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Abstract

An efficient strategy to approximate the failure probability function in structural reliability 1

problems is proposed. The failure probability function (FPF) is defined as the failure probability of 2

the structure expressed as a function of the design parameters, which in this study are considered to 3

be distribution parameters of random variables representing uncertain model quantities. The task 4

of determining the FPF is commonly numerically demanding since repeated reliability analyses 5

are required. The proposed strategy is based on the concept of augmented reliability analysis, 6

which only requires a single run of a simulation-based reliability method. This paper introduces a 7

new sample regeneration algorithm that allows to generate the required failure samples of design 8

parameters without any additional evaluation of the structural response. In this way, efficiency 9

is further improved while ensuring high accuracy in the estimate of the FPF. To illustrate the 10

efficiency and effectiveness of the method, case studies involving a turbine disk and an aircraft 11

inner flap are included in this study. 12

Keywords: Reliability, Failure probability function, Regeneration algorithm, Bayesian theory,

Maximum Entropy method

1. Introduction 13

Reliability-based analysis has become an appropriate and useful tool for structural design. 14

Such an approach allows taking uncertainty explicitly into consideration, and it has been widely 15

used and applied in many research areas [1, 2]. In reliability-based design optimization (RBDO), 16

the failure probability (i.e., the complement of the reliability) of the target system under various 17
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design configurations usually needs to be evaluated. For example, the reliability constraint in 18

a reliability-based design optimization problem usually requires many reliability analyses to be 19

executed at various design values. The failure probability function (FPF) can be defined as the 20

failure probability with respect to the set of design parameters, which can be expressed as follows 21

[3]: 22

PF (θ) =

∫
IF (x,θg)f (x|θd) dx (1)

where θ is the vector of nθ design parameters which can be decomposed as θ = [θg;θd]; θg is the 23

parameter vector that affects structural performance; x is the vector of basic random variables 24

associated with the structural model; θd is the parameter vector that affects the joint probability 25

density function (PDF) f(x|θd) and usually contains distribution parameters such as mean value; 26

and IF (x,θg) is an indicator function which assumes the value 1 whenever a particular realization 27

of the pair (x,θg) leads to an unacceptable structural behavior, otherwise IF (x,θg) = 0. If 28

the FPF over the whole design space can be obtained beforehand, the RBDO problem can be 29

transformed into an ordinary optimization problem, that is, it can be decoupled into a traditional 30

optimization problem without the need for repeated reliability analyses [4]. However, analytic 31

solutions for Eq. (1) are generally not available. 32

There is a vast number of contributions which address the failure probability estimation prob- 33

lem, such as first/second order reliability methods (FORM/SORM)[5, 6], Monte Carlo simulation 34

[7], Importance Sampling [8, 9], Subset Simulation [10], and Line Sampling [11, 12] etc. However, 35

in practical applications, it is difficult to obtain the failure probability as an explicit function of the 36

design parameters θ as it often demands an intractable computational cost. Even in case highly 37

efficient reliability methods are used, the repeated evaluation of Eq. (1) for different realizations 38

of θ makes the calculation costly apart from near-trivial cases. 39

Various strategies for constructing an approximation of the FPF have been developed. One 40

kind of strategy is to apply surrogate models to construct an approximation by selecting some 41

predefined interpolation points in the space of the design parameters by means of an appropriate 42

design-of-experiments (DOE) scheme. For example, Gasser [13] used a quadratic function with 43

respect to the design parameters θ to approximate the logarithm of FPF. The number of coef- 44

ficients to be determined in such an approach is equal to nθ + nθ (nθ + 1) /2. As such, at least 45

nθ + nθ (nθ + 1) /2 reliability analyses are needed to obtain all the coefficients of the quadratic 46

surrogate model. Jensen [14] adopted a linear function to approximate the logarithm of FPF when 47
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handling a linear system subject to stochastic excitation, for which at least nθ +1 reliability anal- 48

yses are needed. There are also several other surrogate model methods that can be used to build 49

the approximation of the FPF, for example, Kriging regression models [15, 16], Support Vector 50

Machines [17, 18] or Polynomial Chaos Expansions [19, 20], which are widely used in reliability 51

analysis to approximate the performance function [21, 22]. These techniques can also be used to 52

build a surrogate model of the FPF, however, also in this case repeated evaluations of reliability 53

are involved. The second kind of strategy is to solve FPF in an augmented space. Au [23] was 54

the first to utilize Bayes’ rule to include the solution of FPF in an augmented reliability problem, 55

where the design parameters are treated as random variables with a predefined distribution. This 56

allows to estimate the FPF in a single simulation run. Based on the augmented space idea, Ching 57

[24, 25] adopted a pre-defined exponential functional form to approximate the FPF and applied the 58

maximum entropy principle to estimate the corresponding coefficients. Taflanidis [26, 27, 28, 29] 59

also adopted this idea and utilized Subset Simulation to solve the reliability-based optimization, 60

sensitivity analysis and robust optimization. Also Liu [30] utilized the augmented space idea to 61

carry out reliability-based design optimization, where the design space is partitioned iteratively 62

for accurate approximation. The third strategy is a reweighting approach, which builds a local ap- 63

proximation of FPF based on the information of a single reliability analysis. This kind of method 64

focuses on the problem where only the distribution parameter θd is included in the analysis. In 65

this context, Zou and Mahadevan [4] proposed a decoupling approach in which the FPF is ex- 66

pressed by a first-order Taylor series expansion based on the reliability sensitivity results. Yi et al. 67

[31] proposed a new reliability optimization allocation for multifunction systems with multistate 68

units based on goal-oriented (GO) methodology. Time-varying and high nonlinear performance 69

brings a new challenge for the reliability-based robust design optimization. Thus, Yu et al. [32] 70

proposed a multi-objective integrated framework for time-dependent reliability-based robust de- 71

sign optimization and the corresponding algorithms. Yuan [33] and Yuan and Lu [34] proposed a 72

weighted approach, which expresses the FPF based on a set of samples which are generated in a 73

single reliability analysis. Its efficiency depends on the simulation method used. Finally, Wei et al. 74

