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systems whose performance is affected by both random variables and interval variables. This kind12

of problems is known to be very challenging, as it demands coping with aleatoric and epistemic13
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to consider the maximum standard deviation of the structural response as a proxy for detecting15

the crisp values of the interval parameters, which yield the bounds of the failure probability.16

The scope of application of the proposed approach comprises linear structural systems, whose17

properties may be affected by both aleatoric and epistemic uncertainty and that are subjected18

to (possibly imprecise) Gaussian loading. Numerical examples indicate that the application of19

such proxy leads to substantial numerical advantages when compared to a traditional double-loop20

approach for coping with imprecise failure probabilities. In fact, the proposed framework allows21

to decouple the propagation of aleatoric and epistemic uncertainty.22
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1. Introduction30

One of the main trends in engineering design of the last few decades is to evolve from real-life31

experiments to in-silico structural evaluations. Numerical techniques to evaluate the differential32

equations that describe the effect of occurring loads on the structure under assessment, from33

the micro to macro scale, as such have become indispensable. However, the main criticism with34

respect to such techniques is that the predicted results in these in-silico experiments often diverge35

from those obtained in their real-life counterparts. The source of this divergence is the fact that36

both, the structure that is being observed, as well as the process of observing the structure are37

subjected to uncertainties. In the former case, uncertainty creeps in the problem formulation38

through variable material properties (e.g., Young’s modulus) or loading conditions (e.g., wind39

loads). These uncertainties are also referred to as aleatory uncertainties and are best characterized40

using probabilistic methods, such as described in [1]. In the latter case, the uncertainty stems41

from limited observation capabilities. In essence, an analysis of a structure is always constrained,42

be it by (experimental) costs, time or the resolution of our measurement devices. These epistemic43

uncertainties may be described by probabilistic techniques in certain cases, but generally set-44

theoretical methods such as intervals [2] are better suited.45

As may be understood from the preceding explanation, the joint occurrence of epistemic and46

aleatoric uncertainties in numerical models, including their corresponding uncertainty models, is47

more the standard than the exception. As such, to properly address the divergence between real-48

life and in-silico experiments, both have to be taken into account jointly. In this context, some49

authors make the distinction between hybrid reliability analysis [3] or polymorphic uncertainty50

modeling [4] when the aleatoric and epistemic parameters are defined on separate model variables51

and imprecise probabilistic analysis [5, 6] when both uncertainties affect the same model variables52

(e.g., a random parameter with interval-valued distribution parameters, e.g., an interval mean53

value). While the modeling of uncertainties using these tools is very versatile, it also poses a54

major challenge from a numerical point of view when performing uncertainty quantification, as55

both sources of uncertainty (aleatoric and epistemic) must be propagated to the response of the56

structural system. It is important to note that such propagation is conducted under the con-57

dition that the effects of aleatoric and epistemic uncertainty are kept separated. This implies58

that both sources of uncertainty are usually propagated by means of the so-called double loop59

approaches, where the outer loop takes care of epistemic uncertainty while the inner loop deals60
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with aleatoric uncertainty [7]. Double loop approaches are generally highly accurate, but the61

corresponding computational cost becomes quickly intractable, especially when industrially sized62

models are considered. Therefore, a considerable amount of research is focused on finding more63

efficient techniques for the propagation of uncertainty through numerical simulation models. A64

multitude of numerical schemes have been proposed to propagate these types of uncertainties. Ex-65

amples of such approaches are based on Extended Monte Carlo simulation [8], surrogate modeling66

schemes [9, 10, 11], Bayesian probabilistic propagation [12], [13], Line Sampling [14] or importance67

sampling [15, 16]. For a complete overview of literature on this topic, the reader is referred to68

the recent review papers [3] and [6]. A latest development in this context is based on operator69

norm theory to decouple the double loop into a deterministic optimization, followed by a single70

reliability analysis per bound on the reliability, as introduced in [17, 18], which is capable of re-71

ducing the corresponding computational cost by several orders of magnitude. The method was72

later extended to more general loading conditions in [19] and to non-linear models in [20]. The73

current state-of-the-art in operator norm theory is that the approach can deal with hybrid uncer-74

tainty and imprecise probability on the loading side (including moderate non-linearity), whereas75

concerning the model side, only epistemic uncertainty is possible so far. This greatly hinders76

the application of the operator norm framework in areas, where the model description itself is77

subject to considerable aleatoric uncertainty, as is the case in e.g., parts produced using advanced78

manufacturing techniques (e.g., additive manufacturing or composite materials), natural materi-79

als such as wood [21], shell buckling with geometrical imperfections [10] or applications in soil80

engineering [22].81

In this paper, we propose a framework to allow the propagation of both aleatoric and epistemic82

uncertainties at both the model side and the loading. Hereto, we first illustrate the equivalence of83

the operator norm with the maximum standard deviation of a response under certain conditions.84

