Time-dependent reliability analysis by a single-loop Bayesian active learning method using Gaussian process regression

Chao Dang^{a,*}, Marcos A. Valdebenito^a, Matthias G.R. Faes^{a,b}

^aChair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Straße 5, Dortmund 44227, Germany ^bInternational Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai 200092, China

4 Abstract

1

2

3

Time-dependent reliability analysis has proven to be an invaluable tool for assessing the safety levels of engineering structures subject to both randomness and time-varying factors. In this context, single-loop active learning Kriging methods have demonstrated a favorable trade-off between efficiency and accuracy. However, there remains significant potential for further improvement, particularly in addressing computa-8 tionally expensive time-dependent reliability problems. This paper introduces a novel single-loop Bayesian 9 active learning method using Gaussian process regression (GPR) for time-dependent reliability analysis, 10 termed 'Integrated Bayesian Integration and Optimization' (IBIO). The key idea is to integrate the Bayesian 11 probabilistic integration method originally developed for static reliability analysis and the Bayesian global 12 optimization for solving the global optima of expensive black-box functions. First, we introduce a prag-13 matic estimator for the time-dependent failure probability. Second, a new stopping criterion is proposed to 14 determine when the active learning process should be terminated. Third, three learning functions as three 15 alternatives are developed to identity the next best time instant where to evaluate the performance func-16 tion. Fourth, one new learning function is presented to select the next best sample for the random variables 17 and stochastic processes given the time instant. Five numerical examples are presented to demonstrate the 18 effectiveness of the proposed IBIO method. It is empirically shown that the method can produce accurate 19 results with only a small number of performance function evaluations. 20

21 Keywords: Time-dependent reliability analysis; Bayesian active learning; Gaussian process regression;

²² Stopping criterion; Learning function

Preprint submitted to Elsevier

23 1. Introduction

Ensuring the safety of engineering structures is essential for protecting lives, preserving property, main-24 taining functionality, and supporting sustainable development. However, most engineering structures in 25 operation are inevitably influenced by the combined effects of randomness and time-varying factors. For 26 example, randomness may stem from the natural variability in material properties and loading conditions, 27 while time-varying factors can result from corrosion, fatigue, and deterioration. As a result, time-dependent 28 reliability analysis has proven to be an invaluable tool for evaluating the safety levels of engineering struc-29 tures. Over the decades, numerous methods have been developed to advance this field of study. These 30 existing methods can be broadly categorized into three groups: (1) out-crossing rate methods; (2) composite 31 limit state methods; and (3) extreme value methods. 32

As the most classical approach, out-crossing rate methods express the time-dependent failure probability 33 as an integral of the out-crossing rate (i.e., the rate at which a performance function crosses zero over time). 34 This concept was first introduced by Rice [1], who developed what is now known as the Rice formula. Since 35 then, various out-crossing rate methods have been developed for time-dependent reliability analysis, includ-36 ing PHI2 [2], PHI2+ [3], moment-based PHI2 (MPHI2) [4], PHI2++ [5], and many others [6-8]. However, 37 these methods rely on the potentially unwarranted assumption that all out-crossing events are mutually 38 independent, which can lead to significant errors when the events exhibit strong dependence. Furthermore, 39 out-crossing rate methods often require a substantial number of performance function evaluations, rendering 40 them computationally prohibitive for problems involving expensive-to-evaluate performance functions. 41

Alternatively, composite limit state methods discretize a time-dependent performance function into a sequence of instantaneous performance functions at discrete time nodes, thereby transforming a timedependent reliability problem into a static series-system reliability problem. Examples of such methods include the first-order reliability method (FORM) [9–11], line sampling [12], importance sampling [13, 14] and subset stimulation [15]. It is well known that FORM loses accuracy in moderate and highly nonlinear

^{*}Corresponding author

Email address: chao.dang@tu-dortmund.de (Chao Dang)

47 problems, while stochastic simulation methods typically require a large number of performance function
48 evaluations to achieve convergence.

Like composite limit state methods, extreme value methods also transform a time-dependent reliability 49 problem into a time-independent counterpart. This, however, is achieved by considering the the extreme 50 value distribution (EVD) of the performance function with respect to time. In this context, some EVD esti-51 mation methods have been developed especially for time-dependent reliability analysis [16–18]. In addition, 52 numerous active learning Kriging (or Gaussian process regression (GPR)) methods have also been proposed, 53 which can be broadly categorized into: double-loop active learning Kriging methods and single-loop active 54 learning Kriging methods. Double-loop active learning Kriging methods involve constructing an extreme 55 response Kriging model in the outer loop, while a separate Kriging model is built in the inner loop to iden-56 tify the extreme response. Representative examples in this category include the nested extreme response 57 method [19], mixed efficient global optimization (EGO) method [20], parallel EGO method [21] and impor-58 tance sampling-based double-loop Kriging method [22]. On the contrary, single-loop active learning Kriging 59 methods directly construct a global response Kriging model for the performance function. A non-exhaustive 60 list of such methods include the single-loop Kriging method [23], active failure-pursuing Kriging method [24], 61 single-loop Kriging method considering the first failure instant [25], real-time estimation error-guided active 62 learning Kriging method [26], estimation variance reduction-guided adaptive Kriging method [27], structural 63 state classification probability reduction adaptive Kriging method [28], subdomain uncertainty-guided Krig-64 ing method [29] and single-loop GPR based-active learning method [30]. These single-loop methods have 65 demonstrated a favorable trade-off between efficiency and accuracy in time-dependent reliability analysis. 66 However, it is still highly desirable to further reduce the computational costs while maintaining accuracy, 67 particularly for solving real-world time-dependent reliability problems. 68

To this end, this paper presents a novel single-loop Bayesian active learning method using GPR for computationally expensive time-dependent reliability analysis, which is termed 'Integrated Bayesian Integration and Optimization' (IBIO). As the name suggests, the proposed method combines the Bayesian probabilistic integration technique, originally developed for time-independent reliability analysis [31], with Bayesian

global optimization for solving the global optima of costly black-box functions [32]. The IBIO method is 73 versatile and applicable regardless of whether stochastic processes are involved. Moreover, it provides not 74 only the time-dependent failure probability over a specified time interval but also the evolution of the failure 75 probability within the interval as a byproduct. The main contributions can be summarized as follows. First, 76 we introduce a pragmatic estimator for the time-dependent failure probability which relates not only to the 77 posterior mean function of the GPR, but also the posterior standard deviation function. Second, based 78 on the estimator, a new stopping criterion is proposed to determine when the iterative learning should 79 halt, which ensures that the iterative process is neither prematurely terminated nor continued unnecessarily. 80 Third, three novel learning functions as three alternatives are proposed to identify the next best time instant 81 where to evaluate the performance function. Fourth, one new learning function is presented to select the 82 next best sample for the random variables and stochastic processes given the identified time instant that 83 improves the GPR model the most. 84

The remainder of this paper is organized as follows. Some preliminaries are provided in Section 2. Section 3 presents the proposed IBIO method for time-dependent reliability analysis. Five numerical examples are investigated in Section 4 to demonstrate the proposed method. Finally, concluding remarks are given in Section 5.

89 2. Preliminaries

This section provides background information on time-dependent reliability analysis. Section 2.1 presents the formulation of the time-dependent reliability problem. This is followed by the discretization of stochastic processes in Section 2.2. Finally, the Monte Carlo Simulation (MCS) method for solving the time-dependent failure probability is discussed in Section 2.3.

94 2.1. Problem formulation

Let $\mathbf{X} = [X_1, X_2, \cdots, X_{d_1}] \in \mathcal{D}_{\mathbf{X}} \subseteq \mathbb{R}^{d_1}$ represent a vector of d_1 continuous random variables with support $\mathcal{D}_{\mathbf{X}}$, defined on the probability space $(\Omega_{\mathbf{X}}, \mathcal{F}_{\mathbf{X}}, \mathcal{P}_{\mathbf{X}})$, where $\Omega_{\mathbf{X}}$ is the sample space, $\mathcal{F}_{\mathbf{X}}$ is the σ -algebra of measurable events and $\mathcal{P}_{\mathbf{X}}$ is the probability measure. Similarly, let $\mathbf{Y}(t) = [Y_1(t), Y_2(t), \cdots, Y_{d_2}(t)] \in$ $\mathcal{D}_{\mathbf{Y}} \subseteq \mathbb{R}^{d_2}$ denote a vector of d_2 continuous-time stochastic processes with support $\mathcal{D}_{\mathbf{Y}}$ (t is the time parameter), defined on the probability space $(\Omega_{\mathbf{Y}}, \mathcal{F}_{\mathbf{Y}}, \mathcal{P}_{\mathbf{Y}})$. In this work, the vector of stochastic processes will also be expressed as $\mathbf{Y}(\omega_{\mathbf{Y}}, t)$ if desired, where $\omega_{\mathbf{Y}} \in \Omega_{\mathbf{Y}}$, emphasizing that \mathbf{Y} is actually a function of both $\omega_{\mathbf{Y}}$ and t. Consider the performance function (also known as the limit state function) $g(\mathbf{X}, \mathbf{Y}(t), t)$, where $t \in [t_0, t_f]$ represents the time period of interest. By convention, failure occurs when g takes a negative value at any time within $[t_0, t_f]$. The corresponding time-dependent failure probability is formally defined as:

$$P_f(t_0, t_f) = \mathbb{P}\left\{g(\boldsymbol{X}, \boldsymbol{Y}(t), t) < 0, \exists t \in [t_0, t_f]\right\},\tag{1}$$

where \mathbb{P} is the probability operator, and \exists means 'there exists'. The so-called time-dependent reliability $R(t_0, t_f)$ is the complement of $P_f(t_0, t_f)$, i.e., $R(t_0, t_f) = 1 - P_f(t_0, t_f)$. By considering the minimum value of $g(\boldsymbol{X}, \boldsymbol{Y}(t), t)$ over the interval $[t_0, t_f]$, the time-dependent failure probability $P_f(t_0, t_f)$, as defined in Eq. (1), is equivalent to:

$$P_{f}(t_{0}, t_{f}) = \mathbb{P}\left\{\min_{t \in [t_{0}, t_{f}]} g(\boldsymbol{X}, \boldsymbol{Y}(t), t) < 0\right\}$$
$$= \int_{\mathcal{D}_{\boldsymbol{X}}} \int_{\Omega_{\boldsymbol{Y}}} I\left(\min_{t \in [t_{0}, t_{f}]} g(\boldsymbol{x}, \boldsymbol{y}(\omega_{\boldsymbol{Y}}, t), t) < 0\right) f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}(\omega_{\boldsymbol{Y}})$$
$$= \int_{\mathcal{D}_{\boldsymbol{X}}} \int_{\Omega_{\boldsymbol{Y}}} \max_{t \in [t_{0}, t_{f}]} I\left(g(\boldsymbol{x}, \boldsymbol{y}(\omega_{\boldsymbol{Y}}, t), t) < 0\right) f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}(\omega_{\boldsymbol{Y}}),$$
(2)

where $I(\cdot)$ is the indicator function: it returns one if its argument is true, and zero otherwise; $f_{\mathbf{X}}(\mathbf{x})$ is the joint probability density function (PDF) of \mathbf{X} . The equivalence between the second and final lines of Eq. (2) is straightforward, but the second-line form is far more common in the literature while the final form seldom appears. We include the latter here to facilitate later developments.

