xI ⊆ IRnx with nx ∈ N and IR the set of real valued closed22

intervals. They represents parameters affected by significant uncertainties, such as e.g., weld di-23

ameters, transmission parameters, material parameters. At the basis of the RULOK method an24

adaptively refined Gaussian Process (GP) is used to estimate the minimum interval width of the25

response for each of the designs. However, this approach is not well suited for non-linear noisy26

systems, as seen in e.g., crash analysis, since it assumes a deterministic behaviour of the under-27

lying model. In these cases, the non-determinism about these systems should be considered in28

the Gaussian process to calibrate a meaningful surrogate. This remark is especially true when29

the meta-model is used for robust design optimisation and reliability based design optimisation30

(RBDO) [15, 16] as these methods require a meaningful surrogate to identify the correct opti-31

mum. Hence, in order to use industrial size multi-disciplinary numerical models such as those32

used in crash optimisation, see, e.g., [17] a more advanced meta-model is needed. One should33

note here that crashworthiness optimisation using these advanced numerical models has always34

been challenging, not only for meta-model assisted techniques. Crashworthiness simulations or35

other advanced non-linear finite element methods can be considered as black-box functions, as no36

closed-form formulation or gradient information is available. Moreover, it is well known for crash37

analysis that the deterministic simulations might experience numerical inadequacies, i.e., dynamic-38

and numerical instabilities that can cause a small (infinitesimal) change in the input to produce39

a major change in output [18, 19, 20]. In addition to these numerical inadequacies, in the specific40

case of explicit dynamic analysis there is a small but progressively increasing numerical error ac-41

cumulation [21, 22, 23, 17] over the total duration of the simulation.The accumulated error term of42

both the numerical inadequacies and numerical error makes the deterministic simulation behave43

like a stochastic simulation model despite its deterministic nature. In other words, evaluation of44

the explicit numerical model returns different results for the same set of input parameters.45

The previously introduced RULOK approach relies on an interpolating GP also known as Krig-46

ing [24, 25, 26] based on the assumption that the underlying systems behaviour is deterministic.47

However, due to the combination of the numerical inadequacies and numerical errors such systems48

exhibit noisy behaviour. The RULOK approach is not capable of representing the behaviour of49

a noisy system and induces significant over-fitting. The GP used in RULOK is adaptivly refined50

using a specific learning function, which identifies the next point to be evaluated by the expensive51

to evaluate black-box function. Note that the idea behind this adaptive strategy lies at the basis52

of Efficient Global Optimisation (EGO), as introduced by [27]. In this paper, an extension to the53

original RULOK method is proposed, which enables the method to work with both deterministic54

functions and non-deterministic functions. Therefore, this paper introduces the use of a GP with55

a noisy kernel, which is capable of truthfully representing stochastic function responses. The idea56

of using a GP with a noise kernel is not new and has gained an increasing in interest over the57

past decades, see, e.g., [28, 29] for an overview. In these works, the learning function used in58
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EGO is adapted to account for the noise contaminated responses. In this work the learning func-59

tion introduced in [5] is slightly adapted. Especially the stopping criterion is changed to a more60

general formulation that accounts for the set or calibrated noise kernel of the GP. The paper is61

structured as follows: Section 2 describes the measure of robustness under lack-of-knowledge. In62

Section 3 the details about noisy GP’s are provided, while Section 4 describes the new stopping63

criterion and provides an overview of the RULOK method. In Section 5, the method is tested on64

three noise contaminated analytical functions and in Section 6 an example about crashworthiness65

optimisation of a crashbox is given. Finally, in section 7 a discussion about the results is presented66

before conclusions are drawn in Section 8.67

2. Robustness under lack-of-knowledge uncertainty68

The uncertainty considered in this work is purely epistemic in nature and results from a lack-of-69

knowledge about the exact value of the parameter. The real value of the uncertain quantities, be70

it deterministic or variable, are modelled as an interval parameter [30]. Note that in this paper the71

following conventions are used: a vector is indicated as lower-case boldface characters x, matrices72

are expressed as upper-case boldface characters X and interval parameters are indicated using73

apex I: xI . Precisely, an interval is represented using the bounds of the interval:74

xI = [x;x] = {x ∈ Rnx | x ≤ x ≤ x}, (1)

where x denotes the lower bound and x denotes the upper bound. In addition, an interval75

can be represented by the centre point x̂ = x+x
2

and radius ∆x = x−x
2

of the interval. In76

the multidimensional case a uncertain parameter vector x is represented as an interval vector77

xI = [zI1 , x
I
1, . . . , x

I
nx
], with xI

i , i, . . . , nx the ith parameter interval. An interval is considered78

closed when both the upper and lower bounds are a member of the interval with IR the domain79

of a real-valued intervals.80

2.1. Propagation of interval valued uncertainty81

In this work the model m is a continuous function on R, which is parameterised by a parameter82

vector θθθ. The parameter vector is devided in two parts θθθ = {x, z}, with x the uncertain parameters83

and z the design parameters. The number of elements in the parameter vector are indicated by84

nθθθ = nx+nz. By solving the model m the parameter vector θθθ is transformed Rnθθθ 7→ R to a scalar85

response quantity y ∈ Y ⊂ R, defined as:86

m : y = m(θθθ), (2)

with Y the set of admissible model parameters. The main goal of the interval analysis is to identify87

the extremes of the set of system responses ỹ. Since finding the set ỹ is in general computationally88

intractable, the exact solution set is often approximated by a realisation set ỹs defined as [31]:89