Inspired by this equivalence, we then illustrate how this maximum standard deviation can be85

approximated efficiently under the most general definition of the governing uncertainties by means86

of a first-order series expansion without resorting to random sampling. Three engineering examples87

are presented to show the effectiveness of the approach in this situation.88

The paper is structured as follows; Section 2 gives a rigorous formulation of the problem89

considered in this manuscript. Section 3 explains the proposed approach highlighted above in90

detail. Section 4 illustrates the method by means of three engineering examples: an FE model of91
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a Reissner-Mindlin plate subjected to imprecise stochastic loading, a model of a single-degree-of-92

freedom oscillator with random mass and interval-valued stiffness subject to a stochastic ground93

acceleration, and a three-story concrete frame modeled as a three-mass oscillator that is subjected94

to an earthquake loading. Finally, Section 5 lists the conclusions of this work.95

2. Formulation of the problem96

2.1. General Remarks97

This contribution proposes a framework to calculate the bounds on failure probability. The98

focus is on linear structural systems which are subject to static or dynamic loading. It is assumed99

that the loading can be modeled as an imprecise Gaussian process, as discussed in detail in Section100

2.2. Furthermore, the structural properties can be uncertain and modeled by means of random101

variables and/or interval variables, as considered in Section 2.3. In consequence, the probability102

of failure of the structural system becomes interval-valued, as analyzed in Sections 2.4 and 2.5.103

2.2. Imprecise Gaussian loading104

Consider a Gaussian process f whose mean and covariance are µ and γ, respectively. It is105

assumed that these two quantities are parametrized with respect to a vector θf that represents106

certain physical properties of the Gaussian process [23]. Hence, µ = µ (θf ) and γ = γ (θf ).107

Considering a discrete time or space representation of this process, the associated mean vector is108

denoted as µ (θf ) while the covariance matrix is denoted as Γ (θf ). Thus, the Gaussian process109

is represented in its discrete form by means of the Karhunen-Loève expansion, see [24]:110

f (θf , z) = µ (θf ) +B (θf ) z, (1)

where f is a realization of the Gaussian loading, which is a nf × 1 vector; nf denotes the number111

of time or space discretization points; µ is a nf × 1 vector representing the mean of the Gaussian112

process; z is a realization of a standard Gaussian random variable vector Z of dimension nz × 1113

and whose probability density function is denoted as pZ(z); and B is a matrix defined as:114

B (θf ) = Ψ (θf ) (Λ (θf ))
1/2 , (2)

where Ψ is a matrix of dimension nf × nz containing the first nz eigenvectors of the covariance115

matrix Γ; Λ is a matrix whose diagonal contains the first nz eigenvalues of the covariance matrix116
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Γ, such that Γ ≈ ΨΛΨT (where (·)T denotes transpose of the argument); and nz is the number117

of terms retained for the Karhunen-Loève expansion (nz ≤ nf , see, e.g. [1]).118

As noted from Eqs. (1, 2), the Gaussian process depends on vector θf . In turn, this vector contains119

relevant information regarding the physical properties of the process, such as dominant frequencies120

or spectral intensity, to name a few. In practical situations, it may occur that identifying precise121

values for θf may be challenging due to issues such as lack of knowledge. In such case, it may be122

appropriate to characterize the associated epistemic uncertainty in terms of intervals, such that123

θf ∈
[
θf ,θf

]
, where (·) and (·) denote the lower and upper bounds of a vector. Under such124

assumption, Eq. (1) allows characterizing the uncertainty in the loading as an imprecise Gaussian125

process, as it is affected by epistemic uncertainty (associated with θf ) as well as by aleatoric126

uncertainty (associated with z).127

2.3. Structural model and its response128

It is considered that the structural model under analysis possesses a total of nr responses of129

interest, which are collected in vector η∗. In view of the assumption of linearity of the structural130

response [25], this response vector can be expressed as (see Appendix A):131

η∗(θs,θf ,y, z) = A(θs,y)f(θf , z), (3)

where A is a matrix of dimension nr×nf associated with the structural response; θs and y denote132

two vectors of parameters that affect structural performance and that are uncertain. Vector θs133

groups parameters regarded as epistemic, whose uncertainty is characterized by means of intervals,134

that is θs ∈
[
θs,θs

]
. Vector y groups parameters of the aleatoric type whose uncertainty is135

characterized by means of a random variable vector Y with probability density pY (y). It is136

assumed that random variables grouped in vector Y are independent among them as well as with137

respect to Z.138

For practical design purposes, it is of interest monitoring that none of the structural responses139

(in absolute value) exceed prescribed thresholds [26]. These thresholds are collected in vector b140

of dimension nr. Assuming that all components of the threshold vector b are different from zero141

(that is, b = [b1, . . . , bnr ]
T 6= [0, . . . , 0]T ) and recalling the load representation as cast in Eq. (1),142
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it is possible to define a so-called normalized response vector η, that is:143

η(θ,y, z) = c(θ,y) +C(θ,y)z, (4)

where θ is a vector that collects epistemic parameters affecting structural behavior and loading,144

that is θ =
[
θTs ,θ

T
f

]T
; c is a vector of dimension nr defined as:145

c(θ,y) =


b1

. . .

bnr


−1

A(θs,y)µ(θf ), (5)

and C is a nr × nz matrix defined as:146

C(θ,y) =


b1

. . .

bnr


−1

A(θs,y)B(θf ). (6)