112 2.2. Discretization of stochastic processes

For computational purposes, the input stochastic processes input to the performance function need to be discretized. In this context, numerous well-established techniques are available in the literature, including Karhunen–Loève (KL) expansion [33], expansion optimal linear estimation [34], orthogonal series expansion [35], spectral representation [36], among many others. For the proposed method presented in Section 3, there are in principle no limitations on the types of stochastic processes and the methods used to discretize them. However, for illustration purposes, we only consider a second-order (i.e., square-integrable) stochastic process Y(t) and employ the KL expansion as an example. Let $\mu(t)$, $c(t_1, t_2)$ denote the mean and covariance functions of Y(t), respectively. The time interval $[t_0, t_f]$ is first discretized into n_t equally spaced time points, i.e., $t_0, t_1, \dots, t_{n_t-2}, t_{n_t-1} = t_f$. A truncated KL expansion of Y(t) is given by:

$$\widehat{Y}(t) = \mu(t) + \sum_{j=1}^{p} \sqrt{\lambda_j} \xi_j \varphi_j(t), t = t_0, t_1, \cdots, t_{n_t - 1},$$
(3)

where λ_j is the *j*-th dominate eigenvalue of the covariance matrix $C = [c(t_{i_1}, t_{i_2})]$ (i.e., $\lambda_1 > \lambda_2 > \cdots > \lambda_{n_t}$) and $\varphi_j(t)$ is the corresponding eigenfunction; $\{\xi_j\}_{j=1}^p$ is a set of *p* uncorrelated standardized random variables; *p* is the number of truncation terms, which can be determined by the approximate explained variance ratio:

$$p = \underset{p \in [1,2,\cdots,n_t]}{\operatorname{arg\,min}} \left\{ \frac{\sum_{j=1}^p \lambda_i}{\sum_{j=1}^{n_t} \lambda_i} \ge \delta \right\},\tag{4}$$

where $\delta \in (0, 1]$ is a user-defined threshold. A larger δ retains more of the process variance but requires more random variables to represent the stochastic process. Common choices in the literature are $\delta = 0.95$ or 0.99.

129 2.3. Time-dependent reliability analysis by MCS

The time-dependent failure probability defined early can be solved by using the crude MCS. The estimator of $P_f(t_0, t_f)$ is given by:

$$\hat{P}_f(t_0, t_f) = \frac{1}{N} \sum_{s=1}^N I\left(\min_{i=0, 1, \cdots, n_t - 1} g(\boldsymbol{x}^{(s)}, \hat{\boldsymbol{y}}^{(s)}(t_i), t_i) < 0\right),\tag{5}$$

where $\{\boldsymbol{x}^{(s)}\}_{s=1}^{N}$ is a set of N random samples of \boldsymbol{X} ; $\{\hat{\boldsymbol{y}}^{(s)}(t_i)\}_{s=1}^{N}$ is a set of N random samples of $\boldsymbol{Y}(t_i)$ generated, for example, by using the KL expansion. The associated coefficient of variation (CoV) is expressed as:

$$\operatorname{CoV}\left[\hat{P}_{f}(t_{0}, t_{f})\right] = \sqrt{\frac{1 - \hat{P}_{f}(t_{0}, t_{f})}{(N - 1)\hat{P}_{f}(t_{0}, t_{f})}}.$$
(6)

The crude MCS offers a robust tool for estimating the time-dependent failure probability. However, it requires a total of $N \times n_t$ evaluations of the performance function g, which can be computationally prohibitive when each evaluation is time-consuming, as is often the case in practice.

138 3. Proposed IBIO method

In this section, the proposed IBIO method is introduced for time-dependent reliability analysis. Section 3.1 provides an overview of the method. The time-dependent failure probability estimator, stopping criterion and learning functions are presented in Sections 3.2, 3.3 and 3.4, respectively. Finally, the procedure for implementing the proposed method is outlined in Section 3.5.

¹⁴³ 3.1. Overview of the proposed method

The core idea of the proposed IBIO method is to iteratively refine a GPR model of the performance 144 function (as described in Appendix A) until the predicted time-dependent failure probability achieves a 145 desired level of accuracy. Starting with an initial set of training data, the method builds a probabilistic 146 surrogate model for the performance function using GPR to predict the time-dependent failure probability. 147 If a stopping criterion is not met, a new point is selected using a learning function, and the corresponding 148 output of g is obtained and the training data is enriched. This updated dataset is then used to refine the 149 GPR model in the next iteration. The process repeats until the stopping criterion is satisfied. The general 150 workflow of the proposed method is shown in Fig. 1, with some notations explained in Appendix A. 151

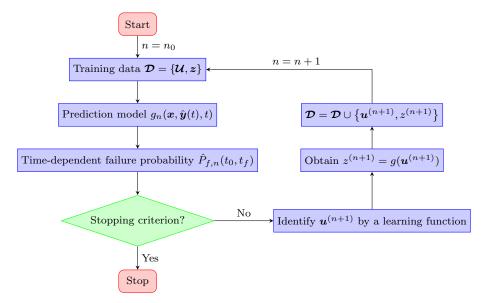


Figure 1: General workflow of the proposed IBIO method.

¹⁵² 3.2. Time-dependent failure probability estimator

Assuming a GPR-based prediction model g_n has been constructed for the performance function g (see Appendix A), the next step is to evaluate the time-dependent failure probability using this model. This requires formulating an estimator for the time-dependent failure probability. A straightforward approach, commonly adopted in existing methods, is to use the posterior mean function, m_n , as a substitute of g to predict the time-dependent failure probability. In this study, however, an alternative approach is proposed as introduced below.

According to the previous studies on time-independent reliability analysis [37-39], the posterior mean function of I can be obtained as:

$$m_{I_n}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t_i), t_i) = \Phi\left(-\frac{m_{g_n}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t_i), t_i)}{\sigma_{g_n}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t_i), t_i)}\right), i = 0, 1, \cdots, n_t - 1,$$
(7)

where I_n denotes the posterior distribution of the indicator function I; Φ is the cumulative distribution function of the standard normal variable; m_{g_n} and σ_{g_n} are the posterior mean and standard deviation functions of g, respectively.

¹⁶⁴ By replacing the indicator function I in Eq. (2) with its posterior mean function m_{I_n} in Eq. (7), we can ¹⁶⁵ obtain an alternative estimator for time-dependent failure probability:

$$P_{f,n}(t_0, t_f) = \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \max_{i=0}^{n_t - 1} \Phi\left(-\frac{m_{g_n}(\mathbf{x}, \hat{\mathbf{y}}(\omega_{\mathbf{Y}}, t_i), t_i)}{\sigma_{g_n}(\mathbf{x}, \hat{\mathbf{y}}(\omega_{\mathbf{Y}}, t_i), t_i)}\right) f_{\mathbf{X}}(\mathbf{x}) \mathrm{d}\mathbf{x} \mathrm{d}\mathbb{P}\left(\omega_{\mathbf{Y}}\right).$$
(8)

It should be noted that if $n_t \to \infty$ and $\sigma_{g_n} \to 0$, $P_{f,n}(t_0, t_f)$ theoretically approaches to $P_f(t_0, t_f)$. Similar estimators have been developed in slightly different contexts or from different perspectives in [40, 41]. Due to the analytical intractability, the estimator of the time-dependent failure probability, as defined in Eq. (8), necessitates numerical or analytical approximation in practice. In this study, we employ the MCS method due to its simplicity and robustness.

The MCS estimator of $P_{f,n}(t_0, t_f)$ is given by:

$$\hat{P}_{f,n}(t_0, t_f) = \frac{1}{N} \sum_{j=1}^{N} \max_{i=0}^{m_t - 1} \Phi\left(-\frac{m_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i)}{\sigma_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i)}\right),\tag{9}$$

where $\{\boldsymbol{x}^{(j)}\}_{j=1}^{N}$ is a set of N random samples generated according to $f_{\boldsymbol{X}}(\boldsymbol{x})$; $\{\hat{\boldsymbol{y}}^{(j)}(t_i)\}_{j=1}^{N}$ at a given *i* represents N random samples of $\hat{\boldsymbol{Y}}(t_i)$. The associated variance is expressed as:

$$\operatorname{Var}\left[\hat{P}_{f,n}(t_0, t_f)\right] = \frac{1}{N(N-1)} \sum_{j=1}^{N} \left[\max_{i=0}^{n_t-1} \Phi\left(-\frac{m_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i)}{\sigma_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i)}\right) - \hat{P}_{f,n}(t_0, t_f) \right]^2.$$
(10)

174 3.3. Stopping criterion

Having obtained the time-dependent failure probability estimate, a stopping criterion is required to assess whether the estimate reaches a desired level of accuracy. In fact, a well-defined stopping criterion is crucial for the overall efficiency and accuracy of an active learning time-dependent reliability analysis method. In this study, we also propose a new stopping criterion.