ỹs =
{
yj | yj = m(θθθj);xj ∈ xI ; j = 1, . . . , nq

}
. (3)

The set ỹs is typically constructed by performing nq deterministic evaluations yj = m(θθθj) of the90

numerical model, with yj the response of the j
th solution. For each of these nq solutions, a sample91

is taken within the range of the interval xI . The main challenge herein is choosing the samples92

xj such that ỹs is an accurate approximation of ỹ. A first way to obtain such approximation is to93
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follow an optimisation approach. Here, the exact solution set ỹ is approximated by an accurate94

interval for the one dimensional case. The corresponding optimisation problem is defined as:95

y = min
x∈xI

m(θθθ),

y = max
x∈xI

m(θθθ),
(4)

where yI = [y; y] is the solution interval. For the higher dimensional case a conservative approx-96

imation is made about the hyper-cubic solution set in higher dimensions yI = [yI1 , y
I
2 , . . . , y

I
ny
],97

with ỹ ⊆ yI . The function m represents the numerical model or any representative surrogate98

model, as seen in, e.g., [32, 33, 34, 35]. The global minimum or maximum is found following the99

anti-optimisation framework [36] based on global optimisation. The exact optimisation strategy100

to use here is highly problem dependent as the behaviour of the goal function with respect to the101

uncertain parameters is unpredictable in the case of strongly non-linear problems [37]. Note here102

that other approaches exist for interval analysis, see, e.g., [31] for a recent review.103

2.2. Robustness for interval analysis104

Robustness under lack-of-knowledge uncertainty is defined in [5] as the ratio of input uncer-105

tainty to the output uncertainty, which can be regarded as an interval counterpart to robustness106

measures that minimize the variance of the performance. The robustness measure is illustrated107

for a case with one interval valued input parameter, of which the input and output uncertainty are108

represented respectively by the scalar interval radius ∆x and the associated scalar output interval109

radius ∆y, which is a function of the design parameter z. Hence, the output radius should be110

obtained for multiple designs z ∈ Z. The robustness is defined as:111

R(z) =
∆x

∆y(z)
=

x− x

y(z)− y(z)
. (5)

Since the uncertainty ∆x is independent of the design z, finding the most robust design z∗ is112

reformulated to the minimisation of the output uncertainty, defined by:113

z∗ = argmin
z∈Z

[y − y] = argmin
z∈Z

[max
x∈xI

m(θθθ)− min
x∈xI

m(θθθ)], (6)

with maxx∈xI m(θθθ) the predicted upper-bound and minx∈xI m(θθθ) the predicted lower-bound de-114

rived from the GP surrogate. Note there that Equation (6) can be evaluated for multiple outputs115

y. In the specific case of a stochastic function the location of the upper- and lower-bound can116

only be estimated by the mean of the process. This point is illustrated in Figure 1 showing the117

robust design point indicated in green based on the mean upper- and lower bound in red and blue,118

respectfully. Obtaining these bounds from a stochastic function is not trivial, especially correct119

estimations of the variance might be challenging to obtain. Hence, in this work a GP is used120

to estimate the mean responses based on a limited number of evaluations. The variance of the121

process is then reflected by the noise variance of the GP.122

3. Gaussian process model for noisy responses123

This section provides a short theoretical summary of Gaussian Process (GP) models or Krig-124

ing [24][38], an introduction with examples is also available in [39]. A GP model is a stochastic125

meta-model that assumes m(θθθ) to be a realisation of a Gaussian process, which is defined as [40]:126

G = βT f(α) + σ2𭟋(x,Ω), (7)
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Figure 1: Illustration of the optimal robust design points R(z∗) (orange) for the with noise contaminated upper-
and lower bounds y and y for a specific design parameter zi, adapted from [CITE self]

with the first term being a deterministic regression model with f(α) = {f1(α), . . . , fk(α)} a set127

of arbitrary basis functions, and βT a vector of regression coefficients. The second term consists128

of a zero-mean, unit variance, stationary Gaussian process 𭟋(x,Ω) scaled with a constant vari-129

ance of the Gaussian process σ2. The underlying probability space of the Gaussian process is130

represented by Ω and the correlation between two points r and r′ is defined by the covariance131

function K(r, r′, lc), with lc the characteristic length or other hyper-parameters. In general, one132

refers to the covariance matrix K where the covariance is determined for all points in a domain.133

The reader may refer to [41] for details about different covariance functions in Gaussian processes.134

In this paper two well-known covariance functions are used: The Gaussian kernel (also known as135

squared-exponential covariance function) and the Matérn 5
2
kernel.136

3.1. Noise Gaussian Process predictions137

In the specific case where a GP is used to predict a stochastic function, a noise term can be138

defined. In general, the noise of the stochastic function can be defined in the following ways:139

y = m(θθθ) + ζ, (8)

where the additive noise is assumed to follow a zero-mean Gaussian distribution:140

