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Abstract4

Time-dependent reliability analysis has proven to be an invaluable tool for assessing the safety levels of5

engineering structures subject to both randomness and time-varying factors. In this context, single-loop6

active learning Kriging methods have demonstrated a favorable trade-off between efficiency and accuracy.7

However, there remains significant potential for further improvement, particularly in addressing computa-8

tionally expensive time-dependent reliability problems. This paper introduces a novel single-loop Bayesian9

active learning method using Gaussian process regression (GPR) for time-dependent reliability analysis,10

termed ‘Integrated Bayesian Integration and Optimization’ (IBIO). The key idea is to integrate the Bayesian11

probabilistic integration method originally developed for static reliability analysis and the Bayesian global12

optimization for solving the global optima of expensive black-box functions. First, we introduce a prag-13

matic estimator for the time-dependent failure probability. Second, a new stopping criterion is proposed to14

determine when the active learning process should be terminated. Third, three learning functions as three15

alternatives are developed to identity the next best time instant where to evaluate the performance func-16

tion. Fourth, one new learning function is presented to select the next best sample for the random variables17

and stochastic processes given the time instant. Five numerical examples are presented to demonstrate the18

effectiveness of the proposed IBIO method. It is empirically shown that the method can produce accurate19

results with only a small number of performance function evaluations.20
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Stopping criterion; Learning function22
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1. Introduction23

Ensuring the safety of engineering structures is essential for protecting lives, preserving property, main-24

taining functionality, and supporting sustainable development. However, most engineering structures in25

operation are inevitably influenced by the combined effects of randomness and time-varying factors. For26

example, randomness may stem from the natural variability in material properties and loading conditions,27

while time-varying factors can result from corrosion, fatigue, and deterioration. As a result, time-dependent28

reliability analysis has proven to be an invaluable tool for evaluating the safety levels of engineering struc-29

tures. Over the decades, numerous methods have been developed to advance this field of study. These30

existing methods can be broadly categorized into three groups: (1) out-crossing rate methods; (2) composite31

limit state methods; and (3) extreme value methods.32

As the most classical approach, out-crossing rate methods express the time-dependent failure probability33

as an integral of the out-crossing rate (i.e., the rate at which a performance function crosses zero over time).34

This concept was first introduced by Rice [1], who developed what is now known as the Rice formula. Since35

then, various out-crossing rate methods have been developed for time-dependent reliability analysis, includ-36

ing PHI2 [2], PHI2+ [3], moment-based PHI2 (MPHI2) [4], PHI2++ [5], and many others [6–8]. However,37

these methods rely on the potentially unwarranted assumption that all out-crossing events are mutually38

independent, which can lead to significant errors when the events exhibit strong dependence. Furthermore,39

out-crossing rate methods often require a substantial number of performance function evaluations, rendering40

them computationally prohibitive for problems involving expensive-to-evaluate performance functions.41

Alternatively, composite limit state methods discretize a time-dependent performance function into a42

sequence of instantaneous performance functions at discrete time nodes, thereby transforming a time-43

dependent reliability problem into a static series-system reliability problem. Examples of such methods44

include the first-order reliability method (FORM) [9–11], line sampling [12], importance sampling [13, 14]45

and subset stimulation [15]. It is well known that FORM loses accuracy in moderate and highly nonlinear46
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problems, while stochastic simulation methods typically require a large number of performance function47

evaluations to achieve convergence.48

Like composite limit state methods, extreme value methods also transform a time-dependent reliability49

problem into a time-independent counterpart. This, however, is achieved by considering the the extreme50

value distribution (EVD) of the performance function with respect to time. In this context, some EVD esti-51

mation methods have been developed especially for time-dependent reliability analysis [16–18]. In addition,52

numerous active learning Kriging (or Gaussian process regression (GPR)) methods have also been proposed,53

which can be broadly categorized into: double-loop active learning Kriging methods and single-loop active54

learning Kriging methods. Double-loop active learning Kriging methods involve constructing an extreme55

response Kriging model in the outer loop, while a separate Kriging model is built in the inner loop to iden-56

tify the extreme response. Representative examples in this category include the nested extreme response57

method [19], mixed efficient global optimization (EGO) method [20], parallel EGO method [21] and impor-58

tance sampling-based double-loop Kriging method [22]. On the contrary, single-loop active learning Kriging59

methods directly construct a global response Kriging model for the performance function. A non-exhaustive60

list of such methods include the single-loop Kriging method [23], active failure-pursuing Kriging method [24],61

single-loop Kriging method considering the first failure instant [25], real-time estimation error-guided active62

learning Kriging method [26], estimation variance reduction-guided adaptive Kriging method [27], structural63

state classification probability reduction adaptive Kriging method [28], subdomain uncertainty-guided Krig-64

ing method [29] and single-loop GPR based-active learning method [30]. These single-loop methods have65

demonstrated a favorable trade-off between efficiency and accuracy in time-dependent reliability analysis.66

However, it is still highly desirable to further reduce the computational costs while maintaining accuracy,67

particularly for solving real-world time-dependent reliability problems.68

To this end, this paper presents a novel single-loop Bayesian active learning method using GPR for com-69

putationally expensive time-dependent reliability analysis, which is termed ‘Integrated Bayesian Integration70

and Optimization’ (IBIO). As the name suggests, the proposed method combines the Bayesian probabilis-71

tic integration technique, originally developed for time-independent reliability analysis [31], with Bayesian72
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global optimization for solving the global optima of costly black-box functions [32]. The IBIO method is73

versatile and applicable regardless of whether stochastic processes are involved. Moreover, it provides not74

only the time-dependent failure probability over a specified time interval but also the evolution of the failure75

probability within the interval as a byproduct. The main contributions can be summarized as follows. First,76

we introduce a pragmatic estimator for the time-dependent failure probability which relates not only to the77

posterior mean function of the GPR, but also the posterior standard deviation function. Second, based78

on the estimator, a new stopping criterion is proposed to determine when the iterative learning should79

halt, which ensures that the iterative process is neither prematurely terminated nor continued unnecessarily.80

Third, three novel learning functions as three alternatives are proposed to identify the next best time instant81

where to evaluate the performance function. Fourth, one new learning function is presented to select the82

next best sample for the random variables and stochastic processes given the identified time instant that83

improves the GPR model the most.84

The remainder of this paper is organized as follows. Some preliminaries are provided in Section 2. Section85