Eq. (4) provides a compact and convenient means for expressing structural response in a normal-147

ized fashion. Indeed, as the threshold vector is included in its formulation, it is straightforward to148

note that η is actually a dimensionless vector. Furthermore, whenever the absolute value of any149

of the components of η exceeds 1, it becomes evident that a design criterion is no longer fulfilled150

[26].151

2.4. Failure probability152

The chance that an undesirable behavior occurs (that is, any of the responses contained in η153

exceeding 1 in absolute value) is calculated by means of the following classical integral [23]:154

pF (θ) =

∫
z∈Rnz

∫
y∈Ωy

IF (θ,y, z)pY (y)pZ(z)dydz, (7)

where pF denotes the failure probability; and IF (·, ·, ·) is the indicator function, which is equal to155

one in case ‖c̄(θ,y) + C(θ,y)z‖∞ ≥ 1 and zero, otherwise; note that ‖·‖∞ denotes the infinity156

pseudo-norm.157
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2.5. Interval failure probability158

Note that the failure probability as cast in Eq. (7) synthesizes the level of safety of a structure159

with respect to aleatoric uncertainty conditional on θ. In turn, θ collects uncertain parameters160

of the epistemic type, which are characterized as interval valued, that is θ ∈
[
θ,θ

]
. Hence, it161

is evident that the failure probability pF becomes interval valued as well [22]. Naturally, it is162

of interest determining the lower and upper bounds of this probability (denoted as p
F

and pF ,163

respectively), that is:164

p
F

= min
θ∈[θ,θ]

(pF (θ)) (8)

pF = max
θ∈[θ,θ]

(pF (θ)) , (9)

where min(·) and max(·) denote the minimum and maximum value, respectively, of the argument.165

In essence, Eqs. (8, 9) constitute so-called double loop problems: in the outer loop, one must166

perform optimization in order to locate the minimum/maximum of the failure probability with167

respect to the epistemic parameters θ; while in the inner loop, one must propagate aleatoric168

uncertainty in order to estimate the failure probability for a given value of θ (see Eq. (7)). Thus,169

the solution of these two optimization problems can be extremely costly from a numerical point170

of view. Therefore, in the following, an approach that can alleviate such numerical burden is171

proposed.172

3. Standard Deviation as a Proxy of the Failure Probability173

3.1. Operator Norm Theorem: Brief Overview174

This subsection briefly retakes the theory behind the operator norm as considered in [17, 18,175

27, 28]. Let D : Rdv 7→ Rdr be a continuous linear map between two normed vector spaces Rdv
176

and Rdr and ‖•‖pi be a particular Lpi norm on these vector spaces with pi ∈ [1,∞). It is assumed177

that this map depends on a vector ζ, that is, D(ζ). Then, there is a number c ∈ R such that:178

‖D(ζ)v‖p1≤ |c(ζ)|·‖v‖p2 , (10)

for all v ∈ Rdv , where ‖v‖pi is constructed according to ‖v‖pi =
(∑dv

j=1|vj|p
i
)1/pi

, with vj ∈ v.179

Note that for the case of pi = ∞, one retrieves the well-known infinity norm of a vector, that is180
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‖v‖pi=∞ = max
j=1,...,dv

(|vj|). Equivalently, Eq. (10) can be rewritten as:181

‖ξ(ζ)‖p1 ≤ |c(ζ)|‖v‖p2 , (11)

where ξ(ζ) = D(ζ)v. A measure for how much D(ζ) increases the length of the vector v in the182

maximum case, is given by the operator norm ‖D(ζ)‖p1,p2 [29], which is defined as:183

||D(ζ)||p1,p2 = inf {c ≥ 0 :‖D(ζ)v‖p1 ≤ |c(ζ)|·‖v‖p2 ∀v ∈ Rnv} , (12)

or equivalently:184

||D(ζ)||p1,p2 = sup

{
‖D(ζ)v‖p1
‖v‖p2

: v ∈ Rnv with v 6= 0

}
. (13)

The calculation of a particular ||D(ζ)||p1,p2 norm clearly depends on the particular choice of p1
185

and p2. For the particular choice of p1=∞ and p2 = 2 [29] and under the assumption that v is a186

realization of standard normal random variable vector, it can be shown that ||D(ζ)||p1,p2 effectively187

corresponds to the maximum standard deviation of ξ (see Appendix B). This salient feature was188

used in earlier work to bound the first excursion probability of imprecise structures subjected189

to imprecise stochastic loads [18, 27]. In essence, it is assumed in those contributions that the190

parameter vector ζ could represent interval-valued quantities that affect the structural behaviour191

and/or load representation. Thus, the operator norm is employed as a means for identifying the192

crisp values of ζ that would lead to the minimum and maximum values of the operator norm (as193

cast in Eq. (12) or (13)). In other words, one aims at determining the two sets of values of ζ194

that induce less and most strechting that matrix D(ζ) (that represents the system’s properties)195

exerts over the external load (represented by v in this case), respectively. In turn, those two196

sets of values for ζ are then employed to perform two reliability analysis, which yield the lower197

and upper values of the failure probability, respectively. For a more detailed explanation on the198

operator norm, it is referred to [18, 27].199

3.2. Standard Deviation as a Proxy for Determining Bounds of the Failure Probability200

As already discussed in Section 2, the focus of this work is on bounding the failure probability201

associated with a linear structural system affected by epistemic and aleatoric uncertainty which202

is subjected to imprecise Gaussian loading. Based on the concepts presented in Section 3.1, it is203

noted that under certain conditions, the application of the operator norm theorem is equivalent204
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to calculating the maximum standard deviation of the response. Inspired by such approach, it is205

proposed in this work to consider the maximum standard deviation of the response of a system as206

a proxy for bounding the failure probability. Hence, the set of values of the interval parameters207

that leads to a minimum/maximum value of the failure probability are identified by solving the208

following two optimization problems:209

θ∗ = argmin
θ∈[θ,θ]