ζ = N (0,Σgp), (9)

with Σgp the covariance matrix of the noise term. Depending on the definition of Σgp different141

classes of noise are identified:142

Σgp = σ2
gpI, (10)

with I the identity matrix, for the case of homogeneous (homoscedastic) noise. It is also possible143

that for each observed response an independent noise variance is observed, which is defend as:144

Σgp = Diag(σ2
gp), (11)
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for the case of independent heterogeneous (heteroscedastic) noise. In the most general case de-145

scribed as general heteroscedastic the noise matrix has the shape of a general covariance maxtrix146

Σgp = Σgp where for each observation a different noise variance can be obtained and correla-147

tions of this noise are possible. The work presented in this paper is limited to homoscedastic148

noise. In other words, it is assumed that all observed responses have the same noise variance149

without any underlying correlations. Due to the noise variance the covariance matrix is defined150

as C = σ2K + Σgp. The GP-model is then calibrated on an initial design of experiments xDOE151

obtained from, i.e., Latin hyper-cube sampling and their observed results yDOE. Conditional on152

the observed data the mean and the variance of the Gaussian process can be estimated [40]:153

µgp = f(x)T β̂ + r(x)TC−1(yDOE − Fβ̂), (12)

σ2
µ =

(
σ2 − cT (x)C−1c(x) + uT

c (x)(F
TC−1F)−1uc(x)

)
, (13)

with F the matrix of the observed trend, c(x) a cross covariance vector between predicted points154

x and observed points and with:155

β̂ = (FTC−1F)−1FTC−1yDOE, (14)

the general least-squares estimate of regression coefficients β and156

uc(x) = FTC−1c(x)− f(x). (15)

Note that in the special case of homoscedastic noise C = σ2K+ σ2
gpI, with as total GP variance:157

σ2
total = σ2

gp + σ2. (16)

Equations (12) and (13) are referred to as the mean and variance of the GP predictor, respectively.158

The parameters of the GP, e.g., β,σ2,lc, are optimised using maximum likelihood estimation, which159

maximizes the likelihood of observing the points in yDOE. In the case of unknown homoscastic160

noise an additional noise parameter σ2
gp is added to the maximum likelihood estimation [39]. Note161

that, unlike the noise free case, the variance of the prediction at an experimental design point162

x ∈ xDOE does not collapse to zero, and the GP predictor becomes a regression model as it is no163

longer interpolating through the observations.164

3.2. Predicting interval bounds with a Gaussian Process model165

Based on an initial set of evaluations, the GP is calibrated and the model responses can be166

obtained based on the easy to evaluate GP. To this end, µgp is considered to be the best GP-167

estimate and σ2
gp is the variance over this estimate. For the specific application of estimating168

an output interval based on the GP-model the main interest lies in estimation of the maximum169

and the minimum response over the complete range of uncertainty. Therefore, the bounds of the170

response are estimated by:171

ygp(z) = µgp(z) = max
x∈xI

µgp(θθθ), (17)

y
gp
(z) = µ

gp
(z) = min

x∈xI
µgp(θθθ). (18)

6



A similar approach can be taken to identify the maximum and minimum of the confidence bounds:172

δµ+σµ(z) = max
x∈xI

(µgp(θθθ) + cσµ(θθθ)), (19)

δµ+σµ
(z) = min

x∈xI
(µgp(θθθ) + cσµ(θθθ)), (20)

δµ−σµ(z) = max
x∈xI

(µgp(θθθ)− cσµ(θθθ)), (21)

δµ−σµ
(z) = min

x∈xI
(µgp(θθθ)− cσµ(θθθ)), (22)

with cσ confidence bounds. The bounds of the response are estimated for each design point173

z, based on Equations (17-22). Note that although the GP is cheap to evaluate finding the174

minimum and maximum response as in Equations (17) until (22) is non-trivial as this is a non-175

convex problem. However, successful strategies have been proposed to efficiently optimise such176

problems e.g., using branch and bound algorithms as proposed in [27]. In this work, the continuous177

problem is discretised over a fine grid with a fixed number of points, which was also done in the178

previous work of the authors. The complex problem of identifying the maximum and minimum179

in a continuous setting reduces to identifying the highest value in a set of candidates in a grid-180

shaped design. Note that this only works efficiently with a low number of parameters, as the181

computational burden increases exponentially O(nd) with dimension d for a full grid.182

4. Adaptive refinement of the noisy Gaussian process model183

In this section the learning function introduced in [5] is described, with the new stopping184

criterion. The aim of the learning function is to identify points that improve the GP estimate185

of the robust design point. In this regard a balance should be found between, exploration (low186

prediction confidence) and exploitation (identified areas of possible optimum). The main goal of187

the optimisation procedure is to identify the most robust design point in z ∈ Z, such that this188

design provides a minimum variation in the output interval for all x ∈ xI . This is enabled by189

adapting the maximum improvement [32] to work directly on the minimum interval width:190

MIz(z) =
minz∈zI

(
ygp(z)− y

gp
(z)