[35, 36] also developed a non-intrusive imprecise stochastic simulation for uncertainty propagation 75

that includes the approximation of FPF. 76

In this contribution, a sample regeneration (SR) scheme is proposed to further improve the 77

efficiency of the ‘augmented space’ strategy for estimating the failure probability function. The 78
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proposed scheme is targeted to problems where the design variables correspond to distribution 79

parameters θd. As such, it effectively combines the latter two classes of methods to approximate 80

the FPF, as it encompasses an augmented space strategy with reweighting. The proposed approach 81

first considers the problem in augmented space, where the estimation of the FPF is transformed 82

to the calculation of an augmented failure probability, and a conditional PDF associated with 83

the design parameters. Then, a regeneration strategy utilizing Bayesian theory is proposed in 84

order to estimate the PDF of design parameters efficiently. Based on a few samples of the design 85

parameters that cause system failure, the proposed strategy can generate more samples of the 86

design parameters without requiring further structural analyses. Hence, it can efficiently generate 87

an approximation of the FPF with a limited number of structural analysis. Note that the first 88

author of this contribution recently proposed an alternative augmented space integral method for 89

FPF estimation [37]. Although both the approach in [37] and the approach proposed in this work 90

share the idea of augmented reliability, there are obvious differences between them. The augmented 91

space integral method presented in [37] estimates the FPF by calculating a transformed integral. 92

On the contrary, in this work, the FPF is calculated by means of sample regeneration, which is a 93

novel concept that brings substantial advantages, as illustrated in the examples. 94

This paper is organized as follows. The definition of FPF problem of interest here and a brief 95

review about the calculation of FPF based on augmented space are first provided in Section 2. 96

Then, the proposed sample regeneration algorithm is developed in Section 3. At last, various 97

examples are given to illustrate the performance of the proposed algorithm. The paper closes 98

with conclusions. 99

2. Failure probability function and its calculation using an augmented space strategy 100

In this contribution, the failure probability function (FPF) that represents the functional 101

relationship between the failure probability of a system and the distribution parameters of the 102

basic random variables is considered. Mathematically, this is represented as: 103

PF (θ) =

∫
IF (x)f (x|θ) dx (2)

where θ = [θd] = [θ1, . . . , θnθ
] indicates that the design parameters only refer to the distribution 104

parameters of x. In essence, this means that the design parameters represent, for example, 105

the mean value or standard deviation of the random variable; f(x|θ) is the probability density 106
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function (PDF) of the random variables x, conditional on the distribution parameters θ, where 107

it is assumed that the components of x are independent of each other; IF (x) is the indicator 108

function, which is defined to be IF (x) = 1 if a system failure event F happens, and IF (x) = 0 109

otherwise. A system failure event is defined as F = {x : g(x) < 0} where g(x) is the performance 110

function of the system under consideration. For simplicity, in the following, we just use θ in place 111

of θd. 112

The FPF can be expressed in an augmented space by virtue of Bayes’ theorem, which allows 113

to approximate the FPF by means of a single reliability analysis, and hence, avoid repeated 114

reliability analyses. Following this approach, the design parameters are artificially considered as 115

random variables with arbitrary probability density function φ(θ). In this context, the FPF PF (θ) 116

can be rewritten using Bayes’ theorem as: 117

PF (θ) = P (F |θ) = φ(θ|F )P (F )

φ(θ)
(3)

where φ(θ) is the PDF associated with θ, whose support spans the associated feasible design 118

space; φ(θ|F ) is the PDF of θ conditional on the failure event, and P (F ) is the failure probability 119

of the augmented reliability problem which is given by: 120

P (F ) =

∫ ∫
IF (x)f(x|θ)φ(θ)dxdθ. (4)

According to the expression in Eq. (3), the FPF is represented by three components: φ(θ), 121

P (F ) and φ(θ|F ). Among them, φ(θ) can be arbitrarily selected as long as its support spans 122

the design space. It is important to note that in theory, different distributions for θ do not affect 123

the results of the FPF estimation since they purely serve as a tool to scan the design space. For 124

example, either Normal or Uniform distributions can be considered [24]. However, one should be 125

careful when using a Gaussian distribution, as it may assign negative values to quantities that 126

are strictly positive due to physical reasons (e.g., plate thickness values). P (F ) can be estimated 127

by using typically applied reliability analysis methods in augmented space, such as Monte Carlo 128

Simulation or Subset Simulation [23]. 129

Usually, the most challenging issue when estimating the FPF using an augmented space ap- 130

proach is the estimation of the conditional distribution φ(θ|F ). Generally, this conditional distri- 131

bution cannot be derived analytically. Therefore, it is appealing to estimate this quantity using 132

samples, which involves repeated evaluations of the performance function. This possibly entails a 133

non-negligible numerical and computational cost, especially since typically many failure samples 134
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are required for an accurate estimation of φ(θ|F ). In [23, 24, 25], the failure samples are first 135

selected and then φ(θ|F ) is estimated based on this set of samples by means of histograms or 136

Maximum Entropy methods. However, the generation of sufficient samples in the failure domain 137

can be challenging, especially when small failure probabilities are considered. In this contribu- 138

tion, a sample regeneration (SR) algorithm based on Bayesian theory is proposed to alleviate this 139

problem, as it can generate more samples which belong to φ(θ|F ), based on just a few failure 140

samples. Hence, no repeated evaluations of the performance function are needed, improving the 141

efficiency of the estimation of the FPF significantly. This approach will be explained in detail in 142

Section 3. 143

3. Proposed sample regeneration algorithm for efficient FPF estimation 144

3.1. Proposed sample regeneration algorithm 145

In Section 2, it is shown that the key issue for efficiently approximating the FPF is to obtain 146

the conditional PDF of design parameter φ(θ|F ). However, this target PDF, φ(θ|F ), cannot be 147

generally obtained in closed form as it is a posterior PDF conditional on the occurrence of failure. 148

Therefore, it is usually approximated based on the generated samples of θ in the failure domain 149

using sample fitting methods, which is not trivial. Indeed, in order to generate failure samples 150

of θ, it is usually required to generate samples (x,θ) in the whole augmented space first and 151

then, select the failure samples located in failure region F , which is typically performed using 152

rejection sampling. That is, one has to generate the samples (x,θ) according to the joint PDF 153