(σmax(θ)) (14)

θ
∗

= argmax
θ∈[θ,θ]

(σmax(θ)) , (15)

where argmin and argmax are functions that return the argument for which a given function is210

minimized or maximized, respectively; θ∗ and θ
∗

denote the set of values of the uncertain interval211

parameters which yield the minimum/maximum value of σmax; and σmax denotes the maximum212

standard deviation of the response η, that is:213

σmax(θ) = max
j=1,...,nr

(
(V [ηj])

1/2
)
, (16)

where V [·] denotes variance of the argument and ηk is the k-th element of the normalized response214

vector η. Taking into account the above formulation, the bounds of the failure probability are215

given approximately by:216

p
F
≈ pF (θ∗) (17)

pF ≈ pF

(
θ
∗
)
. (18)

The solution of the optimization problems in Eqs. (14, 15) is quite advantageous from a numerical217

point of view: it demands calculating the maximum standard deviation of the normalized response218

σmax(θ), whose determination is usually much less involved than that of the failure probability.219

Details about the calculation of σmax(θ) are discussed in the following.220

3.3. Determination of the Maximum Standard Deviation of the Response221

The calculation of the maximum standard deviation of the response σmax for a specified value222

of the epistemic parameters θ could be carried out by means of, e.g., Monte Carlo simulation.223

Such an approach would demand generating N samples of the vector of uncertain structural224
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parameters and loading, that is y(l) ∼ pY (y), z(l) ∼ pZ(z), l = 1, . . . , N and evaluating the225

normalized structural response for each of those samples. Thus, the estimator for the maximum226

standard deviation based on Monte Carlo simulation (which is denoted as σSmax(θ)) is equal to:227

σmax(θ) ≈ σSmax(θ) = max
j=1,...,nr


√√√√ 1

N − 1

N∑
l=1

(
ηj (θ,y(l), z(l))− µSj (θ)

)2

, (19)

where µSj (θ) is the mean value vector of the j-th normalized response, which is calculated as:228

µSj (θ) =
1

N

N∑
l=1

ηj
(
θ,y(l), z(l)

)
. (20)

While the application of Monte Carlo simulation for estimating the maximum standard deviation229

is feasible, it may be undesirable from a numerical point of view for two issues. First, it requires230

performing simulation, which is numerically demanding. Second, it provides estimates instead of231

precise quantities; in general, it is challenging to perform optimization with estimates. In view of232

these challenges, the sought maximum standard deviation is calculated in an approximate, closed-233

form approach, as described below.234

It is assumed that vector c(θ,y) and matrix C(θ,y) as defined in Eqs. (5, 6), respectively, can235

be represented approximately as:236

c(θ,y) ≈ c0(θ,y0) +

ny∑
i=1

ci(θ,y
0)(yi − y0

i ) (21)

C(θ,y) ≈ C0(θ,y0) +

ny∑
i=1

Ci(θ,y
0)(yi − y0

i ), (22)

where y0 denotes the expected value of Y ; y0
i is the i-th component of y0; ny denotes the number237

of components of the random variable vector Y ; c0 and C0 denote the vector c and matrix C238

evaluated at (θ,y0), respectively; and ci and Ci denote the partial derivative of vector c and239

matrix C with respect to yi evaluated at (θ,y0), respectively, that is:240

ci(θ,y
0) =

∂c(θ,y)

∂yi

∣∣∣∣
y=y0

, i = 1, . . . , ny (23)

Ci(θ,y
0) =

∂C(θ,y)

∂yi

∣∣∣∣
y=y0

, i = 1, . . . , ny. (24)
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Note that the latter derivatives can be obtained by analytical or numerical approaches (for ex-241

ample, finite differences), as discussed in [30]. The approximation proposed in Eq. (22) should242

provide reasonable results when the uncertainty associated with Y is relatively small. In practical243

applications pertaining, e.g. structural systems, such assumption may be reasonable.244

Let di, i = 0, . . . , ny denote a vector of dimension nr. The j-th component of this vector (which245

is denoted as (dj)i) is defined such that:246

(dj)i (θ,y
0) =

nz∑
k=1

(
(cj,k)i (θ,y

0)
)2
, j = 1, . . . ,nr, i = 0 (25)