3 presents the proposed IBIO method for time-dependent reliability analysis. Five numerical examples are86

investigated in Section 4 to demonstrate the proposed method. Finally, concluding remarks are given in87

Section 5.88

2. Preliminaries89

This section provides background information on time-dependent reliability analysis. Section 2.1 presents90

the formulation of the time-dependent reliability problem. This is followed by the discretization of stochastic91

processes in Section 2.2. Finally, the Monte Carlo Simulation (MCS) method for solving the time-dependent92

failure probability is discussed in Section 2.3.93

2.1. Problem formulation94

Let X = [X1, X2, · · · , Xd1 ] ∈ DX ⊆ Rd1 represent a vector of d1 continuous random variables with sup-95

port DX , defined on the probability space (ΩX ,FX ,PX), where ΩX is the sample space, FX is the σ-algebra96

of measurable events and PX is the probability measure. Similarly, let Y (t) = [Y1(t), Y2(t), · · · , Yd2
(t)] ∈97
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DY ⊆ Rd2 denote a vector of d2 continuous-time stochastic processes with support DY (t is the time param-98

eter), defined on the probability space (ΩY ,FY ,PY ). In this work, the vector of stochastic processes will99

also be expressed as Y (ωY , t) if desired, where ωY ∈ ΩY , emphasizing that Y is actually a function of both100

ωY and t. Consider the performance function (also known as the limit state function) g(X,Y (t), t), where101

t ∈ [t0, tf ] represents the time period of interest. By convention, failure occurs when g takes a negative value102

at any time within [t0, tf ]. The corresponding time-dependent failure probability is formally defined as:103

Pf (t0, tf ) = P {g(X,Y (t), t) < 0,∃t ∈ [t0, tf ]} , (1)

where P is the probability operator, and ∃ means ‘there exists’. The so-called time-dependent reliability104

R(t0, tf ) is the complement of Pf (t0, tf ), i.e., R(t0, tf ) = 1− Pf (t0, tf ). By considering the minimum value105

of g(X,Y (t), t) over the interval [t0, tf ], the time-dependent failure probability Pf (t0, tf ), as defined in Eq.106

(1), is equivalent to:107

Pf (t0, tf ) =P
{

min
t∈[t0,tf ]

g(X,Y (t), t) < 0

}
=

∫
DX

∫
ΩY

I

(
min

t∈[t0,tf ]
g(x,y(ωY , t), t) < 0

)
fX(x)dxdP (ωY )

=

∫
DX

∫
ΩY

max
t∈[t0,tf ]

I (g(x,y(ωY , t), t) < 0) fX(x)dxdP (ωY ) ,

(2)

where I(·) is the indicator function: it returns one if its argument is true, and zero otherwise; fX(x) is the108

joint probability density function (PDF) of X. The equivalence between the second and final lines of Eq. (2)109

is straightforward, but the second-line form is far more common in the literature while the final form seldom110

appears. We include the latter here to facilitate later developments.111

2.2. Discretization of stochastic processes112

For computational purposes, the input stochastic processes input to the performance function need to be113

discretized. In this context, numerous well-established techniques are available in the literature, including114

Karhunen–Loève (KL) expansion [33], expansion optimal linear estimation [34], orthogonal series expansion115

[35], spectral representation [36], among many others. For the proposed method presented in Section 3,116

there are in principle no limitations on the types of stochastic processes and the methods used to discretize117
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them. However, for illustration purposes, we only consider a second-order (i.e., square-integrable) stochastic118

process Y (t) and employ the KL expansion as an example. Let µ(t), c(t1, t2) denote the mean and covariance119

functions of Y (t), respectively. The time interval [t0, tf ] is first discretized into nt equally spaced time points,120

i.e., t0, t1, · · · , tnt−2, tnt−1 = tf . A truncated KL expansion of Y (t) is given by:121

Ŷ (t) = µ(t) +

p∑
j=1

√
λjξjφj(t), t = t0, t1, · · · , tnt−1, (3)

where λj is the j-th dominate eigenvalue of the covariance matrix C = [c(ti1 , ti2)] (i.e., λ1 > λ2 > · · · >122

λnt
) and φj(t) is the corresponding eigenfunction; {ξj}pj=1 is a set of p uncorrelated standardized random123

variables; p is the number of truncation terms, which can be determined by the approximate explained124

variance ratio:125

p = argmin
p∈[1,2,··· ,nt]

{∑p
j=1 λi∑nt

j=1 λi
≥ δ

}
, (4)

where δ ∈ (0, 1] is a user-defined threshold. A larger δ retains more of the process variance but requires126

more random variables to represent the stochastic process. Common choices in the literature are δ = 0.95127

or 0.99.128

2.3. Time-dependent reliability analysis by MCS129

The time-dependent failure probability defined early can be solved by using the crude MCS. The estimator130

of Pf (t0, tf ) is given by:131

P̂f (t0, tf ) =
1

N

N∑
s=1

I

(
min

i=0,1,··· ,nt−1
g(x(s), ŷ(s)(ti), ti) < 0

)
, (5)

where
{
x(s)

}N
s=1

is a set of N random samples of X;
{
ŷ(s)(ti)

}N

s=1
is a set of N random samples of Y (ti)132

generated, for example, by using the KL expansion. The associated coefficient of variation (CoV) is expressed133

as:134

CoV
[
P̂f (t0, tf )

]
=

√
1− P̂f (t0, tf )

(N − 1)P̂f (t0, tf )
. (6)

The crude MCS offers a robust tool for estimating the time-dependent failure probability. However, it135

requires a total ofN×nt evaluations of the performance function g, which can be computationally prohibitive136

when each evaluation is time-consuming, as is often the case in practice.137
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3. Proposed IBIO method138

In this section, the proposed IBIO method is introduced for time-dependent reliability analysis. Section139

3.1 provides an overview of the method. The time-dependent failure probability estimator, stopping criterion140

and learning functions are presented in Sections 3.2, 3.3 and 3.4, respectively. Finally, the procedure for141

implementing the proposed method is outlined in Section 3.5.142

3.1. Overview of the proposed method143

The core idea of the proposed IBIO method is to iteratively refine a GPR model of the performance144

function (as described in Appendix A) until the predicted time-dependent failure probability achieves a145

desired level of accuracy. Starting with an initial set of training data, the method builds a probabilistic146

surrogate model for the performance function using GPR to predict the time-dependent failure probability.147