φ(x,θ) = f(x|θ)φ(θ), i.e., first get θ sample from φ(θ), and then generate sample of x according 154

to f(x|θ). Then the failure samples of (x,θ) are obtained by calculating the performance g(x) 155

for each sample and retaining the samples of θ yielding a failure sample. This set of samples is 156

distributed following φ(θ|F ). The simulation of samples can be performed using Monte Carlo 157

simulation (MCS) or Subset Simulation in augmented space [10, 24]. The accuracy of the φ(θ|F ) 158

estimate depends on the number of samples that are generated in the failure domain. In [24], 159

a Markov chain simulation technique is used to generate additional samples of (x,θ). However, 160

this still involves the evaluation of the performance function, and thus entails a non-negligible 161

numerical and computational cost. 162

In order to generate sufficient samples of θ at reduced computational cost, a sample regener- 163

ation (SR) algorithm is introduced, which circumvents repeated evaluations of the performance 164
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function. The key of this proposed algorithm is to re-generate samples of θ based on a set of 165

pre-samples according to the utilizing of Bayesian theory. 166

When the PDF φ(x,θ) is restricted to the failure region F instead of the augmented whole 167

space, we have: 168

φ(x,θ|F ) = φ(θ|x, F )f(x|F ) (5)

where f(x|F ) is the marginal PDF of x conditional on F and φ(θ|x, F ) is a conditional PDF 169

which can be further deduced based on Bayesian theory: 170

φ(θ|x, F ) =
IF (x)φ(θ|x)∫
IF (x)φ(θ|x)dθ

= IF (x)φ(θ|x) (6)

where φ(θ|x) is the conditional PDF of θ with respect x. 171

Inspection of Eq. (6) reveals that in order to generate samples of θ in the failure region F , 172

we can just choose the failure sample of x which leads to IF (x) = 1 a priori, and then generate 173

θ according to φ(θ|x). Meanwhile, according to Eq. (5), as the selected failure sample x is 174

distributed as f(x|F ), and then the re-generated sample θ according to Eq. (6), then the united 175

sample (x,θ) will distributed as φ(x,θ|F ). This means that the re-generated θ in this way is 176

also distributed as φ(θ|F ) which is a key term in FPF solution. Note that, instead of direct MCS 177

or SS, Eq. (6) provides an efficient way to produce more samples of φ(θ|F ). As it is through 178

re-sampling from conditional samples, it is called ‘Sample Re-generation (SR)’ algorithm in this 179

paper. The advantage of the proposed SR is obvious, as it re-generate samples based on a few 180

samples of x, as such, no additional (x,θ) samples are needed as a whole, and hence also no more 181

evaluations of the performance function are required. 182

For illustration, the schematic diagram of the proposed Sample Regeneration algorithm is 183

presented in Fig. 1. Let (x(j),θ(j)) ∈ F be a failure sample in the augmented space shown by a 184

dot in the figure. The corresponding x(j) component is distributed as f(x|θ(j), F ) which is denoted 185

by an ellipse. Then, based on each pre-sample (x(j),θ(j)) ∈ F , more samples of θ ∈ F can be 186

generated by the proposed SR algorithm. Regarding the θ(j) part, the obtained φ(θ|x(j), F ) = 187

φ(θ|x(j))( as IF (x
(j)) = 1) is used to generate a number of samples of θ, i.e., θ

(1)
j , . . . ,θ

(m)
j , . . . ,θ

(M)
j 188

(M is the number of re-sampling rounds or times based on a single sample of x(j)). Then, 189

{θ(1)
j , . . . ,θ

(M)
j } are distributed as φ(θ|x(j)), Suppose that there is a generated set of samples in 190

the failure region, say, D = {(x(j),θ(j)) : j = 1, . . . , NF}. If the x components Dx = {x(j) : j = 191

1, . . . , NF} are selected, then a set of samples D
(R)
θ = {θ(1)

1 , . . . ,θ
(M)
1 , . . . ,θ

(1)
NF

, . . . ,θ
(M)
NF

} can be 192
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re-generated based on Dx. According to Eq. (6), these samples are distributed as: 193

φ̂ (θ|Dx, F ) =
1

NF

NF∑
j=1

I
(
x(j)
)
φ
(
θ|x(j)

)
=

1

NF

NF∑
j=1

φ
(
θ|x(j)

)
(7)

While a single sample x(j), is distributed as f(x|θ(j), F ), a set of samples Dx are distributed as 194

f(x|F ) since Dx is collected from D = {(x(j),θ(j)) : j = 1, . . . , NF}. As such, we have: 195

E [φ̂ (θ|Dx, F )] =
1

NF

NF∑
j=1

E
[
φ
(
θ|x(j)

)]
=

∫
I(x)φ(θ|x)f(x|F )dx = φ(θ|F ) (8)

Inspection of Eq. (8) reveals that, φ̂(θ|Dx, F ) is unbiased, that means that in case the size NF of 196

the set of samples is large enough, the samples re-generated by the proposed algorithm converge 197

to the target distribution φ(θ). 198

Figure 1: Schematic diagram of the proposed Sample Regeneration (SR) algorithm in augmented space (xi, xk, θ),

where (x(j), θ(j)) = (x
(j)
i , x

(j)
k , θ(j)) is an initial pre-sample, and (x(j), θ

(m)
j ) is one of the regenerated samples

(where m = 1, . . . ,M , for each x(j)(j = 1, . . . , NF )) through SR algorithm. The dotted line indicates that the

re-generated samples by SR algorithm possess the same component x(j).

3.2. Implementation strategy 199

3.2.1. Choice of prior distribution φ(θ) 200

Note that the selection of appropriate distribution functions for θ may not trivial. This 201

subsection shows how to determine the φ(θ|x) and generate samples from it. 202

For general cases, it is always possible to assume that θi is uniformly distributed over the design 203

region, i.e., θi ∼ U [θi, θ̄i]. Without particular preference for the region of the design parameters 204
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to be explored, a uniform distribution can be chosen for convenience and leads to appropriate 205

estimates of the FPF [23]. Then, the posterior distribution φ(θi|xi) can be obtained according to 206

Bayesian theory as: 207

φ(θi|xi) =
f(xi|θi)φ(θi)

f(xi)
=

1

(θ̄i − θi)f(xi)
f(xi|θi) =

1

∆i

f(xi|θi) (9)

where ∆i = (θ̄i − θi)f(xi) is a constant for given xi. This quantity can be determined straight- 208

forwardly according to f(xi) or just determined by imposing the condition that the integral of 209

density φ(θi|xi) is equal to 1. Then we can re-generate the samples of θi according to Eq. (9). 210

For simplicity, a Normal basic variable xi is taken as an example to illustrate the proposed SR 211

algorithm which is given in Appendix A. 212

It should be noted that there are several conjugate distribution families for certain distribu- 213

tions which can selected for φ(θi) in order to obtain a known PDF of φ(θi|xi). A class of prior 214

distribution is a conjugated family for certain distribution if the corresponding posterior distri- 215

bution is in the same class. In general, for any sampling distribution, there is a natural family of 216

prior distribution, i.e., the conjugated family [38]. Some typical conjugated families are listed in 217

Table 1. Based on this information, we can choose the conjugate distribution for prior distribution 218

φ(θi). In this way, the posterior distribution can be analytically obtained for φ(θi|xi).