)
−
(
δµ−σ(z)− δµ+σ(z)

)
minz∈zI

(
ygp(z)− y

gp
(z)

) , (23)

with δµ−σ(z) − δµ+σ(z) the predicted minimum interval width 2∆δ(z) with a confidence of cσ191

about this bound, and minz∈zI
(
ygp(z)− y

gp
(z)

)
the current best estimate of the robust design192

point zopt. The learning function in Equation (23) is illustrated in Figure 2 were the GP predicted193

upper- and lower-bound are shown in the top graph. Here a design point z∗ at min 2∆δ is possible194

more robust then then the current optimum zopt at min∆ygp. This is also shown in the graph195

below whereMIz(z
∗) > MIz(z

opt), illustrating that it is likely to improve the estimated robustness196

at min∆δ. Note here that by reaching a MIz(z) ≤ 0 the two intervals are equal. Hence, one can197

state that it is not expected with, e.g, 95% confidence for c = 1.96, that there is a smaller bound198

of ∆y within the current range of design parameters z ∈ Z.199

4.1. Maximum improvement of the predicted bounds200

The learning function in Equation (23) finds a promising design point z ∈ Z, based on the201

estimates of the GP-model. However, to improve the estimated interval width for each design202
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y

zz∗ zopt

min∆2δ min 2∆ygp

MI

zz∗ zopt

MIz(z)

ygp(z)

y
gp
(z)

δµ+σ(z)

δµ−σ(z)

Figure 2: Illustration of the predicted mean bound ∆ygp(z) = ygp(z) − y
gp
(z) and the minimum bound based on

the confidence interval ∆δ(z) = δµ+σ(z)− δµ−σ(z), adapted from [5]

a second learning function is used. This second function can be seen as an estimation of the203

relevance of candidates with respect to their coordinates in the θθθ uncertain dimensions. The204

maximum improvement [32] is adapted to obtain the best estimate of the upper and lower bound205

for each design point. The maximum improvement of the lower bound of the interval is given as:206

MImin(θθθ) = min
x∈xI

[µgp(θθθ) + cσµ(θθθ)]− µgp(θθθ), (24)

and the maximum improvement of the upper bound is given as:207

MImax(θθθ) = µgp(θθθ)−max
x∈xI

[µgp(θθθ)− cσµ(θθθ)] , (25)

both of which are not normalized as seen in Equation (23). This to guarantee a possible im-208

provement even if the global minimum and maximum are identified. This learning function is209

illustrated in Figure 3, were the maximum improvement is given for a candidate point x∗ ∈ xI .210

The improvement of the minimum bound MImin(z,x
∗) at x∗ is unlikely (negative value) while it211

seems likely to improve the upper limit MImax(z,x
∗). However, only one candidate point can be212

chosen to improve the estimation of the bounds. Therefore, for each evaluated point the highest213

improvement value is used, which can either improve the lower bound or the upper bound:214

MIx = max(MImin,MImax). (26)

This means that for the illustration in Figure 3 only the value of MImax is saved for the point x∗.215

Finally, the candidate point that performs best over the sum of the two improvement functions216

Equation (23) and Equation (26) is selected. Hence, the next candidate point θθθcandidate is obtained217

by:218

θθθcandidate = argmax
z∈Z x∈xI

[MIz(z) +MIx(θθθ)] . (27)
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MImax(z,x
∗)

MImin(z,x
∗)

x∗

∆yz
∆δmin

∆δmax

ygp

ygp + cσµ

ygp − cσµ

Figure 3: Illustration of the learning function for a candidate point x∗, showing the MI of the lower and upper
bound; here the improvement of the lower bound is negative [5]

4.2. Stopping criterion for adaptive refinement of noisy responses219

The role of a stopping criterion is to indicate when the algorithm reached a desired level of220

convergence. In this work, the stopping criterion is defined on the improvement of the robustness221

MIz, which means that based on the current GP-model it is unlikely to identify a point that222

is more robust than the current best estimate minz∈zI
(
ygp(z)− y

gp
(z)

)
. However, this estimate223

of the interval width is affected by the noise variance of the GP, illustrated in Figure 4. The224

dashed blue and red lines indicate the Gaussian noise about the mean bounds at −5 and 20,225

which corresponds with the bounds of function fa(z1 = 0), as shown in the case studies. The226

full lines are the prediction given by the GP model where the total variance is the sum of the227

GP noise and variance σ2
gp + σ2. In accordance with the learning function in Equation (23) the228

smallest interval width with 95% confidence is illustrated by min∆δ, which can never be larger229

than the interval width based on the noise ∆σn. Hence, to account for the homoscedastic noise230

the stopping criteria is defined as:231

MIs =
2cσgp

minz∈zI
(
ygp(z)− y

gp
(z)

) + ϵ, (28)

with σgp the noise variance of the GP, which is either known or unknown. Note that in the case of232

unknown noise variance the stopping criterion changes over each iteration of the adaptive scheme.233

The adaptive refinement is complete when the possible improvement is smaller then the maximal234

improvement given the noise of the GP:235

MIz ≤ MIs. (29)