If a stopping criterion is not met, a new point is selected using a learning function, and the corresponding148

output of g is obtained and the training data is enriched. This updated dataset is then used to refine the149

GPR model in the next iteration. The process repeats until the stopping criterion is satisfied. The general150

workflow of the proposed method is shown in Fig. 1, with some notations explained in Appendix A.151

Start

Training data D = {U ,z}

Prediction model gn(x, ŷ(t), t)

Time-dependent failure probability P̂f,n(t0, tf )

Stopping criterion? Identify u(n+1) by a learning function

Obtain z(n+1) = g(u(n+1))

D = D ∪
{
u(n+1), z(n+1)

}

Stop

n = n0

No

n = n+ 1

Yes

Figure 1: General workflow of the proposed IBIO method.
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3.2. Time-dependent failure probability estimator152

Assuming a GPR-based prediction model gn has been constructed for the performance function g (see153

Appendix A), the next step is to evaluate the time-dependent failure probability using this model. This154

requires formulating an estimator for the time-dependent failure probability. A straightforward approach,155

commonly adopted in existing methods, is to use the posterior mean function, mn, as a substitute of g to156

predict the time-dependent failure probability. In this study, however, an alternative approach is proposed157

as introduced below.158

According to the previous studies on time-independent reliability analysis [37–39], the posterior mean159

function of I can be obtained as:160

mIn(x, ŷ(ti), ti) = Φ

(
−mgn(x, ŷ(ti), ti)

σgn(x, ŷ(ti), ti)

)
, i = 0, 1, · · · , nt − 1, (7)

where In denotes the posterior distribution of the indicator function I; Φ is the cumulative distribution161

function of the standard normal variable; mgn and σgn are the posterior mean and standard deviation162

functions of g, respectively.163

By replacing the indicator function I in Eq. (2) with its posterior mean function mIn in Eq. (7), we can164

obtain an alternative estimator for time-dependent failure probability:165

Pf,n(t0, tf ) =

∫
DX

∫
ΩY

nt−1
max
i=0

Φ

(
−mgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)

)
fX(x)dxdP (ωY ) . (8)

It should be noted that if nt → ∞ and σgn → 0, Pf,n(t0, tf ) theoretically approaches to Pf (t0, tf ). Similar166

estimators have been developed in slightly different contexts or from different perspectives in [40, 41]. Due167

to the analytical intractability, the estimator of the time-dependent failure probability, as defined in Eq. (8),168

necessitates numerical or analytical approximation in practice. In this study, we employ the MCS method169

due to its simplicity and robustness.170

The MCS estimator of Pf,n(t0, tf ) is given by:171

P̂f,n(t0, tf ) =
1

N

N∑
j=1

nt−1
max
i=0

Φ

(
−mgn(x

(j), ŷ(j)(ti), ti)

σgn(x
(j), ŷ(j)(ti), ti)

)
, (9)
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where
{
x(j)

}N
j=1

is a set of N random samples generated according to fX(x);
{
ŷ(j)(ti)

}N

j=1
at a given i172

represents N random samples of Ŷ (ti). The associated variance is expressed as:173

Var
[
P̂f,n(t0, tf )

]
=

1

N(N − 1)

N∑
j=1

[
nt−1
max
i=0

Φ

(
−mgn(x

(j), ŷ(j)(ti), ti)

σgn(x
(j), ŷ(j)(ti), ti)

)
− P̂f,n(t0, tf )

]2
. (10)

3.3. Stopping criterion174

Having obtained the time-dependent failure probability estimate, a stopping criterion is required to assess175

whether the estimate reaches a desired level of accuracy. In fact, a well-defined stopping criterion is crucial176

for the overall efficiency and accuracy of an active learning time-dependent reliability analysis method. In177

this study, we also propose a new stopping criterion.178

If we replace the term mgn in Eq. (8) with the lower and upper credible bounds of g, then we can have179

another two quantities:180

P+
f,n(t0, tf ) =

∫
DX

∫
ΩY

nt−1
max
i=0

Φ

(
−mgn(x, ŷ(ωY , ti), ti)− bσgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)

)
fX(x)dxdP (ωY )

=

∫
DX

∫
ΩY

nt−1
max
i=0

Φ

(
−mgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)
+ b

)
fX(x)dxdP (ωY ) ,

(11)

181

P−
f,n(t0, tf ) =

∫
DX

∫
ΩY

nt−1
max
i=0

Φ

(
−mgn(x, ŷ(ωY , ti), ti) + bσgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)

)
fX(x)dxdP (ωY )

=

∫
DX

∫
ΩY

nt−1
max
i=0

Φ

(
−mgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)
− b

)
fX(x)dxdP (ωY ) ,

(12)

where b > 0 is the credibility parameter corresponding to a (1−α)×100% credible level, i.e., b = Φ−1(1−α/2).182

It is straightforward to prove that P−
f,n(t0, tf ) < Pf,n(t0, tf ) < P+

f,n(t0, tf ) holds. Therefore, P
−
f,n(t0, tf ) and183

P+
f,n(t0, tf ) can be interpreted as, respectively, an optimistic and a conservative estimator of the time-184

dependent failure probability, in contrast to the nominal estimator Pf,n(t0, tf ). Furthermore, as σgn → 0,185

P−
f,n(t0, tf ) → Pf,n(t0, tf ) and P+

f,n(t0, tf ) → Pf,n(t0, tf ).186

The proposed stopping criterion is defined as follows:187

P+
f,n(t0, tf )− P−

f,n(t0, tf )

Pf,n(t0, tf )
< ϵ3, (13)

where ϵ3 is a user-specified threshold. This criterion terminates the iterative process when the relative188

difference between the conservative failure probability estimate P+
f,n(t0, tf ) and the optimistic estimate189
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P−
f,n(t0, tf ) falls below ϵ3, indicating that further iterations provide negligible improvement to the solution.190

As a side note, the proposed stopping criterion can be seen as an extension of Stopping Criterion 3 in191

[31], generalizing it from time-independent to time-dependent reliability analysis. Similar to Pf,n(t0, tf ),192

P+
f,n(t0, tf ) and P−

f,n(t0, tf ) are also evaluated using MCS in this study.193

Remark 1. In a manner similar to the stopping criterion in Ineq. (13), we can also define the following194

two stopping criteria:195

Pf,n(t0, tf )− P−
f,n(t0, tf )

Pf,n(t0, tf )
< ϵ1, (14)