Table 1: Some typical conjugate distributions

Likelihood Parameters Prior distribution Prior hyperparameters Posterior hyperparameters

Normal with known σ2 µ (mean) Normal µ0, σ
2
0

(
µ0
σ2
0

+ nx
σ2

)
/

(
1
σ2
0

+ 1
σ2

)
,

(
1
σ2
0

+ n
σ2

)−1

Normal with known µ σ2(Variance) Inverse gamma a, p a + 1
2

∑n
i=1 (xi − µ)2 , p + n

2

Binomial θ (probability of success) Beta p, q p +
∑n

i=1 xi, q −
∑n

i=1 xi + n

Poisson λ (rate) Gamma a, p a + n, p +
∑n

i=1 xi

Exponential λ (rate) Gamma a, p a +
∑n

i=1 xi, p + n

219

3.2.2. Sampling from the posterior distribution 220

Once the expression of φ(θ|x) is obtained, there are two ways to sample from it in order to 221

re-generate the samples D
(R)
θ = {θ(1)

1 , . . . ,θ
(M)
1 , . . . ,θ

(1)
NF

, . . . ,θ
(M)
NF

} based on the pre-samples Dx. 222

(1) Direct sampling from φ(θ|x) : If the posterior distribution φ(θ|x) can be explicitly 223

expressed, it usually can be used for sample generation. For example, suppose θi is the location 224

parameter of the distribution f(xi|θi), then according to Eq. (9), it has the same distribution 225

kernel as that of xi, even though it will be truncated. In this case, the conditional samples can be 226

directly generated according to the explicit distribution function in Eq. (9). 227
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(2) Markov Chain Monte Carlo (MCMC) simulation by Metropolis-Hasting al- 228

gorithm : The Metropolis-Hasting algorithm [39] is a powerful tool to generate samples from 229

a stochastic sequential process (Markov Chain) having the desired distribution as the stationary 230

target distribution. This allows to generate samples from φ(θ|x, F ) in case no closed-form solution 231

exists. 232

In this contribution, MCMC is used to generate samples from the desired distribution φ(θ|x, F ), 233

as given in Eq. (6), since a closed-form solution is generally not available. Hereto, the stationary 234

target distribution of Markov chain is selected as: 235

π(θ) = φ(θ|x, F ) = IF (x)φ(θ|x) (10)

Then given a sample
(
x(j),θ(j)

)
(j = 1, . . . , NF ), the Metropolis-Hasting algorithm computes 236

the ratio r as: 237

r =
π(ξ)

π
(
θ
(i)
j

) = IF
(
x(j)
) φ

(
ξ|x(j)

)
φ
(
θ
(i)
j |x(j)

) =
φ
(
ξ|x(j)

)
φ
(
θ
(i)
j |x(j)

) (11)

where ξ is the candidate state, θ
(i)
j is the i-th state of the Markov chain based on the initial point 238

θ
(1)
j = θ(j). Substitution of Eq. (9) into Eq. (11) yields: 239

r =
φ
(
x(j)|ξ

)
φ
(
x(j)|θ(i)

j

) (12)

If r > 1, then ξ is accepted as the next state, otherwise ξ is accepted as the next state with 240

probability r and θ
(i)
j is accepted as the (i+1)-th state with the remaining probability 1− r, i.e., 241

θ
(i+1)
j = θ

(i)
j , where a repeated state is obtained. Note that no burn-in issues are present in this 242

case since the Markov chain starts with a given point θ
(1)
j = θ(j) that is distributed as the target 243

distribution φ(θ|x, F ). More details on Markov Chain Monte Carlo can be found in [39] and [10]. 244

3.2.3. Maximum Entropy method for distribution fitting 245

After the samples D
(R)
θ have been regenerated according to the procedure described previously, 246

the posterior distribution φ(θ|F ) can be estimated. In this work, the maximum entropy method is 247

adopted, which is briefly described in the following [24]. For simplicity, consider a one dimensional 248

parameter vector as example. The entropy of the corresponding PDF f(θ) is given by: 249

H = −
∫ +∞

−∞
f(θ) ln[f(θ)]dθ (13)
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The maximum entropy method for estimating f(θ) is stated as follows: 250

Max H = −
∫ +∞
−∞ f(θ) ln[f(θ)]dθ

s.t.
∫ +∞
−∞ f(θ)dθ = 1∫ +∞
−∞ θki f(θ)dθi = µ

(k)
θi

k = 1, 2, 3 . . .∫ +∞
−∞ θiθjf(θ)dθidθj = µij i, j = 1, 2, . . . , nθ

(14)

where µ
(k)
i is the sample mean of θki and µij is the sample mean of θiθj; Solving Eq. (14), we can 251

obtain the PDF f(θ) estimator as 252

f̂(θ) = exp

[
b0 +

nθ∑
i=1

biθi +

nθ∑
i≥j=1

bijθiθj + · · ·

]
(15)

The details of Maximum Entropy method can be found in e.g., [40]. Note that in case one can 253

consider different orders for the maximum entropy approximation in Eq. (15), e.g. first-order, 254

second-order and third-order, which correspond to k = 1, 2 and 3 in Eq. (14), respectively. 255

In order to obtain a robust PDF approximation of φ(θ|F ), the samples are first transformed 256

according to: 257

u = T (θ) =
θ − θ

θ̄ − θ
(16)

where θ ∈ [θ, θ̄]. using the Maximum Entropy method, the estimated PDF for these transformed 258

samples can be obtained as: 259

f̂u(u) = exp

[
b0 +

nθ∑
i=1

biui +

nθ∑
i≥j=1

bijuiuj + · · ·

]
(17)

Then the estimate of φ(θ|F ) is obtained by transforming Eq. (17) to the original space of θ by: 260

φ̂(θ|F ) = f̂u [T (θ)] · |T (θ)|J

= exp

[
b0 +

nθ∑
i=1

bi

(
θi − θi
θ̄i − θi

)
+

nθ∑
i≥j=1

bibj

(
θi − θi
θ̄i − θi

)(
θj − θj
θ̄j − θj

)
+ · · ·

]
·

nθ∏
i

1

θ̄i − θi

(18)

where | · |J mean the Jacobian function determinant. 261

3.2.4. Estimation of FPF 262

Once the PDF φ(θ|F ) is estimated by the Maximum Entropy method given in Eq. (18), and 263

in case that φ(θ) is selected to be a uniform distribution over [θ, θ̄], then the FPF in Eq. (3) can 264
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be estimated by: 265

P̂F (θ) =
P̂ (F )

φ(θ)
φ̂(θ|F )