If we replace the term m_{g_n} in Eq. (8) with the lower and upper credible bounds of g, then we can have another two quantities:

$$P_{f,n}^{+}(t_{0},t_{f}) = \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \max_{i=0}^{n_{t}-1} \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\mathbf{Y}}, t_{i}), t_{i}) - b\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\mathbf{Y}}, t_{i}), t_{i})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\mathbf{Y}}, t_{i}), t_{i})}\right) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}(\omega_{\mathbf{Y}})$$

$$= \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \max_{i=0}^{n_{t}-1} \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\mathbf{Y}}, t_{i}), t_{i})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\mathbf{Y}}, t_{i}), t_{i})} + b\right) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}(\omega_{\mathbf{Y}}), \qquad (11)$$

181

$$P_{f,n}^{-}(t_{0},t_{f}) = \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \max_{i=0}^{n_{t}-1} \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x},\hat{\boldsymbol{y}}(\omega_{\mathbf{Y}},t_{i}),t_{i}) + b\sigma_{g_{n}}(\boldsymbol{x},\hat{\boldsymbol{y}}(\omega_{\mathbf{Y}},t_{i}),t_{i})}{\sigma_{g_{n}}(\boldsymbol{x},\hat{\boldsymbol{y}}(\omega_{\mathbf{Y}},t_{i}),t_{i})}\right) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}\left(\omega_{\mathbf{Y}}\right)$$

$$= \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \max_{i=0}^{n_{t}-1} \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x},\hat{\boldsymbol{y}}(\omega_{\mathbf{Y}},t_{i}),t_{i})}{\sigma_{g_{n}}(\boldsymbol{x},\hat{\boldsymbol{y}}(\omega_{\mathbf{Y}},t_{i}),t_{i})} - b\right) f_{\mathbf{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}\left(\omega_{\mathbf{Y}}\right),$$

$$(12)$$

where b > 0 is the credibility parameter corresponding to a $(1-\alpha) \times 100\%$ credible level, i.e., $b = \Phi^{-1}(1-\alpha/2)$. It is straightforward to prove that $P_{f,n}^{-}(t_0, t_f) < P_{f,n}(t_0, t_f) < P_{f,n}^{+}(t_0, t_f)$ holds. Therefore, $P_{f,n}^{-}(t_0, t_f)$ and $P_{f,n}^{+}(t_0, t_f)$ can be interpreted as, respectively, an optimistic and a conservative estimator of the timedependent failure probability, in contrast to the nominal estimator $P_{f,n}(t_0, t_f)$. Furthermore, as $\sigma_{g_n} \to 0$, $P_{f,n}^{-}(t_0, t_f) \to P_{f,n}(t_0, t_f)$ and $P_{f,n}^{+}(t_0, t_f) \to P_{f,n}(t_0, t_f)$.

¹⁸⁷ The proposed stopping criterion is defined as follows:

$$\frac{P_{f,n}^+(t_0, t_f) - P_{f,n}^-(t_0, t_f)}{P_{f,n}(t_0, t_f)} < \epsilon_3, \tag{13}$$

where ϵ_3 is a user-specified threshold. This criterion terminates the iterative process when the relative difference between the conservative failure probability estimate $P_{f,n}^+(t_0, t_f)$ and the optimistic estimate $P_{f,n}^{-}(t_0, t_f)$ falls below ϵ_3 , indicating that further iterations provide negligible improvement to the solution. As a side note, the proposed stopping criterion can be seen as an extension of Stopping Criterion 3 in [31], generalizing it from time-independent to time-dependent reliability analysis. Similar to $P_{f,n}(t_0, t_f)$, $P_{f,n}^{+}(t_0, t_f)$ and $P_{f,n}^{-}(t_0, t_f)$ are also evaluated using MCS in this study.

Remark 1. In a manner similar to the stopping criterion in Ineq. (13), we can also define the following two stopping criteria:

$$\frac{P_{f,n}(t_0, t_f) - P_{f,n}^-(t_0, t_f)}{P_{f,n}(t_0, t_f)} < \epsilon_1,$$
(14)

$$\frac{P_{f,n}^+(t_0, t_f) - P_{f,n}(t_0, t_f)}{P_{f,n}(t_0, t_f)} < \epsilon_2, \tag{15}$$

where ϵ_1 and ϵ_2 are two user-specified thresholds. These criteria extend stopping criteria 1 and 2 from [31], respectively. However, only the criterion in Ineq. (13) is considered in this work, in order to avoid an overly lengthy paper.

200 3.4. Learning functions

196

If the stopping criterion is not satisfied, a learning function is needed to guide the selection of the op-201 timal next point for evaluating the true performance function. This process further refines the GPR-based 202 prediction model for the performance function, as well as the predicted time-dependent failure probability. 203 Therefore, an effective learning function is essential for an active learning method in time-dependent relia-204 bility analysis. To this end, we also develop novel learning functions in this work, guided by the principle 205 of considering the so-called minimum time (that is, the time at which the performance function attains its 206 minimum) within the reference time interval in an average sense. Specifically, the best next point (denoted 207 as $\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}), t^{(n+1)} \right\}$) is identified through a two-step procedure: (1) First, the optimal next 208 time instant $t^{(n+1)}$ is selected by a learning function; (2) Then, the next best point $\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}) \right\}$ 209 is determined by an another learning function. The first task is based on Bayesian optimization [42], where 210 three commonly used learning functions are explored. The objective of this task is to determine the time 211 instant at which the performance function reaches its minimum value. However, this is done in an average 212 sense to account for the inherent randomness associated with X and $\hat{Y}(t)$. It is expected that the identified 213

time instant will be significant for estimating the time dependent failure probability $P_f(t_0, t_f)$. The second task leverages the Bayesian probabilistic integration method for time-independent reliability analysis [31]. The primary objective of this task is to identify a set of x and \hat{y} for the fixed time instant determined in the first task, thereby enhancing our understanding of the performance function at that specific time and and its vicinity.

In Bayesian optimization, three well-known learning functions are the lower confidence bound (upper confidence bound in the context of maximization), probability of improvement (PI) and expected improvement (EI) [32]. However, these notions may not be directly applicable in our case, as our problem is not a pure optimization task. Therefore, special treatment is required, as will be described below.

The lower credible bound (LCB) function of g_n is given by:

$$LCB\left(\boldsymbol{X}, \hat{\boldsymbol{Y}}(t_i), t_i\right) = m_{g_n}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_i), t_i) - b\sigma_{g_n}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_i), t_i).$$
(16)

where the credibility parameter *b* trades off exploitation against exploration. This expression is actually a stochastic process. In case where $\mathbf{X} = \mathbf{x}$ and $\hat{\mathbf{Y}}(t_i) = \hat{\mathbf{y}}(t_i)$, the LCB function reduces to a function with respect to only t_i , $i = 0, 1, ..., n_t - 1$. If the goal would be to find the minimum value of $g(\mathbf{x}, \hat{\mathbf{y}}(t_i), t_i)$, the best next time instant $t^{(n+1)}$ can be chosen by minimizing LCB $(\mathbf{x}, \hat{\mathbf{y}}(t_i), t_i)$. However, this is not the objective here. For our case, we further define the integrated LCB (ILCB) function by integrating out \mathbf{X} and $\hat{\mathbf{Y}}(t_i)$ from the LCB function:

ILCB
$$(t_i) = \int_{\mathcal{D}_{\boldsymbol{X}}} \int_{\Omega_{\boldsymbol{Y}}} \left[m_{g_n}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\boldsymbol{Y}}, t_i), t_i) - b\sigma_{g_n}(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\boldsymbol{Y}}, t_i), t_i) \right] f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}(\omega_{\boldsymbol{Y}}) \,.$$
(17)

²³⁰ The ILCB can be approximated by MCS such that:

$$\widehat{\text{ILCB}}(t_i) = \frac{1}{N} \sum_{j=1}^{N} \left[m_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i) - b\sigma_{g_n}(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t_i), t_i) \right].$$
(18)

²³¹ The best next time instant can be selected by minimizing the \widehat{ILCB} such that:

$$t^{(n+1)} = \arg\min_{t_i \in [t_0, t_1, \cdots, t_{n_t-1}]} \widehat{\text{ILCB}}(t_i).$$
(19)

Alternatively, we can define the PI:

$$\operatorname{PI}\left(\boldsymbol{X}, \hat{\boldsymbol{Y}}(t_{i}), t_{i}\right) = \Phi\left(\frac{z_{\min} - m_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}{\sigma_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}\right),$$
(20)
11

where z_{\min} is the minimum value of Z observed so far, i.e., $z_{\min} = \min_{i=1}^{n} z^{(i)}$. The PI function is known to be inherently exploitative. Taking the expectation of PI gives the integrated PI (IPI):

$$IPI(t_i) = \int_{\mathcal{D}_{\mathbf{X}}} \int_{\Omega_{\mathbf{Y}}} \Phi(\frac{z_{\min} - m_{g_n}(\mathbf{x}, \hat{\mathbf{y}}(\omega_{\mathbf{Y}}, t_i), t_i)}{\sigma_{g_n}(\mathbf{x}, \hat{\mathbf{y}}(\omega_{\mathbf{Y}}, t_i), t_i)}) f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} d\mathbb{P}(\omega_{\mathbf{Y}}).$$
(21)

Similar to LCB, IPI can also be approximated by MCS, which is denoted as \widehat{IPI} . Based on \widehat{IPI} , the next best time instant is selected by:

$$t^{(n+1)} = \underset{t_i \in [t_0, t_1, \cdots, t_{n_t} - 1]}{\arg \max} \widehat{\mathrm{IPI}}(t_i).$$
(22)

²³⁷ In addition to LCB and PI, another option is the EI:

$$\operatorname{EI}\left(\boldsymbol{X}, \hat{\boldsymbol{Y}}(t_{i}), t_{i}\right) = \left(z_{\min} - m_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})\right) \varPhi\left(\frac{z_{\min} - m_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}{\sigma_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}\right) + \sigma_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i}) \phi\left(\frac{z_{\min} - m_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}{\sigma_{g_{n}}(\boldsymbol{X}, \hat{\boldsymbol{Y}}(\omega_{\boldsymbol{Y}}, t_{i}), t_{i})}\right),$$
(23)

where ϕ represents the PDF of the standard normal variable. The EI function can strike a balance between exploitation and exploration by the two additive terms. Further, we can define the integrated EI (IEI):

$$\operatorname{IEI}(t_i) = \int_{\mathcal{D}_{\boldsymbol{X}}} \int_{\Omega_{\boldsymbol{Y}}} \operatorname{EI}\left(\boldsymbol{x}, \hat{\boldsymbol{y}}(\omega_{\boldsymbol{Y}}, t_i), t_i\right) f_{\boldsymbol{X}}(\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}\mathbb{P}\left(\omega_{\boldsymbol{Y}}\right).$$
(24)

The MCS is used to approximate IEI, which is denoted as IEI. On this basis, the next best time instant is determined by:

$$t^{(n+1)} = \arg\max_{t_i \in [t_0, t_1, \cdots, t_{n_t-1}]} \widehat{\mathrm{IEI}}(t_i).$$
(25)

These ILCB, IPI, and IEI criteria can be interpreted as identifying the next promising time instant based on the well-established LCB, PI, and EI criteria, but in an average sense. While they offer three options, their performance may vary across different problems, which will be analyzed using four numerical examples in Section 4.