196

P+
f,n(t0, tf )− Pf,n(t0, tf )

Pf,n(t0, tf )
< ϵ2, (15)

where ϵ1 and ϵ2 are two user-specified thresholds. These criteria extend stopping criteria 1 and 2 from [31],197

respectively. However, only the criterion in Ineq. (13) is considered in this work, in order to avoid an overly198

lengthy paper.199

3.4. Learning functions200

If the stopping criterion is not satisfied, a learning function is needed to guide the selection of the op-201

timal next point for evaluating the true performance function. This process further refines the GPR-based202

prediction model for the performance function, as well as the predicted time-dependent failure probability.203

Therefore, an effective learning function is essential for an active learning method in time-dependent relia-204

bility analysis. To this end, we also develop novel learning functions in this work, guided by the principle205

of considering the so-called minimum time (that is, the time at which the performance function attains its206

minimum) within the reference time interval in an average sense. Specifically, the best next point (denoted207

as
{
x(n+1), ŷ(n+1)(t(n+1)), t(n+1)

}
) is identified through a two-step procedure: (1) First, the optimal next208

time instant t(n+1) is selected by a learning function; (2) Then, the next best point
{
x(n+1), ŷ(n+1)(t(n+1))

}
209

is determined by an another learning function. The first task is based on Bayesian optimization [42], where210

three commonly used learning functions are explored. The objective of this task is to determine the time211

instant at which the performance function reaches its minimum value. However, this is done in an average212

sense to account for the inherent randomness associated with X and Ŷ (t). It is expected that the identified213
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time instant will be significant for estimating the time dependent failure probability Pf (t0, tf ). The second214

task leverages the Bayesian probabilistic integration method for time-independent reliability analysis [31].215

The primary objective of this task is to identify a set of x and ŷ for the fixed time instant determined in216

the first task, thereby enhancing our understanding of the performance function at that specific time and217

and its vicinity.218

In Bayesian optimization, three well-known learning functions are the lower confidence bound (upper219

confidence bound in the context of maximization), probability of improvement (PI) and expected improve-220

ment (EI) [32]. However, these notions may not be directly applicable in our case, as our problem is not a221

pure optimization task. Therefore, special treatment is required, as will be described below.222

The lower credible bound (LCB) function of gn is given by:223

LCB
(
X, Ŷ (ti), ti

)
= mgn(X, Ŷ (ωY , ti), ti)− bσgn(X, Ŷ (ωY , ti), ti). (16)

where the credibility parameter b trades off exploitation against exploration. This expression is actually a224

stochastic process. In case where X = x and Ŷ (ti) = ŷ(ti), the LCB function reduces to a function with225

respect to only ti, i = 0, 1, . . . , nt − 1. If the goal would be to find the minimum value of g(x, ŷ(ti), ti),226

the best next time instant t(n+1) can be chosen by minimizing LCB (x, ŷ(ti), ti). However, this is not the227

objective here. For our case, we further define the integrated LCB (ILCB) function by integrating out X228

and Ŷ (ti) from the LCB function:229

ILCB(ti) =

∫
DX

∫
ΩY

[mgn(x, ŷ(ωY , ti), ti)− bσgn(x, ŷ(ωY , ti), ti)] fX(x)dxdP (ωY ) . (17)

The ILCB can be approximated by MCS such that:230

ÎLCB(ti) =
1

N

N∑
j=1

[
mgn(x

(j), ŷ(j)(ti), ti)− bσgn(x
(j), ŷ(j)(ti), ti)

]
. (18)

The best next time instant can be selected by minimizing the ÎLCB such that:231

t(n+1) = argmin
ti∈[t0,t1,··· ,tnt−1]

ÎLCB(ti). (19)

Alternatively, we can define the PI:232

PI
(
X, Ŷ (ti), ti

)
= Φ

(
zmin −mgn(X, Ŷ (ωY , ti), ti)

σgn(X, Ŷ (ωY , ti), ti)

)
, (20)
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where zmin is the minimum value of Z observed so far, i.e., zmin = minni=1 z
(i). The PI function is known to233

be inherently exploitative. Taking the expectation of PI gives the integrated PI (IPI):234

IPI(ti) =

∫
DX

∫
ΩY

Φ(
zmin −mgn(x, ŷ(ωY , ti), ti)

σgn(x, ŷ(ωY , ti), ti)
)fX(x)dxdP (ωY ) . (21)

Similar to LCB, IPI can also be approximated by MCS, which is denoted as ÎPI. Based on ÎPI, the next235

best time instant is selected by:236

t(n+1) = argmax
ti∈[t0,t1,··· ,tnt−1]

ÎPI(ti). (22)

In addition to LCB and PI, another option is the EI:237

EI
(
X, Ŷ (ti), ti

)
=
(
zmin −mgn(X, Ŷ (ωY , ti), ti)

)
Φ

(
zmin −mgn(X, Ŷ (ωY , ti), ti)

σgn(X, Ŷ (ωY , ti), ti)

)

+ σgn(X, Ŷ (ωY , ti), ti)ϕ

(
zmin −mgn(X, Ŷ (ωY , ti), ti)

σgn(X, Ŷ (ωY , ti), ti)

)
,

(23)

where ϕ represents the PDF of the standard normal variable. The EI function can strike a balance between238

exploitation and exploration by the two additive terms. Further, we can define the integrated EI (IEI):239

IEI(ti) =

∫
DX

∫
ΩY

EI (x, ŷ(ωY , ti), ti) fX(x)dxdP (ωY ) . (24)

The MCS is used to approximate IEI, which is denoted as ÎEI. On this basis, the next best time instant is240

determined by:241

t(n+1) = argmax
ti∈[t0,t1,··· ,tnt−1]

ÎEI(ti). (25)

These ILCB, IPI, and IEI criteria can be interpreted as identifying the next promising time instant based242

on the well-established LCB, PI, and EI criteria, but in an average sense. While they offer three options,243

their performance may vary across different problems, which will be analyzed using four numerical examples244

in Section 4.245

After t(n+1) is obtained, a learning function needs to be defined to identify
{
x(n+1), ŷ(n+1)(t(n+1))

}
.246

With the time instant fixed, this can be treated analogously to a time-independent reliability problem. The247

following learning function is then proposed:248

L3(x, ŷ(t
(n+1))) =

[
Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

+ b

)
− Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

− b

)]
fX(x)fŶ (t)(ŷ(t

(n+1))).