By the end of the adaptive refinement one can state that according the the current GP there is236

with 95% confidence no point R within the domain smaller than R(1 + ϵ). To prevent premature237

termination of the algorithm the method is only stopped when the criterion is satisfied by two238

consecutive iterations. Note that the stopping criterion in Equation (29) would not work in the239

case of heteroscedastic noise. Hence, the remainder of this paper focuses on homogeneous or240

homoscedastic noise.241

4.3. Overview of the method242

In Figure 5, a flowchart of the method is provided. The flowchart describes in detail the243

steps needed to perform the optimisation as proposed in this paper. The method starts at the244
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min∆δ

∆σgp

min∆ygp

−5 0 5 10 15 20
z1

N (y, σtotal)
N (y, σgp)
N (y, σ)
N (y, σtotal)
N (y, σgp)
N (y, σ)

Figure 4: Illustration of the stopping criteria for a GP with noise; The illustration shows that the ∆δ canFor both
the upper and lower bound three normal distributions are drawn N (y, σn),N (y, σgp), N (y, σtotal) indicated by the
dashed, dash-dotted and full lines, respectively

initialisation where all parameters are selected by the user, i.e., using a set GP variance or calibrate245

for the GP variance, the correlation function that is used, size of the initial design of experiments,246

value for ϵ. After this initialisation is made, the initial design of experiments is evaluated by247

the model m and the GP is calibrated. Hereafter, the GP is adaptively refined to identify a new248

potential robust designs point based on the learning function in Section 4. For each newly identified249

point the model is evaluated m(θθθcandidate) and the results are added to the Design of Experiments.250

This loop continues until the stopping criterion Equation (29) is met for two consecutive times.251

Finally, after finishing the optimisation, it is considered good practice to validate the results of252

the GP.253

5. Analytical test functions with noise254

To study the basic properties of the proposed method a set of analytical test functions is used,255

which are identical to the analytical functions used in [5]. However, in this work a random noise256

term is added. The analytical test functions with noise are defined as:257

fa(z1, x1) = z21x1 − x2
1 + ζfn, (30)

fb(z1, x1) = x1z1 − sin (z1)x
2
1 + z21 + ζfn, (31)

fc(z1, x1) = cos(4πz1)− sin(z1x1) + x1 + ζfn, (32)

with z1 ∈ [−5, 5] the design parameter, xI
1 = [−5, 5] the uncertain parameter and ζfn represents a258

random component. It is assumed that the random errors are i.i.d. random errors with E[(ζfn)] = 0259

and V[(ζfn)] = σ2
fn, thus σ

2
fn represents the imposed homoscedastic noise variance independent of260

z1 and x1. Figure 6 illustrates the effect of the added noise to the functions fa, fb and fc, which261

is illustrated by the red and blue areas around the mean upper- and lower-bound indicated by262

full red and blue lines. The proposed method is tested on these case under both known- and263

unknown-homogeneous noise.264

5.1. Analytical functions with known homogeneous noise265

In this case homogeneous variance of the GP σ2
gp is assumed a priori, which is independent of266

the noise term put on the analytical functions σ2
fn. In the cases below the effect of different noise267
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Initiate optimisation

Draw initial samples θθθDOE based on LHS

Evaluate the model y = m(θθθDOE) and obtain yDOE

Calibrate the GP model using yDOE

Calculate MIz using Eq. (23)

MIz ≤ MIs
and

MI i−1
z ≤ MI i−1

s

Evaluate the model ycandidate = m(θθθcandidate)

Obtain best candidate point θθθcandidate Eq. (27)

Append yDOE with ycandidate

Calculate the results and verify

Stop

Adaptive refinement of GP

no

yes

Figure 5: Flowchart of the robustness under lack-of-knowledge method for noisy functions

terms on both the analytical function σ2
fn and GP σ2

gp is demonstrated. The proposed approach is268

stochastic in nature since it depends on the noise-affected realizations of the system. Therefore,269

each of the cases shown in this section are repeated ten times, and the mean and envelope off all270

runs are shown. The first case illustrated in Figure 7 shows the effect of increasing the imposed271

noise variance σ2
fn for function fa Equation (30). The figure on the left shows an increasing error272

for an increased imposed noise variance σ2
fn, indicated with the mean relative error in a blue line273

and the blue area showing the minimal and maximal error that was obtained for ten runs. The274

figure on the right shows in a similar way the total number of function evaluations, which includes275

the initial 20 design of experiment evaluations.276

For the second case, the variance of the GP σ2
gp is set at different values while the imposed277

noise variance is kept at σ2
fn = 10, again for function fa Equation (30). The results are shown in278