After $t^{(n+1)}$ is obtained, a learning function needs to be defined to identify $\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}) \right\}$. With the time instant fixed, this can be treated analogously to a time-independent reliability problem. The following learning function is then proposed:

$$L_{3}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)})) = \left[\Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} + b \right) - \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} - b \right) \right] f_{\boldsymbol{X}}(\boldsymbol{x}) f_{\hat{\boldsymbol{Y}}(t)}(\hat{\boldsymbol{y}}(t^{(n+1)})).$$
(26)

This function is derived from the integrand of $P_{f,n}^+(t_0, t_f) - P_{f,n}^-(t_0, t_f)$ by omitting the max operator and conditional on $t_i = t^{(n+1)}$. It is worth mentioning that L_3 can been seen as an adaption of the third learning function proposed in [31] originally developed for time-independent reliability analysis. The next best point $\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}) \right\}$ is identified by:

$$\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}) \right\} = \underset{j=1,2,\cdots,N}{\arg\max} L_3(\boldsymbol{x}^{(j)}, \hat{\boldsymbol{y}}^{(j)}(t^{(n+1)})).$$
(27)

Remark 2. For consistency, if the stopping criterion in Ineq. (14) is used, the following learning function
 should be used:

$$L_{1}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)})) = \left[\Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} \right) - \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} - b \right) \right] f_{\boldsymbol{X}}(\boldsymbol{x}) f_{\hat{\boldsymbol{Y}}(t)}(\hat{\boldsymbol{y}}(t^{(n+1)}))$$

$$(28)$$

²⁵⁵ If the stopping criterion in Ineq. (15) is used, the following learning function should be used:

$$L_{2}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)})) = \left[\Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} + b \right) - \Phi\left(-\frac{m_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})}{\sigma_{g_{n}}(\boldsymbol{x}, \hat{\boldsymbol{y}}(t^{(n+1)}), t^{(n+1)})} \right) \right] f_{\boldsymbol{X}}(\boldsymbol{x}) f_{\hat{\boldsymbol{Y}}(t)}(\hat{\boldsymbol{y}}(t^{(n+1)}))$$

$$(29)$$

The functions L_1 and L_2 can be regarded as extensions of the first and second learning functions in [31], respectively.

258 3.5. Implementation procedure of the proposed method

The implementation procedure of the proposed IBIO method is summarized below, alongside a flowchart in Fig. 2.

261

²⁶² Step 1: Discretize the time period

Discretize the time period $[t_0, t_f]$ into n_t equally spaced time points $t_i = t_0 + i\Delta t$ for $i = 0, 1, \dots, n_t - 1$, with $\Delta t = \frac{t_f - t_0}{n_t - 1}$.

265 Step 2: Generate an initial sample pool

Generate an initial sample pool $\mathbf{S} = \left\{ \mathbf{x}^{(j)}, \hat{\mathbf{y}}^{(j)}(t_i), t_i \right\}$ for $i = 0, 1, \dots, n_t - 1$ and $j = 1, 2, \dots, N$, where $\mathbf{x}^{(j)}$ is sampled randomly according to $f_{\mathbf{X}}(\mathbf{x})$, and $\hat{\mathbf{y}}^{(j)}(t_i)$ is generated randomly using the KL expansion.

268 Step 3: Form an initial training dataset

Form a small initial training dataset $\mathcal{D} = \{\mathcal{U}, \mathbf{z}\}$, where $\mathcal{U} = \left\{\mathcal{X}, \hat{\mathcal{Y}}(t), t\right\} = \left\{\mathbf{x}^{(j)}, \hat{\mathbf{y}}^{(j)}(t_j), t_j\right\}_{j=1}^{n_0}$ and $\mathbf{z} = \left\{g(\mathbf{x}^{(j)}, \hat{\mathbf{y}}^{(j)}(t_j), t_j)\right\}_{j=1}^{n_0}$. Here, $\mathbf{t} = \{t_j\}_{j=1}^{n_0}$ is a vector of n_0 equally spaced time instants over $[t_0, t_f], \ \mathcal{X} = \left\{\mathbf{x}^{(j)}\right\}_{j=1}^{n_0}$ contains n_0 samples of \mathbf{X} generated using the Hammersley point set, and $\hat{\mathcal{Y}}(t) = \left\{\hat{\mathbf{y}}^{(j)}(t_j)\right\}_{j=1}^{n_0}$ is generated by KL expansion with the Hammersley point set. Let $n = n_0$.

273 Step 4: Construct a GPR model

Construct a GPR model g_n for the performance function g using the training dataset \mathcal{D} . This is accomplished in the present study with the *fitrgp* function from the Statistics and Machine Learning Toolbox of Matlab R2024a, with a constant prior mean and an anisotropic Gaussian kernel for the prior covariance. The involved hyper-parameters are solved by maximizing the log-marginal likelihood with the quasi-Newton method.

Step 5: Calculate the three terms $\hat{P}_{f,n}(t_0,t_f)$, $\hat{P}^+_{f,n}(t_0,t_f)$ and $\hat{P}^-_{f,n}(t_0,t_f)$

Calculate the time-dependent failure probability estimate $\hat{P}_{f,n}(t_0, t_f)$ via MCS with S, as well as $\hat{P}_{f,n}^+(t_0, t_f)$ and $\hat{P}_{f,n}^-(t_0, t_f)$.

282 Step 6: Check the stopping criterion #1

If the stopping criterion $\frac{\hat{P}_{f,n}^{+}(t_0,t_f)-\hat{P}_{f,n}^{-}(t_0,t_f)}{\hat{P}_{f,n}(t_0,t_f)} < \epsilon_3$ is satisfied twice in a row, then go to **Step 8**; otherwise, proceed to **Step 7**.

285 Step 7: Enrich the training dataset

First, calculate ILCB, IPI or IEI via MCS with S. Second, identify the next best time instant $t^{(n+1)}$ via Eq. (19), Eq. (22) or Eq. (25). Third, identify the next best point $\left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}) \right\}$ using the learning function L_3 via Eq. (27). Fourth, obtain $z^{(n+1)}$ by evaluating the performance function g at $\boldsymbol{u}^{(n+1)} = \left\{ \boldsymbol{x}^{(n+1)}, \hat{\boldsymbol{y}}^{(n+1)}(t^{(n+1)}), t^{(n+1)} \right\}$. Finally, enrich the existing training dataset with the new data, i.e., $\mathcal{D} = \mathcal{D} \cup \{ \boldsymbol{u}^{(n+1)}, z^{(n+1)} \}$. Let n = n+1 and go to Step 4.

291 Step 8: Check the stopping criterion #2

First, calculate the CoV of $\hat{P}_{f,n}(t_0, t_f)$, denoted as CoV $\left[\hat{P}_{f,n}(t_0, t_f)\right]$. Then, if CoV $\left[\hat{P}_{f,n}(t_0, t_f)\right] < \eta$ is satisfied (η is a user-specified threshold), proceed to **Step 10**; otherwise, continue to **Step 9**. Note that

- ²⁹⁴ this stopping criterion ensures that the sample size of MCS is sufficient to maintain the sampling variability
- ²⁹⁵ below an acceptable level for estimating the time-dependent failure probability.

²⁹⁶ Step 9: Enrich the sample pool

- First, generate an additional sample S^+ like in Step 2. Then, enrich the existing sample pool with the
- ²⁹⁸ new sample, i.e., $S = S \cup S^+$, and proceed to Step 5.

²⁹⁹ Step 10: Return the time-dependent failure probability

Return $\hat{P}_{f,n}(t_0, t_f)$ as the final result of the time-dependent failure probability.

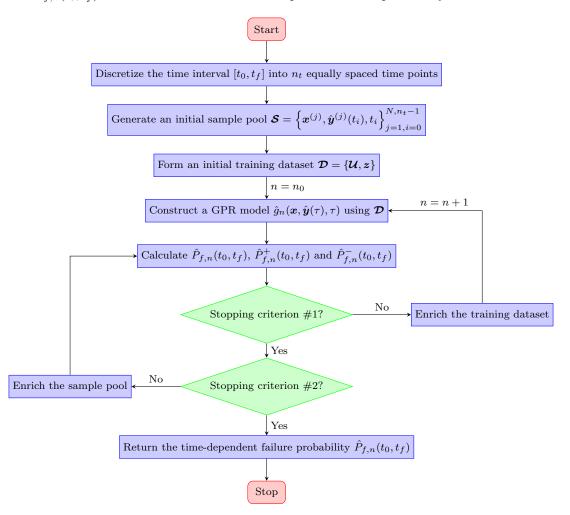


Figure 2: Flowchart of the proposed IBIO method.

Remark 3. The proposed method is designed for the general case where the time-dependent performance function takes the form $g(\mathbf{X}, \mathbf{Y}(t), t)$. As a result, it is also applicable to special cases such as $g(\mathbf{X}, t)$, $_{303}$ $g(\boldsymbol{Y}(t)), g(\boldsymbol{Y}(t), t) \text{ and } g(\boldsymbol{X}, \boldsymbol{Y}(t)).$

Remark 4. In addition to the time-dependent failure probability $\hat{P}_{f,n}(t_0, t_f)$, the time-dependent failure probability function $\hat{P}_{f,n}(t_0, t)$ for $t \in [t_0, t_f]$ can also be obtained as a by-product of the proposed method. For example, $\hat{P}_f(t_0, t_l)$ for $l = 0, 1, \dots, n_t - 2$ can be achieved by simply replacing $n_t - 1$ with l in the right-hand side of Eq. (9).