= P̂ (F ) exp

[
b0 +

nθ∑
i=1

bi

(
θi − θi
θ̄i − θi

)
+

nθ∑
i=1

bibj

(
θi − θi
θ̄i − θi

)(
θj − θj
θ̄j − θj

)
+ · · ·

] (19)

where P̂ (F ) is the estimator of the failure probability P (F ). In conclusion, it can as such be seen 266

that the procedure yields an explicit expression of the FPF. Note that it is obtained by solving a 267

single reliability problem and, most notably, with only a few failure samples due to the proposed 268

SR algorithm. 269

3.3. Procedure of the proposed strategy 270

The procedure of the proposed strategy is summarized as follows, which is also presented 271

schematically in Fig. 2: 272

(1) Select the prior distribution φ(θ). 273

If no additional information is available, a feasible choice is a uniform distribution within the 274

support of the design parameters. 275

(2) Reliability analysis in augmented space. 276

Simulation-based reliability analysis (Monte Carlo Simulation or Subset Simulation) is carried 277

out in augmented space. Then, the augmented failure probability P (F ) can be calculated and the 278

failure samples Dx = {x(j) : j = 1, . . . , NF} are obtained as pre-samples. 279

(3) Re-generate samples by using the proposed algorithm. 280

Based on the pre-samples set Dx, the proposed sample re-generation algorithm is used to 281

generate more samples of θ, which are denoted as D
(R)
θ . 282

(4) Estimate φ(θ|F ) using Maximum Entropy method. 283

Apply the Maximum Entropy method to obtain the estimator of φ(θ|F ) according to Eq. (18) 284

based on the regenerated samples D
(R)
θ . 285

(5) Obtain the FPF estimate. 286

After the conditional distribution φ(θ|F ) and augmented failure probability P (F ) are esti- 287

mated, the FPF can be obtained by Eq. (19). 288

It should be stressed again that there is very little numerical cost involved in the proposed 289

algorithm, as it does not involve any additional evaluation of the performance function (that 290

is, no additional structural analyses) besides those required for solving the augmented reliability 291
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problem. Indeed, the approach only demands relatively simple numerical computations related to 292

sample regeneration. Note that in the first step of the algorithm, the uniform distribution or the 293

conjugated distribution can be selected. 294

Select a prior distribution for θ

Carry out simulation-based reliability analysis in the augmented space (x,θ)

Select the failure pre-samples Dx

Estimate the augmented

failure probability P (F )

Re-generate θ samples by the proposed SR algorithm (Eq. (6))

Estimate φ(θ|F )

by Maximum Entropy (Eq. (18))

Obtain the final estimate of FPF

Figure 2: The procedure of the proposed approach for FPF estimation

4. Examples 295

In order to illustrate the effectiveness and accuracy of the proposed method, numerical and 296

practical engineering examples are given. Meanwhile, various methods are also used for compar- 297

ing the performance of the proposed approach; more precisely Direct Monte Carlo method and 298

several surrogate modelling approaches. In the following, ‘First order exponential RSM’ refers 299

to the method in which the FPF is constructed by the first order exponential response surface 300

method [14]. ‘Second order exponential RSM’ refers to the method where the FPF is constructed 301

by second order exponential response surface method [13]. ‘Kriging’ refers to the method the 302

FPF is constructed by Kriging model. ‘WMCS’ refers to the ‘Weighted Monte Carlo simulation’ 303

method [33]; ‘WIS’ refers to the ’Weighted Importance sampling’ method [33], ‘WSS’ refers to the 304

‘Weighted Subset simulation’ method [33]. In the PDF fitting by the Maximum Entropy method 305
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given in Eq. (14), k = 3 is set for one design parameter case (Examples 1, 3, and 4), and k = 2 is 306

set for two design parameters case in Example 2. These settings are determined after numerical 307

tests which show that they lead to a good performance on accuracy. 308

4.1. Example 1: test example 309

A simple two-dimensional example is firstly presented to illustrate the proposed SR algorithm. 310

In this example, the performance function is given by g(x) = 2.3− x1 − x2, where x1 and x2 are 311

independent variables and the distribution information is given in Table 2. The design parameter 312

θ is the mean value of variable x1, and the design region is θ ∈ [0.5, 1.5]. 313

Table 2: The distribution information of variables (Example 1)

Random variable Mean C.o.v. Distribution

x1 θ ∈ [0.5, 1.5] 0.1 Gumbel

x2 1 0.1 Normal

First suppose that θ is uniformly distributed over [0.5, 1.5], MCS simulation is adopted to 314

generate 104 samples of (x1, x2, θ) in the augmented space, and a total of Nf = 1654 failure 315

samples (x1, x2, θ) are obtained. In order to show the effectiveness and advantage, the proposed 316

algorithm does not carry out a new reliability analyses. Instead, for the sake of comparison, only 317

a number of Npre = 50 failure samples are selected from these Nf = 1654 failure samples. These 318

selected samples are taken as the pre-samples of the proposed algorithm. Finally, Nr = 1000 319

samples of θ are re-generated based on the x part of the initial failure pre-samples through the 320

proposed SR algorithm. It is emphasized that no additional evaluation of the performance function 321

is involved in this step. 322

In order to show the performance of the proposed SR algorithm, the empirical CDFs of different 323

sample sets are plotted Fig. 3. This figure shows the results obtained by the MCS samples(1654 324

failure samples); the original samples (50 samples) and the regenerated samples (1000 samples 325

by the proposed SR algorithm (Metropolis algorithm)). The empirical CDF of the MCS failure 326

samples (1654 samples) here is regarded as the ‘exact’ value. It can be seen from Fig. 3 that the 327

empirical CDF of original samples is not smooth and accurate enough since the number of samples 328

is too small. On the contrary, the empirical CDF result obtained by the proposed SR algorithm 329

based on the same original samples is quite consistent with the ‘exact’ result. This shows that the 330
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Figure 3: The empirical CDFs for the initial pre-samples and the re-generated samples by proposed SR algorithm

(Example 1)

proposed algorithm is capable of determining the CDF of φ(θ|F ) accurately based on a small set 331

of samples. Hence, it seems that the proposed algorithm can extract more information of θ based 332

on the pre-samples, which results in more accurate CDF estimate. 333

The FPF results obtained by different methods are shown in Fig. 4. In this figure, “Initial 334

pre-samples” refers to the FPF result obtained based on Bayesian transformation in Eq. (3) and 335

the CDF φ(θ|F ) is estimated from the 50 failure pre-samples which is estimated by Maximum 336

Entropy method. The proposed method is based on just 50 failure pre-samples, then we regenerate 337