(dj)i (θ,y
0) =

(
(cj)i (θ,y

0)
)2

+
nz∑
k=1

(
(cj,k)i (θ,y

0)
)2
, j = 1, . . . ,nr, i = 1, . . . , ny, (26)

where (cj)i is the j-th entry of vector ci and (cj,k)i is the element of the j-th row and k-th column247

of matrix Ci. Then, it is straightforward to show that the maximum standard deviation can be248

approximated as:249

σmax(θ) ≈ σLmax(θ) =

√√√√‖d0(θ,y0) +

ny∑
i=1

di(θ,y0)V [yi]‖∞, (27)

where σLmax(θ) denotes the approximate maximum standard deviation and V [yi] denotes variance250

of the i-th random variable Yi. It is emphasized that the calculation of vectors di, i = 0, . . . , ny251

does not involve any random sampling; hence, they can be efficiently determined by performing252

deterministic structural analysis. Furthermore, Eq. (27) provides a precise value which is more253

amenable for optimization than an estimator.254

As a summary of the above discussion, the proposed approach for bounding the failure probability255

of a structural system affected by aleatoric and epistemic uncertainties consists of the following256

two steps. The first step involves the approximate standard deviation provided in Eq. (27), that257

is considered for solving the optimization problems in Eqs. (14, 15). This allows to identify the258

crisp values of the epistemic parameters that lead to a minimum/maximum value of the failure259

probability. Note that the solution of these optimization problems involves dealing explicitly with260

epistemic uncertainty only, as the aleatoric uncertainty is implicitly considered with the closed-261

form approximation of the standard deviation provided by Eq. (27). Then, the second step involves262

calculating the failure probability for the crisp values of the epistemic parameters previously263
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identified by performing, e.g. simulation with respect to the aleatoric uncertain parameters. This264

allows estimating the sought bounds for the probability. The advantage of the proposed approach265

is that the classic double-loop approach for propagating epistemic and aleatoric uncertainty is266

effectively broken, as the first step (optimization with respect to maximum standard deviation)267

addresses the effect of epistemic uncertainty while the second step deals with aleatoric uncertainty.268

4. Examples269

The following engineering examples show that the standard deviation is a good proxy of the270

failure probability. The first example is a clamped plate subjected to loading modeled as a random271

field. Then a single-degree-of-freedom oscillator subject to stochastic ground acceleration and a272

three-story concrete frame subjected to a stochastic wind load are presented. These two examples273

from structural dynamics show a strong nonlinear behavior of the first excursion probability with274

respect to epistemic uncertain parameters. The functionality of the presented method in such275

cases is demonstrated. A comparison of the proposed approach (decoupled approach based on the276

maximum standard deviation) and a direct optimization approach with a double loop algorithm is277

provided. For the direct optimization, a classical Monte Carlo simulation (MCS) and alternatively278

Directional Importance Sampling (DIS) from [31, 32] are used to estimate the failure probability279

pF (θ). The performed optimization procedure to find the extreme values θ∗ and θ
∗

of the failure280

probability for both approaches is depicted in Figure 1 . No optimization-based interval analysis

Figure 1: Optimization procedure to find the extreme values θ∗ and θ
∗

of the failure probbaility

281

is performed, where an efficient optimization algorithm is used to find the extreme values. For282
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comparison of the relative execution time the examined epistemic parameter θ = [θl, θr] is dis-283

cretized in equal increments ∆θ = θr−θl
Ne−1

. This means, for each approach (proposed and direct)284

a total number of Ne simulations are performed. In addition, the error ε as shown in Figure 1285

between the extreme values calculated by both approaches is evaluated.286

4.1. Plate subjected to random loading287

First a clamped plate subjected to random loading is investigated, see Figure 2. The finite

Figure 2: Clamped plate subjected to stochastic loading

288

element model is discretized with 20× 20 geometrical linear quadrilateral shell elements based on289

the Reissner–Mindlin theory. The plate is moderately thick with dimensions lx = ly = 1.0m and290

a thickness of t = 0.1m. A concrete material is simulated with a Poisson’s ratio of ν = 0.2, where291

the Young’s modulus E is assumed to be a (truncated) Gaussian variable defined as follows292

E = N (µE = 3.3 · 107 kN/m2, σE = 0.1 · µE). (28)

The surface load p(θp, z) according to Eq. (1) is modeled by a Gaussian random field with a293

non-zero mean µ = 0.2 kN . Thereby, a homogeneous correlation function is defined as follows294

C(τ) = σ2ρ(τ). (29)
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The standard deviation is σ = 0.03 kN and for the autocorrelation function ρ(τ) the quadratic295

exponential form296

ρ(τ) = exp

[
−τ

2

`2
c

]
(30)

is used, where τ represents the distance between two points of the plate. The epistemic part of the297

example is described by the correlation length as an interval variable θp = `c = [0.25, 1.0] m. The298

distribution of the load over space pz(x, y) depends highly on the correlation length. Therefore,299

two random field realizations for the interval bounds are depicted in Figure 3.300

Figure 3: Random field realizations of the load pz(x, y) for the interval bounds of the correlation length: `c = 0.25
(left) and `c = 1.0 (right)