(26)
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This function is derived from the integrand of P+
f,n(t0, tf )− P−

f,n(t0, tf ) by omitting the max operator and249

conditional on ti = t(n+1). It is worth mentioning that L3 can been seen as an adaption of the third learning250

function proposed in [31] originally developed for time-independent reliability analysis. The next best point251 {
x(n+1), ŷ(n+1)(t(n+1))

}
is identified by:252

{
x(n+1), ŷ(n+1)(t(n+1))

}
= argmax

j=1,2,··· ,N
L3(x

(j), ŷ(j)(t(n+1))). (27)

Remark 2. For consistency, if the stopping criterion in Ineq. (14) is used, the following learning function253

should be used:254

L1(x, ŷ(t
(n+1))) =

[
Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

)
− Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

− b

)]
fX(x)fŶ (t)(ŷ(t

(n+1))).

(28)

If the stopping criterion in Ineq. (15) is used, the following learning function should be used:255

L2(x, ŷ(t
(n+1))) =

[
Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

+ b

)
− Φ

(
−mgn(x, ŷ(t

(n+1)), t(n+1))

σgn(x, ŷ(t
(n+1)), t(n+1))

)]
fX(x)fŶ (t)(ŷ(t

(n+1))).

(29)

The functions L1 and L2 can be regarded as extensions of the first and second learning functions in [31],256

respectively.257

3.5. Implementation procedure of the proposed method258

The implementation procedure of the proposed IBIO method is summarized below, alongside a flowchart259

in Fig. 2.260

261

Step 1: Discretize the time period262

Discretize the time period [t0, tf ] into nt equally spaced time points ti = t0+ i∆t for i = 0, 1, · · · , nt− 1,263

with ∆t =
tf−t0
nt−1 .264

Step 2: Generate an initial sample pool265

Generate an initial sample pool S =
{
x(j), ŷ(j)(ti), ti

}
for i = 0, 1, · · · , nt−1 and j = 1, 2, · · · , N , where266

x(j) is sampled randomly according to fX(x), and ŷ(j)(ti) is generated randomly using the KL expansion.267
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Step 3: Form an initial training dataset268

Form a small initial training dataset D = {U , z}, where U =
{
X , Ŷ(t), t

}
=
{
x(j), ŷ(j)(tj), tj

}n0

j=1
269

and z =
{
g(x(j), ŷ(j)(tj), tj)

}n0

j=1
. Here, t = {tj}n0

j=1 is a vector of n0 equally spaced time instants over270

[t0, tf ], X =
{
x(j)

}n0

j=1
contains n0 samples of X generated using the Hammersley point set, and Ŷ(t) =271 {

ŷ(j)(tj)
}n0

j=1
is generated by KL expansion with the Hammersley point set. Let n = n0.272

Step 4: Construct a GPR model273

Construct a GPR model gn for the performance function g using the training dataset D. This is274

accomplished in the present study with the fitrgp function from the Statistics and Machine Learning Toolbox275

of Matlab R2024a, with a constant prior mean and an anisotropic Gaussian kernel for the prior covariance.276

The involved hyper-parameters are solved by maximizing the log-marginal likelihood with the quasi-Newton277

method.278

Step 5: Calculate the three terms P̂f,n(t0, tf ), P̂
+
f,n(t0, tf ) and P̂−

f,n(t0, tf )279

Calculate the time-dependent failure probability estimate P̂f,n(t0, tf ) via MCS with S, as well as280

P̂+
f,n(t0, tf ) and P̂−

f,n(t0, tf ).281

Step 6: Check the stopping criterion #1282

If the stopping criterion
P̂+

f,n(t0,tf )−P̂−
f,n(t0,tf )

P̂f,n(t0,tf )
< ϵ3 is satisfied twice in a row, then go to Step 8; otherwise,283

proceed to Step 7.284

Step 7: Enrich the training dataset285

First, calculate ÎLCB, ÎPI or ÎEI via MCS with S. Second, identify the next best time instant t(n+1)
286

via Eq. (19), Eq. (22) or Eq. (25). Third, identify the next best point
{
x(n+1), ŷ(n+1)(t(n+1))

}
using287

the learning function L3 via Eq. (27). Fourth, obtain z(n+1) by evaluating the performance function g at288

u(n+1) =
{
x(n+1), ŷ(n+1)(t(n+1)), t(n+1)

}
. Finally, enrich the existing training dataset with the new data,289

i.e., D = D ∪
{
u(n+1), z(n+1)

}
. Let n = n+ 1 and go to Step 4.290

Step 8: Check the stopping criterion #2291

First, calculate the CoV of P̂f,n(t0, tf ), denoted as CoV
[
P̂f,n(t0, tf )

]
. Then, if CoV

[
P̂f,n(t0, tf )

]
< η292

is satisfied (η is a user-specified threshold), proceed to Step 10; otherwise, continue to Step 9. Note that293
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this stopping criterion ensures that the sample size of MCS is sufficient to maintain the sampling variability294

below an acceptable level for estimating the time-dependent failure probability.295

Step 9: Enrich the sample pool296

First, generate an additional sample S+ like in Step 2. Then, enrich the existing sample pool with the297

new sample, i.e., S = S ∪ S+, and proceed to Step 5.298

Step 10: Return the time-dependent failure probability299

Return P̂f,n(t0, tf ) as the final result of the time-dependent failure probability.300

Start

Discretize the time interval [t0, tf ] into nt equally spaced time points

Generate an initial sample pool S =
{
x(j), ŷ(j)(ti), ti

}N,nt−1

j=1,i=0

Form an initial training dataset D = {U ,z}

Construct a GPR model ĝn(x, ŷ(τ), τ) using D

Calculate P̂f,n(t0, tf ), P̂
+
f,n(t0, tf ) and P̂−

f,n(t0, tf )

Stopping criterion #1? Enrich the training dataset

Stopping criterion #2?Enrich the sample pool

Return the time-dependent failure probability P̂f,n(t0, tf )

Stop

n = n0

No

n = n+ 1

Yes

No

Yes

Figure 2: Flowchart of the proposed IBIO method.