Nr = 1000 samples in order to estimate the CDF using the Maximum Entropy method, and at last 338

the FPF obtained. The expression of FPF by the proposed SR algorithm (Metropolis algorithm) 339

is given by 340

P̂F (θ) = 0.1654 exp

[
−17.2578 + 32.0817

(
θ − 0.5

1

)
− 5.1246

(
θ − 0.5

1

)2

− 8.2598

(
θ − 0.5

1

)3
]

(20)

“MCS samples” refers to the FPF result obtained based on 1654 failure samples. Weighted IS 341

(WIS) uses 1000 (excluding the design point solving cost) and Direct Monte Carlo simulation 342

(denoted as “Direct MCS”) is used to obtain the point-by-point failure probability values. Each 343

failure probability point is calculated by one run of MCS with 106 samples, and these values are 344
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Figure 4: The results of FPF obtained by different methods (Example 1)

regarded as the exact FPF values. As shown in the Fig. 4, the FPF obtained by the proposed 345

method has reached a high accuracy with 50 initial pre-samples and 20 regeneration rounds. The 346

other methods cannot obtain satisfactory results, where a considerable error exists especially in 347

the result based on only the initial pre-samples. 348

The comparison of different methods is also listed in Table 3. It can be seen that the proposed 349

method only needs one reliability analysis, and the most important feature is that it only uses 350

about 50 failure points, as few as possible, to obtain the FPF, which also means it will need 351

less samples in one reliability analysis. The proposed method has obvious advantages in terms of 352

computational efficiency. 353

In addition, it is found that the accuracy of the FPF estimate obtained by the proposed method 354

will be related with the number of initial pre-samples and regeneration rounds. Figure 5(a) shows 355

the obtained FPF results when the number of initial pre-samples is 20, 50 and 100, respectively 356

(the number of regeneration rounds is 50 for all cases). Definitely, the larger the number of 357

initial pre-samples is, the higher the accuracy of the estimate is. However, more failure samples 358

involve more computational cost. Meanwhile, increasing the number of regeneration rounds M 359

will benefit the improvement of the approximation of CDF. However, the improvement has a limit, 360

which means that when the number of re-generation rounds is already large enough, there is little 361

improvement despite of increasing the number of the re-generation rounds, as the information that 362
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Table 3: Computational cost of different methods (Example 1)

Methods No. of samples No. of failure samples

Initial pre-samples −∗ 50

Proposed SR(Metropolis algorithm) − 50

Proposed SR(Another separate run) 300 46

MCS samples 104 1654

WMCS 105 974

WIS 1000 515

Direct MCS 106 −

* Number of samples is not provided as the set of pre-samples is partly selected from MCS samples.

a certain number of pre-samples can provide is limited. 363

(a) Different pre-samples (b) Different rounds

Figure 5: The FPF results obtained by different number of pre-samples and regeneration rounds (Example 1).

Fig. 5(b) shows the obtained FPF results when the numbers of regeneration rounds are 10, 30 364

and 50, respectively. The number of initial pre-samples is the same, Npre = 40. It is shown that 365

the results of the FPF are very consistent with the exact values in 30 or 50 rounds. 366

In order to see more clearly, Fig. 6 depicts histograms of the error of FPF results for the 367

different number of pre-samples and rounds. The error ϵ is the maximum value of the differences 368

between the obtained FPF and the exact value obtained by direct MCS. In order to eliminate the 369

randomness, the simulation of the proposed algorithm is carried out 50 times for each case, and 370

then the histogram is generated based on these data. The same conclusion can be drawn from 371
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(a) Different pre-samples (b) Different rounds

Figure 6: The error of the FPF results obtained by different number of pre-samples and regeneration rounds

(Example 1).

the figure that, as the number of pre-samples and re-generation rounds grows, the error becomes 372

small. 373

4.2. Example 2: front axle 374

Front axle is an important component of an automobile that bears heavy loads [37]. An I-beam 375

is often used in the design of front axle due to its high bend strength and light weight. As shown 376

in Fig. 7, a critical component of the axle is located in the I-beam part with geometry variables a, 377

b, t and h. To test the static strength of the front axle, the performance function can be expressed 378

as 379

g(x) = σs −
√
σ2(x) + 3τ 2(x) (21)

where x = [a, b, t, h,M, T ] is the vector of random variables; σs is the limit-state stress associated 380

with yielding, according to the material property of the front axle, the limit stress of yielding σs is 381

680MPa; the maximum normal stress and shear stress are σ(x) = M/Wx(x) and τ(x) = T/Wρ(x), 382

where M and T are bending moment and torque, respectively, Wx and Wρ are section factor and 383

polar section factor, respectively, which are given as 384

Wx(x) =
a(h− 2t)3

6h
+

b

6h

[
h3 − (h− 2t)3

]
(22)

385

Wρ(x) = 0.8bt2 + 0.4
[
a3(h− 2t)/t

]
(23)

All variables are modeled as independent random variables with distribution parameters listed 386

in Table 4. Note that all the variables are restricted to positive value dues to physical reasons, 387
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Figure 7: Diagram of automobile front axle

actually they are all truncated variables. The design parameters given in Table 4 include the 388

mean values of the normal variables, and the design domains are θ1 = µa ∈ [10, 16]mm and 389

θ2 = µt ∈ [12, 18]mm respectively. 390

Table 4: The distribution information of the random variables of the front axle (Example 2)

.

Random variable Mean C.o.v. Distribution

a (mm) θ1 = µa 0.05 Normal

t (mm) θ2 = µt 0.05 Normal

b (mm) 65 0.05 Normal

h (mm) 85 0.05 Normal

M (kN ·m) 3.5 0.05 Normal

T (kN ·m) 3.1 0.05 Normal

The proposed SR method and other different methods (WMCS, WIS and WSS) are applied 391

to obtain the two-dimensional FPF. MCS simulation is first adopted to generate 500 samples 392

in augmented space and a number of 55 failure samples are obtained. The proposed algorithm 393

then re-generates 55× 20 rounds = 1100 samples by utilizing direct sampling and the Metropolis- 394

Hasting algorithm based on this pre-samples set, respectively. The obtained expression of FPF 395
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is: 396

P̂F (θ1, θ2) = P̂ (F ) exp

[
a0 +

2∑
k=1

ak

(
θ1 − θ1
θ̄1 − θ1

)k

+
2∑

k=1

bk

(
θ2 − θ2
θ̄2 − θ2

)k

+ c

(
θ1 − θ1
θ̄1 − θ1

)(
θ2 − θ2
θ̄2 − θ2

)]
(24)

where the coefficients ai, bi(i = 1, 2), and c for the proposed methods (SR(Direct sampling) and 397

SR (Metropolis algorithm)) are shown in the Table 5. 398

(a) PF (θ1, θ2 = 15) (b) PF (θ1 = 13, θ2)

Figure 8: The one dimensional FPF results obtained by different methods (Example 2) (a) PF (θ1, θ2 = 15); (b)

PF (θ1 = 13, θ2). The corresponding computational cost is listed in Table 6.