308 4. Numerical examples

In this section, five numerical examples are provided to demonstrate the effectiveness of the proposed 309 IBIO method for time-dependent reliability analysis. The parameters of the proposed method are set as 310 follows: $N = 10^5$, $n_0 = 10$, $\delta = 99.5\%$, b = 1.25, $\epsilon_3 = 10\%$ and $\eta = 2\%$. Note that the IBIO method is 311 further labeled as IBIO-ILCB, IBIO-IPI, and IBIO-IEI to indicate the learning function used to identify 312 the optimal next time instant. For comparison, several existing methods (i.e., eSPT [43], SILK [23], AFPK 313 [24] and REAL [26]) are included where applicable. To evaluate robustness, these methods, along with the 314 proposed methods, are each run 20 independent times when the results are generated by us. All simulations 315 are conducted on a MacBook Pro (14-inch, November 2023) equipped with an Apple M3 chip, 24 GB of 316 RAM, and running macOS Sonoma 14.5. 317

318 4.1. Example 1: A benchmark problem

³¹⁹ The first numerical example considers a benchmark problem adopted from [43]:

$$g(\mathbf{X}, Y(t), t) = X_1^2 X_2 - 5X_1 (1 + Y(t))t + (X_2 + 1)t^2 - 20,$$
(30)

where $t \in [0, 1]$; X_1 and X_2 are two random variables, Y(t) is a stochastic process, as detailed in Table 1. The time interval [0, 1] is discretized into 50 equally spaced time points.

Table 2 compares the performance of various methods for estimating the time-dependent failure probability $P_f(0,1)$. The reference failure probability is adopted as 0.3081 (with a negligible CoV of 0.05%), which is given by MCS with 50×10^7 performance function evaluations. The proposed IBIO methods deliver comparable failure probability means with small CoVs (0.35% - 0.63%), yet require on average fewer than

Symbol	Distribution	Mean	Standard deviation	Auto-correlation coefficient	
X_1	Normal	3.50	0.25	-	
X_2	Normal	3.50	0.25	-	
Y(t)	Gaussian process	0	1	$\exp\left(-(t_2-t_1)^2\right)$	

Table 1: Random variables and stochastic process of Example 1.

³²⁶ 14 evaluations of the g function. In contrast, other methods (i.e., eSPT, SILK, AFPK and REAL) incur ³²⁷ higher computational cost in terms of g-function evaluations, and exhibit slightly larger CoVs in their failure ³²⁸ probability estimates.

Method	N _{ca}	.11	$\hat{P}_f($	0,1)	Reference	
Withou	Mean	CoV	Mean	CoV		
MCS	50×10^7	-	0.3081	0.05%	-	
eSPT	51.9	-	0.3082	1.52%	[24]	
SILK	25.7	-	0.3094	4.03%	[24]	
AFPK	24.4	-	0.3084	2.98%	[24]	
REAL	21.75	-	0.3093	3.21%	[30]	
Proposed IBIO-ILCB	13.20	3.11%	0.3089	0.35%	-	
Proposed IBIO-IPI	13.60	4.40%	0.3081	0.63%	-	
Proposed IBIO-IEI	13.25	3.35%	0.3088	0.43%	-	

Table 2: Time-dependent failure probability results of Example 1.

Note: N_{call} = the number of calls to the *g*-function;

Fig. 3 depicts the statistical results of the time-dependent failure probability function $\hat{P}_f(0,t)$ for $t \in$ [0, 1], obtained through post-processing the proposed IBIO methods, in comparison to the reference result generated by MCS. As seen, the mean curves closely align with the reference, while the mean \pm standard deviation (Std Dev) bands remain notably narrow.

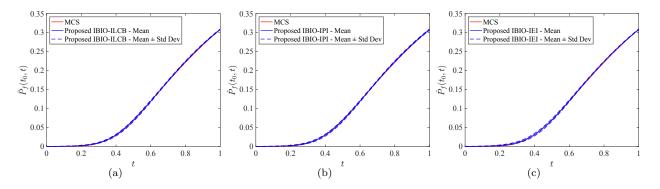


Figure 3: Time-dependent failure probability function for Example 1.

333 4.2. Example 2: A simple supported beam

The second example involves a simple supported steel beam [2], as shown in Fig. 4. The beam has a length of L = 5 m, and a rectangular cross section with an initial width b_0 and height h_0 . The cross section undergoes isotropic corrosion over time at a constant rate of 2k, where $k = 3 \times 10^{-5}$ m. The yield stress of the steel material is denoted as f_y . The beam is subjected to a live concentrated load F(t) at its mid-span, along with a uniform dead load $q = 78500b_0h_0$. The time-dependent performance function is given by:

$$g(\boldsymbol{X}, Y(t), t) = \frac{(b_0 - 2kt)(h_0 - 2kt)^2 f_y}{4} - \left(\frac{F(t)L}{4} + \frac{78500b_0h_0L^2}{8}\right),$$
(31)

where $t \in [0, 10]$ year; b_0 , h_0 and f_y are three random variables and F(t) is a stochastic process, as described in Table 3. The time period [0, 10] is discretized into 300 time nodes.

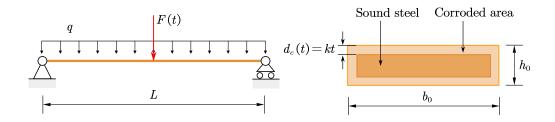


Figure 4: A simple supported beam.

The results of various methods are summarized in Table 4. The reference time-dependent failure probability obtained using MCS is 7.71×10^{-3} , with a very small CoV of 0.51%. However, this comes at the cost of an exceptionally large computational effort, requiring $300 \times 5 \times 10^6$ performance function evaluations. The

	Table 3: Random variables and stochastic process of Example 2.						
Symbol	Distribution	Mean	Standard deviation	Auto-correlation coefficient			
f_y (MPa)	Lognormal	180	18	-			
b_0 (m)	Lognormal	0.2	0.01	-			
h_0 (m)	Lognormal	0.04	0.004	-			
F(t) (N)	Gaussian process	3500	700	$\exp\left(-9(t_2-t_1)^2\right)$			

eSPT, SILK, AFPK, and REAL methods provide reasonable mean values for the failure probability estimates with moderate computational effort, requiring an average of 23.20 to 59.33 *g*-function calls. All IBIO methods require fewer than 19 performance function evaluations on average, outperforming other methods

³⁴⁷ while providing reasonable failure probability estimates.

Table 4: Time-dependent failure probability results of Example 2.								
Method	$N_{\rm call}$	$\hat{P}_f(0, 10)$			Reference			
	Mean	CoV	Mean	CoV				
MCS	$300\times5\times10^6$	-	7.71×10^{-3}	0.51%	-			
eSPT	59.33	-	7.68×10^{-3}	1.61%	[29]			
SILK	44.67	-	7.75×10^{-3}	1.60%	[29]			
AFPK	23.20	-	7.79×10^{-3}	1.60%	[29]			
REAL	32.30	9.21%	7.75×10^{-3}	2.35%	-			
Proposed IBIO-ILCB	17.70	8.22%	7.67×10^{-3}	2.28%	-			
Proposed IBIO-IPI	18.90	7.85%	7.65×10^{-3}	3.78%	-			
Proposed IBIO-IEI	18.45	11.32%	7.70×10^{-3}	5.72%	-			

Table 4: Time-dependent failure probability results of Example 2.

The statistical results of the time-dependent failure probability function $\hat{P}(0,t)$ for $t \in [0,10]$ obtained from the proposed methods are depicted in Fig. 5, along with the reference provided by MCS. It is shown that the mean curves agree well with the reference and the mean \pm std dev bands are narrow.

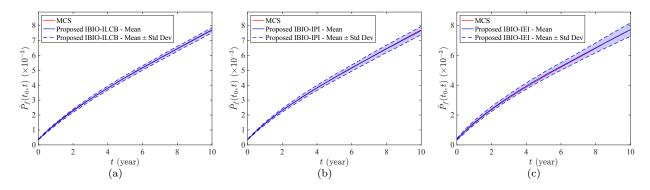


Figure 5: Time-dependent failure probability function for Example 2.

351 4.3. Example 3: A cantilever tube

As shown in Fig. 6, this example considers a cantilever tube structure that has been studied extensively [40, 44, 45]. This structure is subject to three forces F_1 , F_2 and P, as well as a torque T(t). The yield strength of the material degrades linearly over time $s(t) = s_0(1-0.01t)$, where s_0 is the initial yield strength. The time-dependent performance function is defined as:

$$g(\mathbf{X}, Y(t), t) = s(t) - \sqrt{\sigma_x^2 + 3\tau_{zx}^2(t)},$$
(32)

where $t \in [0, 5]$ year; σ_x and $\tau_{zx}(t)$ are given by:

$$\sigma_x = \frac{P + F_1 \sin \theta_1 + F_2 \sin \theta_2}{\frac{\pi}{4} \left[d^2 - (d - 2h)^2 \right]} + \frac{(F_1 L_1 \cos \theta_1 + F_2 L_2 \cos \theta_2) d}{2 \times \frac{\pi}{64} \left[d^4 - (d - 2h)^4 \right]},$$
(33)

357

$$\tau_{zx}(t) = \frac{T(t)d}{4 \times \frac{\pi}{64} \left[d^4 - (d-2h)^4 \right]},\tag{34}$$

in which $\theta_1 = 5^\circ$, $\theta_2 = 10^\circ$, $L_1 = 120$ mm and $L_2 = 60$ mm; F_1 , F_2 , P, h, d and s_0 are six random variables, and T(t) is a stochastic process, as reported in Table 5. In this example, the time interval [0, 5] is discretized into 100 time nodes.

Table 6 summarizes the results obtained using different methods, including MCS, SILK, REAL, IBIO-ILCB, IBIO-IPI, and IBIO-IEI. The reference failure probability provided by MCS is 1.36×10^{-2} , with a CoV of 0.85%, achieved at the expense of 100×10^{6} performance function calls. SIIK can produce a failure probability mean close to the reference, while a relatively small CoV of 2.19%, requiring an average of 71.00 *g*-function evaluations. REAL reduces the average number of *g*-function evaluations to just 13.40,

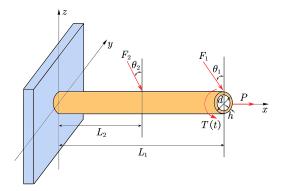


Figure 6: A cantilever tube subject to three forces and one torque.

Table 5: Random variables and stochastic process of Example 3.