Figure 8, which is identical in setup to the previous case. It is clear that with an increase of GP279

variance σ2
GP the number of function evaluations ntotal increases, while the relative error decreases280

slightly. In addition, the results indicate that when using an GP with almost no variance, i.e.,281

interpolating GP, on a function with noise the obtained results are subjected to higher errors, if282

convergence is even possible. In the opposite case, where the GP is set with a high variance, one283
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Figure 6: Illustration of the effect of noise on function fa,fb,fc; The red and blue lines indicate the upper- and
lower-bound of the functions, while the red and blue areas represent the effect of noise on the upper- and lower-
bound illustrated by the 3σ CI for three noise variances σ2

fn = 10, 60, 150 for fa,fb and σ2
fn = 0.01, 0.05, 2 for fa
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Figure 7: The mean and envelope of ten runs for function fa Equation (30) with an increased imposed noise
variance σ2

fn

needs a large number of evaluations to reach the desired accuracy.284

Figure 8: The mean and envelope of ten runs for function fa Equation (30) with a increased set GP variance σ2
GP

For the third analytical case, function fb Equation (31) is used following a similar approach.285

The results of this case are shown in Figure 9 where the noise imposed on the function is increased286

and the variance of the GP model is kept at σ2
fn = 10. These results are a bit different then287

expected from the previous results, as in this case, the number of function evaluations decreases288

with an increase of imposed noise variance σ2
fn. This decreasing trend has not been observed in289

the previous case in Figure 7. The main reason can be found in the underlying function. Where290

fa has a smooth transition to a global minimum, fb experiences two local minima and a global291

minimum at z1 = 0, which can also been seen in Figure 6. One possible interpretation of that292

result is that the high noise levels mask the local minima of function fb.293

Finally, Figure 10 shows the results of function fc Equation (32) where in a similar way the294

imposed noise variance σ2
fn is increased. It is already clear from the results on the left that the295

error term is very large, indicating that the obtained results are not satisfactory. Note that fc296

in Figure 7 shows the complexity with multiple local minima covered by noise with very small297

difference between the lower and upper bound. In this case the function posses to much of a298

challenge when noisy responses are considered.299
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Figure 9: The mean and envelope of ten runs for function fb Equation (31) with a increased imposed noise variance
σ2
fn

Figure 10: The mean and envelope of ten runs for function fc Equation (32) with increasing imposed noise variance
σ2
fn

5.2. Analytical functions with unknown homogeneous noise300

This section focuses on cases with unknown noise variance σ2
gp. For such cases the possibility301

of learning/ estimating the noise parameter from the observations is investigated. The calibration302

of the noise variance is part of the GP calibration using a maximum-likelihood approach and303

without any further changes in the presented method. It is expected that the variance can only304

be estimated correctly based of a sufficently large number of observations. Hence, in the first case305

shown in Figure 11 investigates this effect by increasing the points in yDOE for function fa. The306

results indicate that for a very low number of initial samples the results are not always satisfactory,307

which can be seen by the high error, and the difference between the calibrated and imposed noise.308

In these cases the optimisation strategy converges to fast, as with the limited number of evaluations309

no correct estimates of the imposed noise variance σ2
fn are made. This behavior changes when 16310

or more initial samples are used with a reduction in the variance of the algorithm output and error311

suggesting a correct convergence. Furthermore, it can be noticed that a high number of initial312

samples not directly results in a high amount of total function evaluations. Nevertheless, it should313

be noted that there will be a penalty when larger amounts of initial samples are being used as the314

DOE will not place all points at optimal locations, increasing the amount of function evaluations315

that do not contribute to the final goal of the optimisation.316
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Figure 11: Results of function fa Equation (30) with on the left the relative error, in the middle the total number
of function evaluations including the initial evaluations, and on the right the calibrated noise of the GP in a full
yellow line.

In addition to the effect of the initial samples, the stopping criterion depends on both the317

GP variance and the error parameter ϵ, which controls when to stop the adaptive refinement.318

Therefore, based on the previous results this effect is checked using 20 initial samples, while319

varying ϵ. The results are shown in Figure 12, with again the same structure as before. The320

decrease of epsilon and associated decrease of the allowed error are shown in the top left figure.321

Here, it is seen that the effect on the precision of changing ϵ is relative low. However, it can be322

seen that for very low values the number of evaluations starts increasing. It is also noted that for323

very low values of ϵ convergence becomes unlikely even with a very high number of evaluations.324

However, to prevent premature stopping the value of ϵ should be kept as low as possible.325

Figure 12: Results of Function fa Equation (30) for eight cases with increasing values for Epsilon, with on the left
the relative error, in the middle the total number of function evaluations including the initial evaluations, and on
the right the calibrated noise of the GP in a full yellow line.

In accordance with the previous cases of function fa the noise variance σ2
fn imposed on fb is326
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increased. However, this time the GP will take this increase of noise into account as it calibrates327

for the noise. Figure 13 shows the results for an increased imposed noise variance σ2
fn. Note that328

these results were obtained for ϵ = 0.15 and 20 initial samples for each run. The figure on the329

right shows the imposed noise variance σ2
fn and the mean calibrated GP noise as a full line, with330

the area indicating the calibrated GP variances for all ten runs. It is clear from Figure 13 that331

the method is capable of tracking these high imposed variances without an increase of function332

evaluations.333

Figure 13: Results of function fb Equation (31) for eight cases with increasing imposed noise variance σ2
fn, with on

the left the relative error, in the middle the total number of function evaluations including the initial evaluations,
and on the right the calibrated noise of the GP in a full yellow line.