The one dimensional FPF results, PF (θ1, θ2 = 15) and PF (θ1 = 13, θ2), by the proposed 399

algorithm and other methods are shown in Fig. 8. It can be seen that the result based on solely 400

the initial pre-samples has a big error. At the same time, the proposed method (regenerating 401

based on the initial pre-samples) is still able to obtain a high precision. 402

The computational cost information of each method is listed in Table 6. Note that Weighted 403

MCS (WMCS) uses 104 samples; Weighted IS (WIS) uses 500 (excluding the cost of solving for 404

the design point); Weighted SS (WSS) uses 2000 (1000 for each level). Note that all the weighted 405

approaches are carried out in the original space, and considerable error can be seen in the results of 406

these methods. Through comparison, it can be found that in the two-dimensional normal example, 407

the proposed SR algorithm has high efficiency and accuracy. 408

4.3. Example 3: turbine disk 409

This case study considers the disk of a turbine of a turbo-engine, of which the reliability is key 410

to the safety of aeronautical transport vehicles. According to the well-known Mason-Coffin law to 411
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Table 5: The values of coefficients of the FPF estimation in Eq. (24) (Example 2)

Coefficients Proposed SR(Metropolis algorithm) Proposed SR(Direct sampling)

a0 1.6623 1.8686

a1 3.0960 2.4325

a2 3.5174 2.5541

b1 −8.7622 −7.7262

b2 −12.1310 −10.1725

c −9.9302 −11.7398

Table 6: Computational cost of different methods (Example 2)

Methods No. of samples No. of failure samples

Initial pre-samples − 55

Proposed SR(Direct sampling) 500 55

Proposed SR(Metropolis algorithm) 500 55

WMCS 104 60

WIS 500 114

WSS 1000× 2 257

Direct MCS 106 −
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consider the effect of mean stress and mean strain on the fatigue life of the disk Nl, the fatigue 412

life can be computed as: 413

∆ε

2
=

(
σ′
f − σm

E

)
(2Nl)

b +
(
ε′f − εm

)
(2Nl)

c (25)

where σ′
f is the fatigue strength coefficient; ε′f is the fatigue ductility coefficient; εm is the mean 414

strain; σm is the mean stress; b is the fatigue strength exponent of Basquin’ law; c is the fatigue 415

ductility exponent of Coffin’s law; ∆εm is the strain range which ∆εm = εm/2 under 0 takeoff-0 416

load cycle here; E = 1.85 × 105MPa is Young’s modulus. In this study, it is assumed that the 417

actual life under a 0-takeoff-0 load cycle must exceed the required fatigue life. In this case, the 418

performance function can be expressed as: 419

g(x) = Nl

(
σ′
f , ε

′
f , σm, εm, b, c

)
−Nl0 (26)

where Nl0 is the required minimum service life and it is set as a constant Nl0 = 106 cycles; Nl is 420

the computed fatigue life under the 0 -takeoff- 0 load cycle. All the random variables are assumed 421

to be normally distributed and the corresponding distribution information is given in Table 7 . 422

The mean value of σ′
f is taken to be the design parameter, i.e., θ = µσ′f ∈ [1400, 2300]MPa. 423

Table 7: Distribution information of basic random variables of turbine disk (Example 3)

Random variable Mean C.o.v. Distribution

σm(MPa) 1077.63 0.1 Normal

εm 0.0045497 0.1 Normal

σ′
f (MPa) θ 0.1 Normal

ε′f 0.0196 0.1 Normal

b −0.096 −0.05 Normal

c −0.41 −0.05 Normal

For implementing the augmented state approach, it is assumed that θ is uniformly distributed 424

over [1400, 2300]. In this example, Subset simulation (MCMC) in augmented space is used to 425

carry out the simulation. It uses 200 samples (100 for each level), and 171 failure samples are 426

obtained. The proposed SR algorithm (Direct sampling) is used to regenerated 171× 20 samples. 427
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The FPF is obtained as 428

P̂F (θ) = 0.0850 exp

[
1.7237− 4.8132

(
θ − 1400

900

)
− 1.0211

(
θ − 1400

900

)2

− 3.8165

(
θ − 1400

900

)3
]

(27)

The FPF results obtained by different methods are plotted in Fig. 9. The details of different 429

methods are given in Table 8. From Fig. 9, it can be seen that the solution of FPF by the 430

proposed method is the most accurate. For the other methods, the result based on the initial 431

samples has larger error. First order and second order exponential RSM obtain results which have 432

an acceptable error, but the corresponding computational cost is larger. Concerning the weighted 433

approaches, only WIS obtains satisfactory results, but it uses 1000 sample which excludes the 434

design point solving cost. The results of Weighted MCS (WMCS) with 4 × 104 samples and 435

weighted SS (WSS) with 3000(1000 for each level) samples still have some errors. The proposed 436

SR algorithm obtains the satisfied results with only 200 samples (100 for each level) which uses 437

the least computational cost. High efficiency of the proposed algorithm still can be seen. 438

Figure 9: The FPF results obtained by different methods (Example 3), the corresponding computational cost is

listed in Table 8.
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Table 8: Computational cost of different methods (Example 3)

Methods No. of samples No. of failure samples

Original samples − 171

Proposed SR(Direct sampling) 200 171

WMCS 4× 104 87

WIS 1000 506

WSS 1000× 3 187

RSM first 105 × 3 −

RSM second 105 × 3 −

Direct MCS 106 × 10 −

4.4. Example 4: aircraft inner flap 439

This case study considers the case of an inner aircraft flap, subjected to an aerodynamic 440

load which is transformed into a concentrated load F applied to the nodes of the finite element 441

model (3274 elements in total), which is shown in Fig. 10. Failure is defined as the maximum 442

displacement of all the nodes dmax exceeding an admissible maximal displacement Da = 34.1 mm. 443

The performance function is defined as: 444

g(x) = Da − dmax (t1, t2, t3, t4, A1, A2, E1, G1, E2, G2, F ) (28)

where t1, t2, t3 and t4 are the thickness values of four kinds of beams in the flap; A1 and A2 are 445

the cross section areas of two beams; E1 (E2) and G1 (G2) are the elastic modulus and shear 446

modulus, respectively; the instrumental random variable F represents the randomness of the load 447

applied to the nodes, and for the load applied in the node i, the value is Fi = (1 + F )Fi0 where 448