Symbol	Distribution	Mean	CoV	Auto-correlation coefficient
F_1 (N)	Normal	1800	0.10	-
F_2 (N)	Normal	1800	0.10	-
$P(\mathbf{N})$	Lognormal	1000	0.10	-
$h \ (\mathrm{mm})$	Normal	5	0.019	-
$d \pmod{2}$	Normal	42	0.02	-
$s_0 \ (MPa)$	Normal	500	0.10	-
$T(t) (N \cdot mm)$	Gaussian process	$1.7 imes 10^6$	0.10	$\exp\left(-4(t_2-t_1)^2\right)$

³⁶⁶ albeit with a relatively high CoV of 26.35%. However, its failure probability estimates exhibit significant ³⁶⁷ variability, as indicated by a CoV of 16.47%, even though the mean value remains close to the reference ³⁶⁸ result. Compared to SILK and REAL, all IBIO methods strike a more favorable balance between efficiency ³⁶⁹ and accuracy. However, it is worth noting that the number of performance function evaluations exhibits a ³⁷⁰ high CoV for IBIO-ILCB.

Fig. 7 presents the statistical results of the time-dependent failure probability function $\hat{P}_f(0,t)$ for $t \in [0,5]$ obtained using the proposed IBIO methods, alongside the reference result from MCS. It is evident that the mean value curves for all IBIO methods closely approximate the MCS reference solution, with narrow mean \pm std dev bands.

Method	$N_{\rm ca}$.11	$\hat{P}_f(0,5)$		
hiomod	Mean	CoV	Mean	CoV	
MCS	100×10^6	-	1.36×10^{-2}	0.85%	
SILK	71.00	11.30%	1.36×10^{-2}	2.19%	
REAL	13.40	26.35%	1.35×10^{-2}	16.47%	
Proposed IBIO-ILCB	20.25	21.55%	1.35×10^{-2}	3.54%	
Proposed IBIO-IPI	18.85	10.51%	1.33×10^{-2}	3.31%	
Proposed IBIO-IEI	18.30	8.14%	1.35×10^{-2}	3.68%	

Table 6: Time-dependent failure probability results of Example 3.

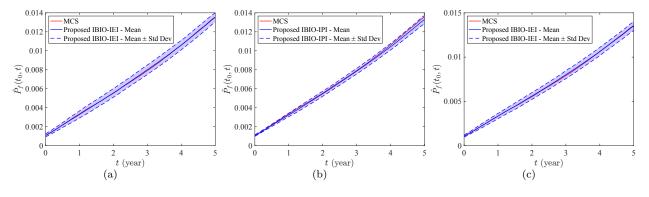


Figure 7: Time-dependent failure probability function for Example 3.

375 4.4. Example 4: A spatial truss structure

The fourth numerical example involves a 120-bar spatial truss structure under thirteen vertical concentrated loads [37], as shown in Fig. 8. The structure is modeled as a three-dimensional finite element model using the open-source software framework OpenSees (https://opensees.berkeley.edu/). The model consists of 49 nodes and 120 truss elements. It is assumed that all the elements have the same cross-sectional area A and young's modulus E. A time-varying vertical concentrated load $P_0(t)$ is applied to node 0, while 12 static vertical concentrated loads P_1, P_2, \dots, P_{12} are applied to nodes 1 through 12. The time-dependent performance function is defined as:

$$g(\mathbf{X}, Y(t)) = \Delta - V_0(E, A, P_0(t), P_1, P_2, \cdots, P_{12}),$$
(35)

where $t \in [0, 50]$ year; V_0 denotes the vertical displacement of node 0 along the negative of z-axis; Δ represents the allowable displacement, which is set to 100 mm; E, A, $P_0(t)$, P_1 , P_2 , \cdots and P_{12} are given in Table 7. The time period [0, 50] is discretized into 20 time nodes.

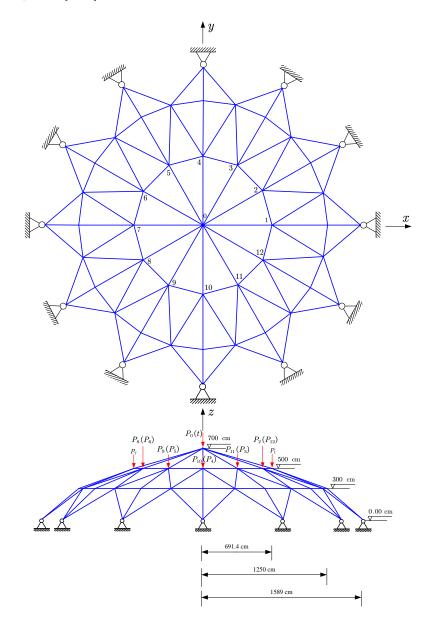


Figure 8: A 120-bar spatial truss structure under vertical loads.

Table 8 presents the results of various methods for estimating the time-dependent failure probability, $\hat{P}_f(0, 50)$. The reference value of the failure probability is taken as 2.81×10^{-2} (with a CoV of 0.83%), which

Symbol	Distribution	Mean	CoV	Auto-correlation coefficient
E (GPa)	Normal	200	0.10	-
$A \ (\mathrm{mm}^2)$	Normal	2000	0.10	-
P_1, P_2, \cdots, P_{12} (kN)	Lognormal	100	0.15	-
$P_0(t)$ (kN)	Lognormal process	1000	0.15	$\exp\left(-(t_2-t_1)^2/50\right)$

Table 7: Random variables and stochastic process of Example 4.

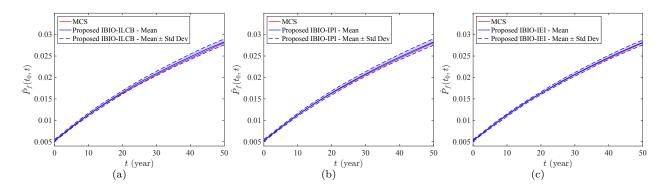
Note: The auto-correlation coefficient function for $P_0(t)$ is defined for the underlying Gaussian process.

is provided by MCS with $20 \times 5 \times 10^5$ model evaluations (taking 34,808.18 s \approx 9.67 h). The results for both SILK and REAL are unavailable as they fail to meet their stopping criteria before encountering memory limitations. All the proposed IBIO methods provide reasonably accurate results for the failure probability, requiring only about 37 model evaluations and 34.45 - 36.67 s on average. It is worth noting that the number of model evaluations for IBIO-ILCB exhibits slightly large variability.

Method	N_{call}		$\hat{P}_f(0,50)$		Time (s)	
	Mean	CoV	Mean	CoV	Mean	CoV
MCS	$20\times5\times10^5$	-	2.81×10^{-2}	0.83%	34,808.19	-
SILK	-	-	-		-	-
REAL	-	-	-		-	-
Proposed IBIO-ILCB	37.40	18.91%	2.83×10^{-2}	2.46%	34.73	-
Proposed IBIO-IPI	36.95	13.13%	2.83×10^{-2}	2.65%	36.67	-
Proposed IBIO-IEI	36.85	11.08%	2.82×10^{-2}	2.06%	34.45	-

Table 8: Time-dependent failure probability results of Example 4.

Fig. 9 depicts the statistical results of the failure probability function $\hat{P}_f(0,t)$ for $t \in [0, 50]$ obtained using the proposed IBIO methods, alongside the reference curve provided by MCS. It can be observed that: $_{395}$ (1) the mean value curves by the proposed methods accord well with the reference one; (2) the mean \pm std



³⁹⁶ dev bands are rather narrow.

Figure 9: Time-dependent failure probability function for Example 4.

397 4.5. Example 5: A rigid-frame bridge structure

As a final example, we consider a three-span rigid-frame bridge structure, which is shown in Fig. 10(a). 398 The bridge spans a total length of 60 m, divided into three equal 20 m spans, and featuring a constant deck 399 width of 6 m. The deck thickness varies linearly from 1 m at the end supports to 2 m at the pier locations. 400 Two rectangular piers — each 3 m wide, 6 m long, and 10 m high — are positioned at the 20 m and 401 40 m marks along the deck. A three-dimensional finite-element model is built in MATLAB's PDE Toolbox 402 (Fig. 10(b)), with fixed boundary conditions applied to the deck's end faces and the piers' base faces, and 403 a uniform vertical load Q(t) imposed on the deck's top surface. The Young's moduli of the deck and piers 404 degrade over time following $E_d(t) = E_{d,0}(1 - \gamma \log(1 + t))$ and $E_p(t) = E_{p,0}(1 - \gamma \log(1 + t))$, where $E_{d,0}(1 - \gamma \log(1 + t))$ 405 and $E_{p,0}$ are the initial Young's modulus and $\gamma = 0.05$ is adopted in this study. Both deck and piers share 406 a Poisson's ratio of 0.20. The time-dependent performance function is defined as: 407

$$g(\mathbf{X}, Y(t), t) = \Delta - V_m(E_{d,0}, E_{p,0}, Q(t), t),$$
(36)

where $t \in [0, 5]$ year; V_m denotes the vertical deflection of the deck at mid-span; Δ is the maximum allowable deflection, which is specified as 0.05 m. The involved random variables and stochastic process are listed in Table 9. The time period [0, 5] is discretized into 20 time nodes.

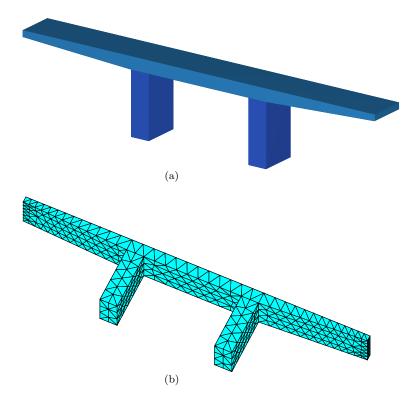


Figure 10: A rigid-frame bridge structure: (a) Schematic diagram; (b) Finite-element mesh.