5.3. Conclusions based on the analytical functions334

In this section two distinct ways of using the RULOK method for noisy functions are shown:335

first with a noise variance given a priori and second with unknown noise calibrated as part of the336

GP maximum likelihood estimation. These methods are both capable of providing satisfactory337

results for the analytical functions defined in this section. However, general conclusions are not338

easily made based on the obtained results as performance of the method heavily depends on339

the underlying problem. Conclusions that can be made are: (1) the number of evaluations is340

higher when considering a noisy function response; (2) the method is tolerant to over- and under-341

estimation of the actual noise variance; (3) convergence is not guaranteed in complex cases with342

many local minima. Furthermore, when the noise variance is estimated by the GP in the calibration343

step the size of the initial design of experiments should be sufficiently large. Although calibration344

of the noise variance is possible, better results, with less evaluations were obtained by a priori345

estimated noise.346

6. Application to robust crashworthiness optimisation347

In this section the proposed RULOK method for noisy function responses is demonstrated on a348

frontal crash example. Here, the output of a numerical impact simulation, as shown in Figure 14,349

is regarded as a noisy function response. This crashbox is a typical component that can be found350

in the front structure of a vehicle. The main objective of a crashbox is to dissipate a certain351
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Table 1: Significant parameters and their ranges as used in the numerical simulations of the crashbox

Material model properties used for the component
initial speed v0 15 m/s mass m 600 kg
thickness plate 1 T1 [2; 3] mm thickness plate 2 T2 [2; 4] mm
spotweld diameter Tsw [1; 3] mm density of steel ρ 7.89 kg/m3

Young’s modulus GPA 200 Poisson ratio ν 0.3

amount of energy during frontal impact, and to prevent further structural damage at low speed352

impact events. The numerical model to represent the crashbox is taken from the publicly available353

Toyota Yaris model, downloaded from [42], and consists out of three sheet metal parts that are354

held together by a number of spotwelds. The specific part numbers (PID’s) are 2000137, 2000121,355

2000142 and part 2000486, of which the latter is used to model the spotwelds. The setup of the356

numerical model, as shown in Figure 14, illustrates these parts as also two rigid surfaces, the red357

surface is fixated at the back of the component and the blue surface is impacting the crashbox358

with a prescribed kinetic energy, as shown by the arrow. The kinetic energy of the blue surface359

is scaled to 67, 5kJ with a mass of 600kg and an impacting speed of 15m/s, as there are two360

crashboxes in a full vehicle model. Other parameters that are used in this analysis can be found361

in Table 1. Note that T1 refers to the thickness of the green plate in Figure 14, which has PID362

2000121, and T2 to the blue plate in the back with PID 2000142.363

v0

Figure 14: Finite Element Model of the crashbox with a rigid plane attached to the nodes in the back (red) and
impacting plane right (blue); adapted from the Toyota Yaris model [42]

Optimisation of components for the front structure of a vehicle is quite challenging as there364

are multiple objectives from different development teams that should be met. For the structural365

requirements the mean force during impact is often regarded as a quantity of interest. Figure 15366

shows a typical force-deformation curve for the crashbox with the dashed line indicating the mean367

force. In this case the objective is to identify the design that results in the smallest variation of368

the mean force for a given uncertainty. The uncertainty in the two cases below stems from a lack-369

of-knowledge about the weld diameter, and the thickness of the back-plate, which are modelled370

by an interval as described in Table 1.371
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Figure 15: Typical force-displacement curve, obtained from the numerical simulation, with the mean-force Fmean

as a dashed line; in addition, two deformed states of the crashbox are provided

6.1. Crashbox with uncertain spotweld diameter372

In this section the robust optimisation is performed with as design parameter T1 and uncertain373

parameter Tsw with the ranges as described in 1, while T2 = 1.8 mm is fixed. As a reference, the374

existing RULOK method using an interpolating GP without noise is used to identify the robust375

design point. However, the original RULOK method failed to converge and was interrupted after376

1500 model evaluations. The results obtained by these 1500 evaluations are plotted as the blue dots377

in Figure 16. When applying the RULOK method for noisy functions convergence was reached378

after 30 model evaluations including 20 initial evaluations. The results of this are also shown in379

Figure 16 with the upper- and lower bound as predicted by the GP including the 95% CI about380

these estimations, based on a set GP variance of σ2
GP = 5 kN. The robust design point for this381

case was determined to be T1 = 2, 39 mm, which is shown by the green line. Bases on the 1500382

points evaluated by the original method this optimum is clearly in the correct region.383

In the previous example the variance of the GP was set at an arbitrary value with σ2
gp = 5 kN,384

which would correspond to a coefficient of variation (COV) of about 0.045 on average within the385

domain. Hence, to illustrate the applicability of the method in an industrial setting the variance of386

the GP is determined by the mean response of the 20 initial evaluations multiplied by an assumed387

COV. In Figure 17 the results are shown for different assumed COV’s and a mean response of the388

20 initial evaluations of 110 kN. The top figure shows the robust design point for each of the cases389

with the blue line indicating the mean of the ten evaluations and the blue area the envelope. On390

the bottom figure the number of evaluations is shown in red, with the line indicating the mean391

number of evaluations and the area covering all obtained results. The obtained results indicate392

that the method is not very sensitive to the assumed GP noise variance, and that even with393