Remark 3. The proposed method is designed for the general case where the time-dependent performance301

function takes the form g(X,Y (t), t). As a result, it is also applicable to special cases such as g(X, t),302
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g(Y (t)), g(Y (t), t) and g(X,Y (t)).303

Remark 4. In addition to the time-dependent failure probability P̂f,n(t0, tf ), the time-dependent failure304

probability function P̂f,n(t0, t) for t ∈ [t0, tf ] can also be obtained as a by-product of the proposed method.305

For example, P̂f (t0, tl) for l = 0, 1, · · · , nt − 2 can be achieved by simply replacing nt − 1 with l in the306

right-hand side of Eq. (9).307

4. Numerical examples308

In this section, five numerical examples are provided to demonstrate the effectiveness of the proposed309

IBIO method for time-dependent reliability analysis. The parameters of the proposed method are set as310

follows: N = 105, n0 = 10, δ = 99.5%, b = 1.25, ϵ3 = 10% and η = 2%. Note that the IBIO method is311

further labeled as IBIO-ILCB, IBIO-IPI, and IBIO-IEI to indicate the learning function used to identify312

the optimal next time instant. For comparison, several existing methods (i.e., eSPT [43], SILK [23], AFPK313

[24] and REAL [26]) are included where applicable. To evaluate robustness, these methods, along with the314

proposed methods, are each run 20 independent times when the results are generated by us. All simulations315

are conducted on a MacBook Pro (14-inch, November 2023) equipped with an Apple M3 chip, 24 GB of316

RAM, and running macOS Sonoma 14.5.317

4.1. Example 1: A benchmark problem318

The first numerical example considers a benchmark problem adopted from [43]:319

g(X, Y (t), t) = X2
1X2 − 5X1(1 + Y (t))t+ (X2 + 1) t2 − 20, (30)

where t ∈ [0, 1]; X1 and X2 are two random variables, Y (t) is a stochastic process, as detailed in Table 1.320

The time interval [0, 1] is discretized into 50 equally spaced time points.321

Table 2 compares the performance of various methods for estimating the time-dependent failure prob-322

ability Pf (0, 1). The reference failure probability is adopted as 0.3081 (with a negligible CoV of 0.05%),323

which is given by MCS with 50×107 performance function evaluations. The proposed IBIO methods deliver324

comparable failure probability means with small CoVs (0.35% - 0.63%), yet require on average fewer than325
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Table 1: Random variables and stochastic process of Example 1.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

X1 Normal 3.50 0.25 -

X2 Normal 3.50 0.25 -

Y (t) Gaussian process 0 1 exp
(
−(t2 − t1)

2
)

14 evaluations of the g function. In contrast, other methods (i.e., eSPT, SILK, AFPK and REAL) incur326

higher computational cost in terms of g-function evaluations, and exhibit slightly larger CoVs in their failure327

probability estimates.328

Table 2: Time-dependent failure probability results of Example 1.

Method
Ncall P̂f (0, 1)

Reference

Mean CoV Mean CoV

MCS 50× 107 - 0.3081 0.05% -

eSPT 51.9 - 0.3082 1.52% [24]

SILK 25.7 - 0.3094 4.03% [24]

AFPK 24.4 - 0.3084 2.98% [24]

REAL 21.75 - 0.3093 3.21% [30]

Proposed IBIO-ILCB 13.20 3.11% 0.3089 0.35% -

Proposed IBIO-IPI 13.60 4.40% 0.3081 0.63% -

Proposed IBIO-IEI 13.25 3.35% 0.3088 0.43% -

Note: Ncall = the number of calls to the g-function;

Fig. 3 depicts the statistical results of the time-dependent failure probability function P̂f (0, t) for t ∈329

[0, 1], obtained through post-processing the proposed IBIO methods, in comparison to the reference result330

generated by MCS. As seen, the mean curves closely align with the reference, while the mean ± standard331

deviation (Std Dev) bands remain notably narrow.332
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Figure 3: Time-dependent failure probability function for Example 1.

4.2. Example 2: A simple supported beam333

The second example involves a simple supported steel beam [2], as shown in Fig. 4. The beam has a334

length of L = 5 m, and a rectangular cross section with an initial width b0 and height h0. The cross section335

undergoes isotropic corrosion over time at a constant rate of 2k, where k = 3× 10−5 m. The yield stress of336

the steel material is denoted as fy. The beam is subjected to a live concentrated load F (t) at its mid-span,337

along with a uniform dead load q = 78500b0h0. The time-dependent performance function is given by:338

g(X, Y (t), t) =
(b0 − 2kt) (h0 − 2kt)

2
fy

4
−
(
F (t)L

4
+

78500b0h0L
2

8

)
, (31)

where t ∈ [0, 10] year; b0, h0 and fy are three random variables and F (t) is a stochastic process, as described339

in Table 3. The time period [0, 10] is discretized into 300 time nodes.340

 

Figure 4: A simple supported beam.

The results of various methods are summarized in Table 4. The reference time-dependent failure proba-341

bility obtained using MCS is 7.71× 10−3, with a very small CoV of 0.51%. However, this comes at the cost342

of an exceptionally large computational effort, requiring 300×5×106 performance function evaluations. The343
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Table 3: Random variables and stochastic process of Example 2.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

fy (MPa) Lognormal 180 18 -

b0 (m) Lognormal 0.2 0.01 -

h0 (m) Lognormal 0.04 0.004 -

F (t) (N) Gaussian process 3500 700 exp
(
−9(t2 − t1)

2
)

eSPT, SILK, AFPK, and REAL methods provide reasonable mean values for the failure probability esti-344

mates with moderate computational effort, requiring an average of 23.20 to 59.33 g-function calls. All IBIO345

methods require fewer than 19 performance function evaluations on average, outperforming other methods346

while providing reasonable failure probability estimates.347

Table 4: Time-dependent failure probability results of Example 2.

Method
Ncall P̂f (0, 10)

Reference

Mean CoV Mean CoV

MCS 300× 5× 106 - 7.71× 10−3 0.51% -

eSPT 59.33 - 7.68× 10−3 1.61% [29]

SILK 44.67 - 7.75× 10−3 1.60% [29]

AFPK 23.20 - 7.79× 10−3 1.60% [29]

REAL 32.30 9.21% 7.75× 10−3 2.35% -

Proposed IBIO-ILCB 17.70 8.22% 7.67× 10−3 2.28% -

Proposed IBIO-IPI 18.90 7.85% 7.65× 10−3 3.78% -

Proposed IBIO-IEI 18.45 11.32% 7.70× 10−3 5.72% -

The statistical results of the time-dependent failure probability function P̂ (0, t) for t ∈ [0, 10] obtained348

from the proposed methods are depicted in Fig. 5, along with the reference provided by MCS. It is shown349

that the mean curves agree well with the reference and the mean ± std dev bands are narrow.350
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Figure 5: Time-dependent failure probability function for Example 2.