Table 10 presents the results obtained with different methods. Since a full MCS is computationally infeasible for this example, we adopt the mean value of the time-dependent failure probabilities from the SILK method as the reference. The reference value is 8.62×10^{-2} with a CoV of 0.83%, achieved at an average cost of 32.80 model evaluations and 27.95 s. The REAL exhibits large variability for the number of model evaluations (a CoV up to 20.90%), and also for the time-dependent failure probabilities (a CoV of 9.84%). Furthermore, the mean value of time-dependent failure probabilities markedly from the reference. By contrast, all the proposed IBIO methods show reasonable variability and yield mean failure

Symbol	Distribution Mean		Standard deviation	Auto-correlation coefficient	
$E_{d,0}$	Lognormal	30 GPa	3.0 GPa	-	
$E_{p,0}$	Lognormal	35 GPa	3.5 GPa	-	
Q(t)	Gaussian process	$1000~\rm kN/m^2$	150 kN/m^2	$\exp\left(- t_2 - t_1 /25\right)$	

Table 9: Random variables and stochastic process of Example 5.

probabilities that closely match the reference. Note that these methods only require an average of about 16 418 performance function calls and 5 seconds to run, which is far less than SILK. 419

Table 10: Time-dependent failure probability results of Example 5.								
Method	$N_{\rm call}$		$\hat{P}_f(0, \xi)$	Time (s)				
	Mean	CoV	Mean	CoV	Mean	CoV		
SILK	32.80	12.73%	8.62×10^{-2}	0.83%	27.95	-		
REAL	15.90	20.90%	8.26×10^{-2}	9.84%	6.46	-		
Proposed IBIO-ILCB	15.65	6.31%	8.71×10^{-2}	0.79%	4.74	-		
Proposed IBIO-IPI	15.70	5.51%	8.73×10^{-2}	1.34%	4.90	-		
Proposed IBIO-IEI	16.10	8.99%	8.73×10^{-2}	1.08%	4.95	-		

The statistical results of the time-dependent failure probability function $\hat{P}_f(0,t)$ for $t \in [0,5]$ are shown 420 in Fig. 11, together with the reference from SILK. It can be seen that the mean \pm std dev bounds are quite 421 narrow and the mean curves are close to the reference.

422

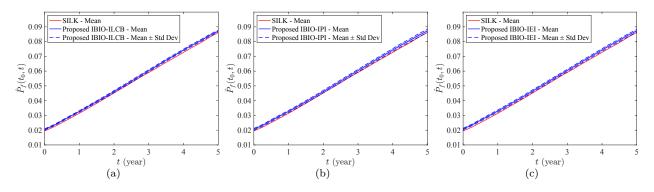


Figure 11: Time-dependent failure probability function for Example 5.

423 5. Concluding remarks

This paper presents a novel single-loop Bayesian active learning method for computationally expensive 424 time-dependent reliability analysis, called 'Integrated Bayesian integration and Optimization' (IBIO). The 425 underlying idea is to construct a computationally efficient Gaussian process regression model to replace the 426 original expensive-to-evaluate performance function, leveraging a Bayesian active learning approach. This is 427 achieved by ingeniously integrating the Bayesian probabilistic integration for static reliability analysis and 428 the Bayesian global optimization for finding the global optima of expensive black-box functions. Specifically, 429 we first introduce a pragmatic estimator for the time-dependent failure probability. Based on this estimator, 430 a novel stopping criterion is then proposed to determine when to terminate the active learning processes. 431 Furthermore, new learning functions are also proposed to identify the promising point where to evaluate the 432 true performance function next when the stopping criterion is not reached. More precisely, three alternative 433 learning functions are formulated to select the next optimal time instant from a Bayesian optimization 434 perspective, but in an average sense. In addition, another learning function, adapted from one Bayesian 435 integration method for static reliability analysis, is introduced to guide the selection of the next optimal 436 sample for random variables and stochastic processes at the identified time instant. The proposed method is 437 applicable whether or not the performance function is subject to stochastic processes. Besides, it can provide 438 not only the time-dependent failure probability over the reference time interval, but also the evolution of 439 the failure probability over the interval as a by-product. Numerical results indicate that the proposed 440 method can significantly reduce the number of performance function evaluations while maintaining high 441 accuracy. In addition, none of the three proposed learning functions for selecting the next optimal time 442 instant consistently and significantly outperforms the others. 443

While the proposed method exhibits considerable strengths, several avenues for future improvement remain. First, extending the approach to high-dimensional problems remains a significant task. Second, accurately estimating very small failure probabilities will likely demand more efficient techniques than crude MCS.

448 CRediT authorship contribution statement

Chao Dang: Conceptualization, Methodology, Software, Validation, Investigation, Writing - Original
 Draft, Visualization. Marcos A. Valdebenito: Conceptualization, Validation, Writing - Review & Edit ing, Supervision. Matthias G.R. Faes: Resources, Writing - Review & Editing, Supervision, Project
 administration, Funding acquisition.

453 Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

456 Acknowledgments

⁴⁵⁷ Chao Dang is grateful for the financial support of the German Research Foundation (DFG) (Grant ⁴⁵⁸ number 530326817).

459 Data availability

460 No data was used for the research described in the article.

⁴⁶¹ Appendix A. Brief introduction to Gaussian process regression

For notational simplicity, we denote the input of the performance function as \boldsymbol{u} and the corresponding output as z, i.e., $\boldsymbol{u} = [\boldsymbol{x}, \hat{\boldsymbol{y}}(t), t]$ and $z = g(\boldsymbol{u})$. GPR places a GP prior over the performance function:

$$g_0(\boldsymbol{u}) \sim \mathcal{GP}(m_{g_0}(\boldsymbol{u}), k_{g_0}(\boldsymbol{u}, \boldsymbol{u}')), \tag{A.1}$$

where g_0 denotes the prior distribution of g before seeing any observations; m_{g_0} and k_{g_0} are the prior mean and covariance functions, respectively. Given a dataset of *n* observations, $\mathcal{D} = \{\mathcal{U}, z\}$, where \mathcal{U} is an *n*-by- $(d_1 + d_2 + 1)$ matrix with its *i*-th row being $u^{(i)}$ and z is an *n*-by-1 vector with its *i*-th element being $z^{(i)} = g(u^{(i)})$ for $i = 1, 2, \dots, n$, conditioning this dataset on the prior distribution gives rise to a GP posterior for the performance function:

$$g_n(\boldsymbol{u}) \sim \mathcal{GP}(m_{g_n}(\boldsymbol{u}), k_{g_n}(\boldsymbol{u}, \boldsymbol{u}')),$$
 (A.2)

where g_n denotes the posterior distribution of g after seeing n observations; m_{g_n} and k_{g_n} are the posterior mean and covariance functions respectively, which are given by:

$$m_{g_n}(\boldsymbol{u}) = m_{g_0}(\boldsymbol{u}) + \boldsymbol{k}_{g_0}(\boldsymbol{u}, \boldsymbol{\mathcal{U}})^\top \boldsymbol{K}_{g_0}^{-1}(\boldsymbol{z} - \boldsymbol{m}_{g_0}(\boldsymbol{\mathcal{U}})),$$
(A.3)

$$k_{g_n}(\boldsymbol{u},\boldsymbol{u}') = k_{g_0}(\boldsymbol{u},\boldsymbol{u}') - \boldsymbol{k}_{g_0}(\boldsymbol{u},\boldsymbol{\mathcal{U}})^\top \boldsymbol{K}_{g_0}^{-1} \boldsymbol{k}_{g_0}(\boldsymbol{\mathcal{U}},\boldsymbol{u}'), \qquad (A.4)$$

where $\boldsymbol{m}_{g_0}(\boldsymbol{\mathcal{U}})$ is an *n*-by-1 vector with its *i*-th element being $m_{g_0}(\boldsymbol{u}^{(i)})$; $\boldsymbol{k}_{g_0}(\boldsymbol{u},\boldsymbol{\mathcal{U}})$ and $\boldsymbol{k}_{g_0}(\boldsymbol{\mathcal{U}},\boldsymbol{u}')$ are two *n*-by-1 vectors with their *i*-th elements being $k_{g_0}(\boldsymbol{u},\boldsymbol{u}^{(i)})$ and $k_{g_0}(\boldsymbol{u}^{(i)},\boldsymbol{u}')$, respectively; \boldsymbol{K}_{g_0} is an *n*-by-*n* matrix with its entry being $k_{g_0}(\boldsymbol{u}^{(i)},\boldsymbol{u}^{(j)})$.

475 References

471

- 476 [1] S. O. Rice, Mathematical analysis of random noise, The Bell System Technical Journal 23 (3) (1944) 282–332. doi:
 477 10.1002/j.1538-7305.1944.tb00874.x.
- [2] C. Andrieu-Renaud, B. Sudret, M. Lemaire, The PHI2 method: a way to compute time-variant reliability, Reliability
 Engineering & System Safety 84 (1) (2004) 75-86. doi:https://doi.org/10.1016/j.ress.2003.10.005.
- [3] B. Sudret, Analytical derivation of the outcrossing rate in time-variant reliability problems, Structure and Infrastructure
 Engineering 4 (5) (2008) 353-362. doi:https://doi.org/10.1080/15732470701270058.
- [4] X.-Y. Zhang, Z.-H. Lu, S.-Y. Wu, Y.-G. Zhao, An efficient method for time-variant reliability including finite element
 analysis, Reliability Engineering & System Safety 210 (2021) 107534. doi:https://doi.org/10.1016/j.ress.2021.107534.
- [5] B. Zhang, W. Wang, H. Lei, X. Hu, C.-Q. Li, An improved analytical solution to outcrossing rate for scalar nonstationary
 and non-Gaussian processes, Reliability Engineering & System Safety 247 (2024) 110102. doi:https://doi.org/10.1016/
- 486 j.ress.2024.110102.
- [6] C.-Q. Li, A. Firouzi, W. Yang, Closed-form solution to first passage probability for nonstationary lognormal pro cesses, Journal of Engineering Mechanics 142 (12) (2016) 04016103. doi:https://doi.org/10.1061/(ASCE)EM.1943-7889.
 0001160.