The random field is generated by the Karhunen-Loève expansion (KLE), where the number of301

random field nodes nr = 21 × 21 = 441 is equal to the number of the finite element nodes. The302

number of retained terms nKL for the KLE depends on the correlation length and is determined303

when the sum of eigenvalues exceeds 99% of the total amount. The objective of the problem is to304

calculate the bounds of the exceedance probability of the displacement w, where the displacement305

should not exceed the threshold of 0.005m. The maximum standard deviation σmax and the306

probability of failure pF (`c) versus the correlation length `c are shown in Figure 4. For comparison,307

the proposed σmax(`c) and the direct optimization approach based on the MCS to calculate pF (`c)308

is evaluated on Ne = 20 equidistant points within the interval `c = [0.25, 1.0]. On each point a309

MCS is performed with 105 simulations. This means, the FE-model is evaluated 105×20 = 2×106
310

times. A monotonic behavior can be observed for both curves. Not always such behavior can be311

predicted. In this case, the greater the correlation length the greater the probability of failure.312

If the loads scatter very strongly (small correlation length), a balancing effect can be observed.313
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Figure 4: Maximum standard deviation σmax(`c) and failure probability (pF (`c)) versus the correlation length `c.

For example, a large point load on a specific node can be directly compensated by a small point314

load on the neighbor node. This is not possible for a smooth field (large correlation length). It is315

noted that if a monotonic behavior can be estimated, no optimization is needed and a simulation316

can be performed directly on the interval bounds. The results of the failure probability bounds317

for both approaches are shown in Table 1.318

Proposed approach Direct optimization (MCS)
lower bound upper bound lower bound upper bound

pF 7.82× 10−2 12.15× 10−2 4.03× 10−2 8.69× 10−2

`c [m] 0.25 1.00 0.25 1.00
Relative execution time 1 3873

Table 1: Bounds of failure probability for the plate subjected to stochastic loading

The relative execution time is reduced from 3873 to 1 using the proposed approach, which319

clearly demonstrates its advantage. Also if a more efficent optimization-based interval analysis320

is applied, where less than the 20 MCS are required, the proposed approach can be still faster321

compared to the double-loop approach.322

4.2. Single-degree-of-freedom oscillator subject to stochastic ground acceleration323

This example consists of a single-degree-of-freedom oscillator subjected to a stochastic ground324

acceleration, as depicted schematically in Figure 5. The mass of the oscillator is characterized325

as a random variable while its stiffness is described by means of an interval-valued variable. The326

objective of the problem is to calculate the bounds of the first excursion probability.327
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Figure 5: Single-degree-of-freedom oscillator subject to stochastic ground acceleration.

The stochastic ground acceleration possesses a time duration T = 20 [s] and follows a mod-328

ulated Clough-Penzien spectrum (see, e.g. [33, 34]). The spectrum is implemented considering329

spectral intensity of 5 × 10−3 [m2/s3], natural circular frequencies of 6π [rad/s] and 0.6π [rad/s]330

for the primary and secondary filters, respectively, and damping ratios of 60%. The modulation331

function follows the Shinozuka-Sato model with shape parameters c1 = 0.14 and c2 = 0.16 [35].332

The spectrum is represented considering a time step discretization ∆t = 0.05 [s] by means of the333

well-known Karhunen-Loève expansion, retaining 99% of the total variability, leading to nz = 361334

terms.335

The stiffness k of the oscillator is modeled as an interval variable such that k = θ1 = [70, 470]336

[N/m]. The mass m = y1 follows a lognormal distribution with expected value 1 [kg] and coeffi-337

cient of variation of δm (the numerical value of this coefficient is discussed later in this example).338

The model possesses classical damping c = 5%. Two responses of interest are to be controlled339

within the duration of the stochastic ground acceleration: the relative displacement and the ab-340

solute acceleration of the oscillator. None of these responses should exceed the thresholds of341

7 [cm] and 7.5 [m/s2], respectively. As the total duration of the ground acceleration is 20 [s]342

and time is discretized at steps of 0.05 [s], the number of responses to be controlled is equal to343

nr = (20/0.05 + 1)× 2 = 802.344

Recall that the objective is to estimate the bounds of the first excursion probability associated345

with the oscillator. Nonetheless, before proceeding with such calculation, the quality of the ap-346

proximate expression for the maximum standard deviation (see Eq. (27)) is evaluated. Figure 6347

shows the estimated maximum standard deviation as a function of the stiffness for the cases where348

the coefficient of variation of the mass is equal to δm = 2% and δm = 10%. In each of the two plots,349

the approximate standard deviation σLmax as calculated by means of Eq. (27) is plotted against the350

reference value σSmax as obtained by performing Ne = 100 simulations (that is, per each value of351

the stiffness k considered, 100 samples of the mass m are drawn, see Eq. (19)). It is noted that352

for the case where δm = 2%, there is a very good agreement between the approximate and refer-353
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ence results. Contrary, for the case where δm = 10%, there are considerable differences between354

approximate and reference results. This was expected as the linearization strategy considered355

for calculating the approximate maximum standard deviation loses accuracy as the coefficient of356

variation of the mass increases. Despite these differences, it should be noted that the minimum357

and maximum values of these two curves occur for similar values of the stiffness. This is quite358

relevant, as one is interested in locating which values of the epistemic parameter (in this case, the359

stiffness k) produce the minimum and maximum value of the standard deviation, while the value360

of the standard deviation itself is less important.361
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Figure 6: Maximum standard deviation (σmax) as a function of the stiffness (k).