4.3. Example 3: A cantilever tube351

As shown in Fig. 6, this example considers a cantilever tube structure that has been studied extensively352

[40, 44, 45]. This structure is subject to three forces F1, F2 and P , as well as a torque T (t). The yield353

strength of the material degrades linearly over time s(t) = s0(1−0.01t), where s0 is the initial yield strength.354

The time-dependent performance function is defined as:355

g(X, Y (t), t) = s(t)−
√

σ2
x + 3τ2zx(t), (32)

where t ∈ [0, 5] year; σx and τzx(t) are given by:356

σx =
P + F1 sin θ1 + F2 sin θ2

π
4

[
d2 − (d− 2h)

2
] +

(F1L1 cos θ1 + F2L2 cos θ2) d

2× π
64

[
d4 − (d− 2h)

4
] , (33)

357

τzx(t) =
T (t)d

4× π
64

[
d4 − (d− 2h)

4
] , (34)

in which θ1 = 5◦, θ2 = 10◦, L1 = 120 mm and L2 = 60 mm; F1, F2, P , h, d and s0 are six random variables,358

and T (t) is a stochastic process, as reported in Table 5. In this example, the time interval [0, 5] is discretized359

into 100 time nodes.360

Table 6 summarizes the results obtained using different methods, including MCS, SILK, REAL, IBIO-361

ILCB, IBIO-IPI, and IBIO-IEI. The reference failure probability provided by MCS is 1.36 × 10−2, with362

a CoV of 0.85%, achieved at the expense of 100 × 106 performance function calls. SIlK can produce a363

failure probability mean close to the reference, while a relatively small CoV of 2.19%, requiring an average364

of 71.00 g-function evaluations. REAL reduces the average number of g-function evaluations to just 13.40,365
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Figure 6: A cantilever tube subject to three forces and one torque.

Table 5: Random variables and stochastic process of Example 3.

Symbol Distribution Mean CoV Auto-correlation coefficient

F1 (N) Normal 1800 0.10 -

F2 (N) Normal 1800 0.10 -

P (N) Lognormal 1000 0.10 -

h (mm) Normal 5 0.019 -

d (mm) Normal 42 0.02 -

s0 (MPa) Normal 500 0.10 -

T (t) (N ·mm) Gaussian process 1.7× 106 0.10 exp
(
−4(t2 − t1)

2
)

albeit with a relatively high CoV of 26.35%. However, its failure probability estimates exhibit significant366

variability, as indicated by a CoV of 16.47%, even though the mean value remains close to the reference367

result. Compared to SILK and REAL, all IBIO methods strike a more favorable balance between efficiency368

and accuracy. However, it is worth noting that the number of performance function evaluations exhibits a369

high CoV for IBIO-ILCB.370

Fig. 7 presents the statistical results of the time-dependent failure probability function P̂f (0, t) for371

t ∈ [0, 5] obtained using the proposed IBIO methods, alongside the reference result from MCS. It is evident372

that the mean value curves for all IBIO methods closely approximate the MCS reference solution, with373

narrow mean ± std dev bands.374
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Table 6: Time-dependent failure probability results of Example 3.

Method
Ncall P̂f (0, 5)

Mean CoV Mean CoV

MCS 100× 106 - 1.36× 10−2 0.85%

SILK 71.00 11.30% 1.36× 10−2 2.19%

REAL 13.40 26.35% 1.35× 10−2 16.47%

Proposed IBIO-ILCB 20.25 21.55% 1.35× 10−2 3.54%

Proposed IBIO-IPI 18.85 10.51% 1.33× 10−2 3.31%

Proposed IBIO-IEI 18.30 8.14% 1.35× 10−2 3.68%
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Figure 7: Time-dependent failure probability function for Example 3.

4.4. Example 4: A spatial truss structure375

The fourth numerical example involves a 120-bar spatial truss structure under thirteen vertical concen-376

trated loads [37], as shown in Fig. 8. The structure is modeled as a three-dimensional finite element model377

using the open-source software framework OpenSees (https://opensees.berkeley.edu/). The model con-378

sists of 49 nodes and 120 truss elements. It is assumed that all the elements have the same cross-sectional379

area A and young’s modulus E. A time-varying vertical concentrated load P0(t) is applied to node 0, while380

12 static vertical concentrated loads P1, P2, · · · , P12 are applied to nodes 1 through 12. The time-dependent381

performance function is defined as:382

g(X, Y (t)) = ∆− V0(E,A, P0(t), P1, P2, · · · , P12), (35)
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where t ∈ [0, 50] year; V0 denotes the vertical displacement of node 0 along the negative of z-axis; ∆383

represents the allowable displacement, which is set to 100 mm; E, A, P0(t), P1, P2, · · · and P12 are given384

in Table 7. The time period [0, 50] is discretized into 20 time nodes.385

1589 cm

691.4 cm

1250 cm

Figure 8: A 120-bar spatial truss structure under vertical loads.

Table 8 presents the results of various methods for estimating the time-dependent failure probability,386

P̂f (0, 50). The reference value of the failure probability is taken as 2.81×10−2 (with a CoV of 0.83%), which387
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Table 7: Random variables and stochastic process of Example 4.

Symbol Distribution Mean CoV Auto-correlation coefficient

E (GPa) Normal 200 0.10 -

A (mm2) Normal 2000 0.10 -

P1, P2, · · · , P12 (kN) Lognormal 100 0.15 -

P0(t) (kN) Lognormal process 1000 0.15 exp
(
−(t2 − t1)

2/50
)

Note: The auto-correlation coefficient function for P0(t) is defined for the underlying

Gaussian process.

is provided by MCS with 20× 5× 105 model evaluations (taking 34,808.18 s ≈ 9.67 h). The results for both388

SILK and REAL are unavailable as they fail to meet their stopping criteria before encountering memory389

limitations. All the proposed IBIO methods provide reasonably accurate results for the failure probability,390

requiring only about 37 model evaluations and 34.45 - 36.67 s on average. It is worth noting that the number391

of model evaluations for IBIO-ILCB exhibits slightly large variability.392

Table 8: Time-dependent failure probability results of Example 4.