COV = 1 correct results are obtained. However, for both very low and high COV’s the number of394

evaluations start increasing and sometimes wrong optima are identified, while the mean predicted395
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Figure 16: Evaluations by the ROLUK method without noise kernel, in blue vs. the evaluations, in red, and
prediction of the method with a noise kernel

optimum is always in the correct range.396

Figure 17: Obtained results for the crashbox with the GP noise depending on the COV of the initial 20 evaluations
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6.2. Crashbox with uncertain spotwelds and plate thickness397

To demonstrate the proposed method on a case with multiple uncertain parameters both the398

spotweld diameter Tsw and the thickness of the back-plate T2 are regarded uncertain, following399

the intervals as listed in Table 1. By introducing an additional uncertain parameter the location400

of the robust design point has changed as well. Therefore, a reference is created based on 1000401

Latin-Hyper-Cube (LHS) samples, before initiating the optimisation by ROLUK. The obtained402

results are shown in Figure 18 with the LHS sampels in blue, the GP predicted upper- and lower-403

bound in red and blue lines, respectively. The evaluations used to calibrate the GP are shown in404

red and the predicted optimum is highlighted in green. It is clear that the the predicted optimum405

has shifted towards the lower bound of T1. The results shown here are obtained for a set variance406

of σ2
gp = 5 kN and convergence was reached after only 63 iterations. The obtained optimum407

T1 = 2.03 mm is indicated in green, seems correct based on the LHS samples.408

Figure 18: 1000 LHS samples of the numerical model vs. the GP prediction of the upper- and lower bound based
on only 62 function evaluations

7. Discussion409

The obtained results are very promising, especially those for the crashbox case, which demon-410

strate the added value of this method for the use in non-linear explicit numerical codes. However,411

as demonstrated on the analytical functions the results are not always satisfactory as seen for412

fc, where often local minima were obtained for. It should be mentioned here that the analytical413

function fc presents an extremely difficult problem, which as seen in [5] where a Genetic Algo-414

rithm (GA) needed 2760857 function evaluations to find the robust design point of function fc. By415

imposing i.i.d. random noise on this already complex function the complexity rises further, which416

poses a real challenge for most commonly used optimisation strategies. The main added value of417

this method is shown in Figure 16 and Figure 18 where the method arguably shows some kind of418

ignorance towards bifurcations or numerical inadequacies. Furthermore, in crash analysis finding419
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the exact optimum is extremely challenging and proving that one found the global optimum is even420

more so. Therefore, the obtained optimum is certainly not optimal in the mathematical sense.421

However, based on the very limited information about the obtained highly non-linear response422

that is available, a good estimate is made towards the location of the robust design point, which423

is already a large improvement and provides guidance for further developments. Note here that in424

previous works of the authors optimisation of similar crash cases took about 160 as a minimum,425

until more then 3000 function evaluations for a single design [19, 43]. Reducing this to only about426

50 evaluations for a range of designs is a huge improvement in terms of efficiency.427

The results obtained by calibration of the GP noise variance showed that the method could428

be used for unknown homoscedatic noise variance. However, this comes at the cost of increased429

function evaluations, starting with a larger initial set of samples. It should be mentioned that the430

authors attempted to calibrate the GP noise variance for the crashbox example. However, after a431

large number of function evaluations convergence was deemed unlikely. The problem here is that432

the signal is contaminated with a combination of numerical errors and numerical inadequacies,433

which are challenging to differentiate using only a limited number of evaluations. However, it was434

demonstrated on the analytical function that the calibrated GP noise variance can be tracked well435

for different noise variances. Arguably the numerical inadequacies do not follow the Gaussian436

noise assumptions, which is followed in the analytical cases.437

The results in this work are based on the GP model as implemented in UQlab [44] for all case438

studies. However, using the stopping criterion proposed in this paper the method is applicable to439

all implementations of Gaussian Processes. This was not the case before as multiple implementa-440

tions always use a small GP noise variance, called nugget, for numerical stability [45], which can be441

taken into account as Gaussian noise. Finally, it should be noted that just as the original RULOK442

method a structured grid is used. Hence, the computational cost to evaluate all points on this grid443

increases exponential in d-dimensions O(n−d) for a full grid. Therefore, in high dimensional cases444

this becomes a bottleneck without sacrificing the resolution of the grid, and one should consider445

the possible dependency of the solution to the discretisation of the grid.446

8. Conclusion447

In this paper an extension to the robustness under lack-of-knowledge method is proposed,448

focusing on function responses that are contaminated by i.i.d. Gaussian noise. A learning function449

with a new stopping criterion is proposed capable of taking homoscedastic noise into account. The450

applicability of the method is demonstrated on a set of analytical cases. Furthermore, the proposed451

method is demonstrated on a highly non-linear crashworthiness case, which arguably contains a452

certain amount of Gaussian noise on the response. The results of this case show that the proposed453

method is capable to identify a robust design point, with fewer model evaluations than what would454

be expected from a general optimisation algorithm.455
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