The next step is calculating the bounds of the failure probability. For doing so, the coefficient362

of variation of the mass is set equal to δm = 10%. The bounds for the failure probability are363

obtained by means of:364

• Proposed approach. That is, optimization is applied to identify the value of the epistemic365

parameter k = θ1 that minimizes (maximizes) the approximate maximum standard deviation366

σLmax. Then, for the identified values of k, the bounds of the failure probability are obtained367

by performing two separate Monte Carlo simulation runs.368

• Direct optimization. That is, the bounds of the failure probability are obtained by directly369
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minimizing (maximizing) the probability value obtained by means of optimization-based370

interval analysis and Monte Carlo simulation.371

As the system under consideration is linear and is subjected to Gaussian acceleration, the fail-372

ure probability is estimated by means of Directional Importance Sampling [31, 32]. To ensure373

sufficiently accurate estimators of the failure probability, Directional Importance Sampling is im-374

plemented considering a total of 2000 samples. That is, to generate an estimate of the failure375

probability, it is necessary to perform 2000 dynamic analyses. The results obtained when ap-376

plying the proposed and direct approaches are shown in Table 2. As noted from this table, the377

proposed approach offers quite accurate estimates of the bounds of the failure probability when378

compared with the direct approach. In fact, both approaches produce identical results for the379

estimate of the upper bound for the failure probability while there are small differences regarding380

the lower bound. Moreover, there is a huge gain regarding computation time, as the proposed381

approach is 64.9 times faster than the direct one.382

Proposed approach Direct optimization (DIS)
lower bound upper bound lower bound upper bound

pF 4.6× 10−3 1.5× 10−2 4.4× 10−3 1.5× 10−2

k [N/m] 107 70 111 70
Relative execution time 1 64.9

Table 2: Bounds of failure probability for single-degree-of-freedom oscillator example

A deeper understanding of the results presented in Table 2 can be achieved by means of Figure383

7, that illustrates the failure probability (pF ) and the maximum standard deviation calculated384

using the linear approximation (σLmax, see Eq. (27)) and simulation (σSmax) as a function of the385

stiffness k. It is readily noticed that maximum standard deviation offers an excellent proxy for386

locating the minimum and maximum values of the failure probability, even though there is a small387

offset regarding the value of the stiffness that leads to the lower bound failure probability, as388

already noted in Table 2.389

4.3. Three-story concrete frame subjected to a stochastic wind load390

A three-story concrete frame taken from [36] is modeled as a three-mass oscillator. The pre-391

sented approach based on the maximum standard deviation is intended to reduce computing392

times in such simulations significantly. Moreover, the objective of this example is to show that393

the bounds can also be identified for more complex behaviors of the first excursion probability.394
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Figure 7: Maximum standard deviation σmax and failure probability (pF (k)) versus stiffness (k).

The simplified model of the three-story concrete frame with a stochastic wind load F (t) is de-395

picted in Figure 8. The concrete floors are modeled as rigid bars. Dead and traffic loads are396

fully considered in the point masses which are characterized as (truncated) Gaussian random vari-397

ables. The expected value and standard deviation of the masses y1 = m1 = m2 hold µ = 9500 kg398

and σ = 950 kg. The mass of the top floor y2 = m3 is slightly lower than the others with399

µ = 9000 kg and σ = 900 kg. For bending stiffness of the concrete columns an interval-valued400

variable k = θ1 = [1000, 7000] kN/m is defined. The damping of the model is neglected. On the401

top of the frame a stochastic wind load is simulated with the homogeneous correlation function402

defined in Eq. (29). The variance is specified with σ2 = 400 kN2 and the autocorrelation function403

to simulate a realistic wind loading is defined as follows404

ρ(τ) = cos(A
√

1−B2 τ) exp(−C τ) with A = 30, B2 = 0.05 and C = 0.3, (31)

where τ represents the time lag. The autocorrelation function given by Eq. (31) is shown in405

Figure 9. The stochastic process of the wind loading with a total duration T = 10 s is represented406

considering a time step discretization τ = 0.01 s by means of the Karhunen-Loève expansion. The407

number of responses to be controlled is equal to nr = (10/0.01 + 1) = 1001. A truncation of the408
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Figure 8: Three-degree-of-freedom model of the concrete frame
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Figure 9: Autocorrelation function to simulate a stochastic wind load.

series is performed when the sum of eigenvalues exceeds 99% of the total amount. This means409

nKL = 111 terms have to be used. The response of interest within the duration of the stochastic410

wind process is the top displacement x3(t). In the duration the threshold value x3(t) = 0.02m411

should not be exceeded. The results of the failure probability pF (k) and the maximum standard412

deviation σmax(k) are shown in Figure 10. For the proposed and the direct optimization approach413

based on the MCS to calculate pF (k) the epistemic parameter k is discretized on Ne = 200 points.414

To calculate pf (k) a MCS is performed with 104 samples. This means, the model is evaluated415

2× 106 times. It is interesting to note that two maxima of the failure probability can be observed416

with increasing stiffness. The extreme values of σmax(k) correlate with a small approximation417
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Figure 10: Maximum standard deviation σmax(k) and failure probability pF (k) versus stiffness k.

failure with those of the function pF (k), see Table 3. In this example the approach based on the