- [7] A. Firouzi, W. Yang, C.-Q. Li, Efficient solution for calculation of upcrossing rate of nonstationary Gaussian process, 490
- Journal of Engineering Mechanics 144 (4) (2018) 04018015. doi:https://doi.org/10.1061/(ASCE)EM.1943-7889.0001420. 491
- 492 [8] W. Yang, B. Zhang, W. Wang, C.-Q. Li, Time-dependent structural reliability under nonstationary and non-Gaussian
- processes, Structural Safety 100 (2023) 102286. doi:https://doi.org/10.1016/j.strusafe.2022.102286. 493
- [9] C. Jiang, X. Huang, X. Han, D. Zhang, A time-variant reliability analysis method based on stochastic process discretization, 494
- Journal of Mechanical Design 136 (9) (2014) 091009. doi:https://doi.org/10.1115/1.4027865. 495
- [10] Z. P. Mourelatos, M. Majcher, V. Pandey, I. Baseski, Time-dependent reliability analysis using the total probability 496 theorem, Journal of Mechanical Design 137 (3) (2015) 031405. doi:http://doi.org/10.1115/1.4029326. 497
- [11] C. Gong, D. M. Frangopol, An efficient time-dependent reliability method, Structural Safety 81 (2019) 101864. doi: 498 https://doi.org/10.1016/j.strusafe.2019.05.001. 499
- [12] X. Yuan, W. Zheng, C. Zhao, M. A. Valdebenito, M. G. Faes, Y. Dong, Line sampling for time-variant failure probability 500 estimation using an adaptive combination approach, Reliability Engineering & System Safety 243 (2024) 109885. doi: 501 https://doi.org/10.1016/j.ress.2023.109885. 502
- [13] X. Yuan, S. Liu, M. Faes, M. A. Valdebenito, M. Beer, An efficient importance sampling approach for reliability analysis of 503 time-variant structures subject to time-dependent stochastic load, Mechanical Systems and Signal Processing 159 (2021) 504 107699. doi:https://doi.org/10.1016/j.ymssp.2021.107699.
- [14] X. Yuan, Y. Shu, Y. Qian, Y. Dong, Adaptive importance sampling approach for structural time-variant reliability analysis, 506

Structural Safety 111 (2024) 102500. doi:https://doi.org/10.1016/j.strusafe.2024.102500. 507

- [15] H.-S. Li, T. Wang, J.-Y. Yuan, H. Zhang, A sampling-based method for high-dimensional time-variant reliability analysis, 508
- Mechanical Systems and Signal Processing 126 (2019) 505-520. doi:https://doi.org/10.1016/j.ymssp.2019.02.050. 509
- [16] M. Ping, X. Han, C. Jiang, X. Xiao, A time-variant extreme-value event evolution method for time-variant reliability 510
- analysis, Mechanical Systems and Signal Processing 130 (2019) 333-348. doi:https://doi.org/10.1016/j.ymssp.2019. 511 05.009. 512
- [17] Y. Zhang, J. Xu, M. Beer, A single-loop time-variant reliability evaluation via a decoupling strategy and probability 513 distribution reconstruction, Reliability Engineering & System Safety 232 (2023) 109031. doi:https://doi.org/10.1016/ 514 j.ress.2022.109031.
- [18] Y. Zhang, J. Xu, P. Gardoni, A loading contribution degree analysis-based strategy for time-variant reliability analysis 516
- of structures under multiple loading stochastic processes, Reliability Engineering & System Safety 243 (2024) 109833. 517
- doi:https://doi.org/10.1016/j.ress.2023.109833. 518

505

515

- [19] Z. Wang, P. Wang, A new approach for reliability analysis with time-variant performance characteristics, Reliability 519 Engineering & System Safety 115 (2013) 70-81. 520
- [20] Z. Hu, X. Du, Mixed efficient global optimization for time-dependent reliability analysis, Journal of Mechanical Design 521
- 137 (5) (2015) 051401. doi:https://doi.org/10.1115/1.4029520. 522

- [21] J. Wu, Z. Jiang, H. Song, L. Wan, F. Huang, Parallel efficient global optimization method: a novel approach for time-523
- dependent reliability analysis and applications, Expert Systems with Applications 184 (2021) 115494. doi:https://doi. 524

525 org/10.1016/j.eswa.2021.115494.

- [22] H. Li, Z. Lu, K. Feng, A double-loop Kriging model algorithm combined with importance sampling for time-526
- dependent reliability analysis, Engineering with Computers 40 (3) (2024) 1539-1558. doi:https://doi.org/10.1007/ 527 s00366-023-01879-8.
- 528
- [23] Z. Hu, S. Mahadevan, A single-loop Kriging surrogate modeling for time-dependent reliability analysis, Journal of Me-529 chanical Design 138 (6) (2016) 061406. doi:https://doi.org/10.1115/1.4033428. 530
- [24] C. Jiang, D. Wang, H. Qiu, L. Gao, L. Chen, Z. Yang, An active failure-pursuing Kriging modeling method for time-531
- dependent reliability analysis, Mechanical Systems and Signal Processing 129 (2019) 112-129. doi:https://doi.org/10. 532 1016/j.ymssp.2019.04.034. 533
- [25] Y. Hu, Z. Lu, N. Wei, C. Zhou, A single-loop Kriging surrogate model method by considering the first failure instant 534 for time-dependent reliability analysis and safety lifetime analysis, Mechanical Systems and Signal Processing 145 (2020) 535 106963. doi:https://doi.org/10.1016/j.ymssp.2020.106963. 536
- [26] C. Jiang, H. Qiu, L. Gao, D. Wang, Z. Yang, L. Chen, Real-time estimation error-guided active learning Kriging method 537
- for time-dependent reliability analysis, Applied Mathematical Modelling 77 (2020) 82-98. doi:https://doi.org/10.1016/ 538 j.apm.2019.06.035. 539
- [27] Z. Song, H. Zhang, L. Zhang, Z. Liu, P. Zhu, An estimation variance reduction-guided adaptive Kriging method for 540 efficient time-variant structural reliability analysis, Mechanical Systems and Signal Processing 178 (2022) 109322. doi: 541 https://doi.org/10.1016/j.ymssp.2022.109322. 542
- [28] Y. Lu, Z. Lu, K. Feng, A novel training point selection strategy guided by the maximum reduction of structural state 543 misclassification probability for time-dependent reliability analysis, Aerospace Science and Technology 140 (2023) 108493. 544
- doi:https://doi.org/10.1016/j.ast.2023.108493. 545
- [29] D. Wang, H. Qiu, L. Gao, C. Jiang, A subdomain uncertainty-guided Kriging method with optimized feasibility metric for 546 time-dependent reliability analysis, Reliability Engineering & System Safety 243 (2024) 109839. doi:https://doi.org/ 547
- 10.1016/j.ress.2023.109839. 548
- [30] C. Dang, M. A. Valdebenito, M. G. Faes, Towards a single-loop Gaussian process regression based-active learning method 549
- for time-dependent reliability analysis, Mechanical Systems and Signal Processing (2025) 112294doi:https://doi.org/ 550 10.1016/j.ymssp.2024.112294. 551
- [31] C. Dang, M. G. Faes, M. A. Valdebenito, P. Wei, M. Beer, Partially Bayesian active learning cubature for structural 552
- reliability analysis with extremely small failure probabilities, Computer Methods in Applied Mechanics and Engineering 553
- 422 (2024) 116828. doi:https://doi.org/10.1016/j.cma.2024.116828. 554
- [32] D. R. Jones, M. Schonlau, W. J. Welch, Efficient global optimization of expensive black-box functions, Journal of Global 555

- Optimization 13 (1998) 455-492. doi:https://doi.org/10.1023/A:1008306431147. 556
- [33] K.-K. Phoon, S. Huang, S. T. Quek, Simulation of second-order processes using karhunen–loeve expansion, Computers & 557
- 558 Structures 80 (12) (2002) 1049-1060. doi:https://doi.org/10.1016/S0045-7949(02)00064-0.
- [34] C.-C. Li, A. Der Kiureghian, Optimal discretization of random fields, Journal of Engineering Mechanics 119 (6) (1993) 559
- 1136-1154. doi:https://doi.org/10.1061/(ASCE)0733-9399(1993)119:6(1136). 560
- [35] J. Zhang, B. Ellingwood, Orthogonal series expansions of random fields in reliability analysis, Journal of Engineering 561
- Mechanics 120 (12) (1994) 2660-2677. doi:https://doi.org/10.1061/(ASCE)0733-9399(1994)120:12(2660). 562
- [36] M. Shinozuka, G. Deodatis, Simulation of stochastic processes by spectral representation, Applied Mechanics Reviews 563 44 (4) (1991) 191-204. doi:https://doi.org/10.1115/1.3119501. 564
- [37] C. Dang, P. Wei, J. Song, M. Beer, Estimation of failure probability function under imprecise probabilities by active 565
- learning-augmented probabilistic integration, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, 566 Part A: Civil Engineering 7 (4) (2021) 04021054. doi:https://doi.org/10.1061/AJRUA6.0001179.
- [38] C. Dang, P. Wei, M. G. Faes, M. A. Valdebenito, M. Beer, Parallel adaptive Bayesian quadrature for rare event estimation, 568
- Reliability Engineering & System Safety 225 (2022) 108621. doi:https://doi.org/10.1016/j.ress.2022.108621. 569
- [39] C. Dang, M. A. Valdebenito, M. G. Faes, P. Wei, M. Beer, Structural reliability analysis: A Bayesian perspective, 570
- Structural Safety 99 (2022) 102259. doi:https://doi.org/10.1016/j.strusafe.2022.102259. 571
- [40] K. Cheng, Z. Lu, Time-variant reliability analysis based on high dimensional model representation, Reliability Engineering 572

& System Safety 188 (2019) 310-319. doi:https://doi.org/10.1016/j.ress.2019.03.041. 573

- [41] Z. Hu, D. Wang, C. Dang, M. Beer, L. Wang, Uncertainty-aware adaptive Bayesian inference method for structural 574 time-dependent reliability analysis, Reliability Engineering & System Safety, under review (2024). 575
- [42] R. Garnett, Bayesian optimization, Cambridge University Press, 2023. 576
- [43] Z. Wang, W. Chen, Time-variant reliability assessment through equivalent stochastic process transformation, Reliability 577 Engineering & System Safety 152 (2016) 166-175. doi:https://doi.org/10.1016/j.ress.2016.02.008. 578
- [44] Y. Yan, J. Wang, Y. Zhang, Z. Sun, Kriging model for time-dependent reliability: accuracy measure and efficient time-579
- dependent reliability analysis method, IEEE Access 8 (2020) 172362-172378. doi:https://doi.org/10.1109/ACCESS. 580 2020.3014238. 581
- [45] R. Cao, Z. Sun, J. Wang, F. Guo, A single-loop reliability analysis strategy for time-dependent problems with small 582
- failure probability, Reliability Engineering & System Safety 219 (2022) 108230. doi:https://doi.org/10.1016/j.ress. 583
- 2021.108230. 584

567