Fi0 is a constant nominal value. All variables are mutual independent normal variables and the 449

corresponding distribution information is given in Table 9. 450

In this case, it is found that the reliability of this structure is more sensitive to the thickness 451

t4 than other shape parameters, so the mean value of t4 is taken as the design parameter, i.e., 452

θ = µt4 ∈ [1.3, 1.7] mm. And the FPF with respect to µt4 is investigated. 453

The proposed SR algorithm (Direct sampling) is applied. First, suppose θ = µt4 is uniformly 454

distributed over design domain [1.3, 1.7] mm, MCMC simulation is adopted with 200 sample for 455

each level, and 154 failure samples are obtained at the last level. Hereto, there failure samples 456

24



are selected as the pre-samples and then 154 × 20 samples of θ are regenerated based on these 457

pre-samples. The estimate of FPF obtained by the proposed method is: 458

P̂F (θ) = 0.0770 exp

[
1.6471− 5.0394

(
θ − 1.3

0.4

)
+ 2.3538

(
θ − 1.3

0.4

)2

− 6.2372

(
θ − 1.3

0.4

)3
]
(29)

Figure 10: The finite element model of aircraft inner flap (Example 4)

459

This FPF by different methods are plotted in Fig. 11. Note that Direct MCS is carried out 460

considering a Kriging surrogate model instead of the original limit state function in which finite 461

element analysis is involved. It can be seen that FPF decreases as the mean value of t4 increases, 462

which is reasonable from a physical viewpoint. The FPF results based on pre-samples (the original 463

154 samples) has a big error. On the other hand, the proposed SR algorithm based on these pre- 464

samples obtains satisfactory results. Thus the effectiveness of the proposed SR algorithm is shown. 465

Table 10 summarizes the computation cost of the different methods. Although the proposed SR 466

algorithm uses only one reliability analysis (i.e., MCMC simulation) with 200 samples, the solution 467

of FPF still has very high precision. This shows that the accuracy and efficiency of the proposed 468

approach. 469
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Table 9: Distribution information of basic random variables of the inner flap (Example 4)

Random variable Mean C.o.v.

t1( mm) 2 0.05

t2( mm) 2 0.05

t3( mm) 4 0.05

t4( mm) θ 0.05

A1 ( cm
2) 50 0.05

A2 ( cm
2) 150 0.05

E1(MPa) 70380 0.05

G1(MPa) 26458.6 0.05

E2(MPa) 72450 0.05

G2(MPa) 27236.8 0.05

F 0 0.05

Table 10: Computational cost of different methods (Example 4)

Methods No. of samples No. of failure samples

Original samples − 154

Proposed SR(Direct sampling) 200× 2 154

WMCS 5000 106

WIS 1000 490

WSS 1000× 2 256

Direct MCS 106 × 10 −
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Figure 11: The results of FPF obtained by different methods(Example 4), the corresponding computational cost

is given in Table 10.
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5. Conclusions 470

In this paper, a methodology is presented for the estimation of the structural failure probability 471

function. The method is based on a newly proposed regeneration algorithm that utilizes Bayesian 472

theory. The most attractive features are that (1) it needs only one reliability analysis in augmented 473

space, i.e., using classical MCS or Subset simulation; (2) only a limited number of failure samples 474

is required, from which the proposed algorithm can generate more samples in the failure domain of 475

the problem under consideration. Hence, no repeated limit state function evaluations are needed, 476

which results a highly efficient, yet accurate, estimation of the FPF. 477

Numerical examples are given to test the proposed algorithm and illustrate its application. It is 478

found that the proposed algorithm for FPF estimation owns remarkable advantages both in terms 479

of accuracy and computational efficiency when compared to other methods. While these results 480

are encouraging, it should be pointed out that the proposed algorithm is best suited for treating 481

low-to-moderate dimensional cases. This is a natural consequence of the difficulties corresponding 482

to sampling from a high-dimensional augmented space. This is well-known in the literature of 483

augmented space methods. Future work will involve the application of the proposed method to 484

the reliability-based optimization combined with decoupling approach, reliability analysis under 485

non-probabilistic uncertainty and reliability sensitivity analysis. 486
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Appendix A. The SR algorithm for the mean value of a Normal variable 499

Suppose the mean value of xi is the design parameter θ. The conditional PDF of xi is given 500

by 501

f(xi|θi) =
1√
2πσi

exp

[
−(xi − θi)

2

2σ2
i

]
(A.1)

where xi ∼ N (θi, σ
2
i ); σ2

i is the known variance. In augmented space, assume θi is uniform 502

distributed over the design region [θi, θ̄i], i.e., θi ∼ U [θi, θ̄i], the distribution φ(θi) is given as 503

φ(θi) =
1

θ̄i − θi
, θi ∈ [θi, θ̄i] (A.2)

Then the marginal distribution of x can be obtained as 504

f(xi) =

∫ θ̄i

θi

f(xi|θi)φ(θi)dθi =
1

θ̄i − θi

[
Φ

(
θ̄i − xi

σi

)
− Φ

(
θi − xi

σi

)]
(A.3)

where Φ(·) is the cumulative distribution function of normal standard variable. Next, based on 505

Bayesian theory explained in Eq. (6), the posterior PDF of θ can be derived by substituting 506

Eq. (A.1), Eq. (A.2) and Eq. (A.3) into Eq. (6): 507

φ(θi|xi) =
f(xi|θi)φ(θi)

f(xi)
=

1

∆i

1√
2πσi

exp

(
−(θi − xi)

2

2σ2
i

)
, θi ∈ [θi, θ̄i] (A.4)

where ∆i = Φ
(

θ̄i−xi

σi

)
− Φ

(
θi−xi

σi

)
is a constant for given xi. It can be seen that the posterior 508

PDF φ(θi|xi) in Eq. (A.4) is actually a truncated PDF of Normal distribution for a given xi. This 509

means that if we have samples of x beforehand, we can generate samples of θi which follow φ(θi) 510

by directly using the posterior PDF φ(θi|xi) in Eq. (A.4). Further, the conditional distribution 511

can be obtained according to Eq. (6) 512

φ(θi|xi, F ) = IF (x)φ(θi|xi) =
1

∆i

1√
2πσi

exp

(
−(θi − xi)

2

2σ2
i

)
, θi ∈ [θi, θ̄i],x ∈ F (A.5)
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