Proposed approach Direct optimization (MCS)
lower bound upper bound lower bound upper bound

pF 0.3358 0.9921 0.3324 0.9923
k [N/m] 1271.4 5130.7 1241.2 5160.8

Relative computation time 1 1463

Table 3: Bounds of failure probability for three-story concrete frame subjected to a stochastic wind load

418

maximum standard deviation is 1463 times faster than the double-loop Monte Carlo simulation.419

5. Conclusions and Outlook420

The proposed approach aims to estimate approximately the bounds of the failure probability421

for linear structural systems subject to epistemic and aleatoric uncertainty. For different engi-422

neering applications such as a clamped concrete plate, a single-degree-of-freedom oscillator and423

a three-story concrete frame the proposed approach is presented and compared with common424

sampling methods. With the presented results it is shown that the maximum standard deviation425

of the response of a model serves as an excellent proxy for determining the bounds of the failure426

probability. The approximate approach based on the maximum standard deviation can be used427

to replace a classical double-loop approach for computing the probability bounds with a decou-428

pled approach. The numerical examples indicate that such replacement may lead to reduce the429

numerical effort significantly without sacrificing accuracy in the estimates of the bounds.430

While the results presented are promising, only linear systems can be approximated. An idea431

for further research is to integrate the presented approach in the concept of polymorphic/hybrid432
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uncertainties, where more than one epistemic parameter is considered. If at least one parameter433

is described as a fuzzy number, a computationally expensive α-level optimization has to be per-434

formed. The aim is to reduce the computational effort in such concepts significantly. Another435

path for future research efforts consists of extending the application of the proposed approach to436

problems involving a considerable number of epistemic parameters. In principle, such extension437

should be feasible according to results discussed in [17].438

Appendix A. Response Calculation439

This contribution assumes that the response of a structural system can be cast as described440

in Eq. (3). This appendix illustrates how such assumption would apply to a linear system under441

static and dynamic loading, respectively.442

First, consider a linear structural system subject to static loading. For simplicity, it is assumed443

that the number of degrees-of-freedom of the system is nf , which is the dimension of the force444

vector. The displacement of the system is (see, e.g. [25, 37]):445

η∗ = K−1f . (A.1)

where K, f and η? correspond to stiffness matrix (of dimension nf × nf ), load and displacement446

vectors (each of dimension nf × 1), respectively. It is observed that the inverse of the stiffness447

matrix corresponds to matrix A appearing in Eq. (3).448

Second, consider a linear elastic system under dynamic loading. For simplicity, consider a single-449

degree-of-freedom system subject to a (possibly imprecise) Gaussian loading whose discrete time450

representation comprises nf points. Furthermore, assume that the response of interest is the451

displacement at each time instant. Then, the response of interest at the k-th time instant can be452

calculated by means of a convolution integral, that is [38]:453

η∗k =

∫ tk

0

h(tk − τ)f(τ)dτ, k = 1, . . . , nf , (A.2)

where h denotes the impulse response function. Using an appropriate quadrature scheme [39], this454

convolution integral can be approximated as:455

η∗k = hkf , k = 1, . . . , nf , (A.3)
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where hk is a 1×nf vector whose coefficients depend on the quadrature ruled considered and the456

impulse response function evaluated at different time instants. From Eq. (A.3), it can be noted457

that the response vector η∗ can be expressed in this case as:458

η∗ =


h1

h2

...

hnf

f , (A.4)

where the matrix collecting the row vectors hk, k = 1, . . . , nf would correspond to matrix A in459

Eq. (3).460

It is emphasized that the different expressions shown in this Appendix were deduced following461

simplifying assumptions. This is justified as the aim is illustrating how Eq. (3) is able to describe462

the behavior of linear structures under static or dynamic loading. For more general cases, it is463

referred to, e.g. [25, 38, 40].464

Appendix B. Operator Norm Framework: Analysis for the case of p1=∞ and p2 = 2465

According to [29], the operator norm associated with matrix D(ζ) for the case where p1=∞466

and p2 = 2 is equal to the maximum Euclidean norm of a row of that matrix. That is:467

||D(ζ)||p1,p2 = max
k=1,...,dr

(√
dk(ζ)dk(ζ)T

)
, (B.1)

where dk(ζ) is the k-th row of matrix D(ζ). In order to understand the physical meaning of this468

operator norm, consider the k-th component of ξ (denoted as ξk), which is calculated as:469

ξk(ζ) = dk(ζ)v. (B.2)

Then, assuming that vector v is a realisation of a multivariate standard Gaussian distribution470

(that is, zero mean and unit standard deviation, see Section 2.2), it is noted that the expected471

value and variance of ξk are given by:472

E [ξk] = E [dkv] = dkE [v] = 0 (B.3)

V [ξk] = E
[
(ξk − E [ξk])

2
]

= E
[
(dkv)2

]
= dkE

[
vvT

]
dTk = dkd

T
k , (B.4)
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where E denotes expectation and V variance. From Eq. (B.4), it is observed that the quantity473 √
dkdTk is the standard deviation of ξk. This implies that the operator norm as shown in Eq. (B.1)474

actually returns the maximum standard deviation of vector ξ.475
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