Method
Ncall P̂f (0, 50) Time (s)

Mean CoV Mean CoV Mean CoV

MCS 20× 5× 105 - 2.81× 10−2 0.83% 34,808.19 -

SILK - - - - -

REAL - - - - -

Proposed IBIO-ILCB 37.40 18.91% 2.83× 10−2 2.46% 34.73 -

Proposed IBIO-IPI 36.95 13.13% 2.83× 10−2 2.65% 36.67 -

Proposed IBIO-IEI 36.85 11.08% 2.82× 10−2 2.06% 34.45 -

Fig. 9 depicts the statistical results of the failure probability function P̂f (0, t) for t ∈ [0, 50] obtained393

using the proposed IBIO methods, alongside the reference curve provided by MCS. It can be observed that:394
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(1) the mean value curves by the proposed methods accord well with the reference one; (2) the mean ± std395

dev bands are rather narrow.396
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Figure 9: Time-dependent failure probability function for Example 4.

4.5. Example 5: A rigid-frame bridge structure397

As a final example, we consider a three-span rigid-frame bridge structure, which is shown in Fig. 10(a).398

The bridge spans a total length of 60 m, divided into three equal 20 m spans, and featuring a constant deck399

width of 6 m. The deck thickness varies linearly from 1 m at the end supports to 2 m at the pier locations.400

Two rectangular piers — each 3 m wide, 6 m long, and 10 m high — are positioned at the 20 m and401

40 m marks along the deck. A three-dimensional finite-element model is built in MATLAB’s PDE Toolbox402

(Fig. 10(b)), with fixed boundary conditions applied to the deck’s end faces and the piers’ base faces, and403

a uniform vertical load Q(t) imposed on the deck’s top surface. The Young’s moduli of the deck and piers404

degrade over time following Ed(t) = Ed,0(1 − γ log(1 + t)) and Ep(t) = Ep,0(1 − γ log(1 + t)), where Ed,0405

and Ep,0 are the initial Young’s modulus and γ = 0.05 is adopted in this study. Both deck and piers share406

a Poisson’s ratio of 0.20. The time-dependent performance function is defined as:407

g(X, Y (t), t) = ∆− Vm(Ed,0, Ep,0, Q(t), t), (36)

where t ∈ [0, 5] year; Vm denotes the vertical deflection of the deck at mid-span; ∆ is the maximum allowable408

deflection, which is specified as 0.05 m. The involved random variables and stochastic process are listed in409

Table 9. The time period [0, 5] is discretized into 20 time nodes.410
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(a)

(b)

Figure 10: A rigid-frame bridge structure: (a) Schematic diagram; (b) Finite-element mesh.

Table 10 presents the results obtained with different methods. Since a full MCS is computationally411

infeasible for this example, we adopt the mean value of the time-dependent failure probabilities from the412

SILK method as the reference. The reference value is 8.62 × 10−2 with a CoV of 0.83%, achieved at an413

average cost of 32.80 model evaluations and 27.95 s. The REAL exhibits large variability for the number414

of model evaluations (a CoV up to 20.90%), and also for the time-dependent failure probabilities (a CoV415

of 9.84%). Furthermore, the mean value of time-dependent failure probabilities deviates markedly from the416

reference. By contrast, all the proposed IBIO methods show reasonable variability and yield mean failure417

Table 9: Random variables and stochastic process of Example 5.

Symbol Distribution Mean Standard deviation Auto-correlation coefficient

Ed,0 Lognormal 30 GPa 3.0 GPa -

Ep,0 Lognormal 35 GPa 3.5 GPa -

Q(t) Gaussian process 1000 kN/m2 150 kN/m2 exp (−|t2 − t1|/25)
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probabilities that closely match the reference. Note that these methods only require an average of about 16418

performance function calls and 5 seconds to run, which is far less than SILK.419

Table 10: Time-dependent failure probability results of Example 5.

Method
Ncall P̂f (0, 5) Time (s)

Mean CoV Mean CoV Mean CoV

SILK 32.80 12.73% 8.62× 10−2 0.83% 27.95 -

REAL 15.90 20.90% 8.26× 10−2 9.84% 6.46 -

Proposed IBIO-ILCB 15.65 6.31% 8.71× 10−2 0.79% 4.74 -

Proposed IBIO-IPI 15.70 5.51% 8.73× 10−2 1.34% 4.90 -

Proposed IBIO-IEI 16.10 8.99% 8.73× 10−2 1.08% 4.95 -

The statistical results of the time-dependent failure probability function P̂f (0, t) for t ∈ [0, 5] are shown420

in Fig. 11, together with the reference from SILK. It can be seen that the mean ± std dev bounds are quite421

narrow and the mean curves are close to the reference.422
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Figure 11: Time-dependent failure probability function for Example 5.

27



5. Concluding remarks423

This paper presents a novel single-loop Bayesian active learning method for computationally expensive424

time-dependent reliability analysis, called ‘Integrated Bayesian integration and Optimization’ (IBIO). The425

underlying idea is to construct a computationally efficient Gaussian process regression model to replace the426

original expensive-to-evaluate performance function, leveraging a Bayesian active learning approach. This is427

achieved by ingeniously integrating the Bayesian probabilistic integration for static reliability analysis and428

the Bayesian global optimization for finding the global optima of expensive black-box functions. Specifically,429

we first introduce a pragmatic estimator for the time-dependent failure probability. Based on this estimator,430

a novel stopping criterion is then proposed to determine when to terminate the active learning processes.431

Furthermore, new learning functions are also proposed to identify the promising point where to evaluate the432

true performance function next when the stopping criterion is not reached. More precisely, three alternative433

learning functions are formulated to select the next optimal time instant from a Bayesian optimization434

perspective, but in an average sense. In addition, another learning function, adapted from one Bayesian435

integration method for static reliability analysis, is introduced to guide the selection of the next optimal436

sample for random variables and stochastic processes at the identified time instant. The proposed method is437

applicable whether or not the performance function is subject to stochastic processes. Besides, it can provide438

not only the time-dependent failure probability over the reference time interval, but also the evolution of439

the failure probability over the interval as a by-product. Numerical results indicate that the proposed440

method can significantly reduce the number of performance function evaluations while maintaining high441

accuracy. In addition, none of the three proposed learning functions for selecting the next optimal time442

instant consistently and significantly outperforms the others.443

While the proposed method exhibits considerable strengths, several avenues for future improvement444

remain. First, extending the approach to high-dimensional problems remains a significant task. Second,445

accurately estimating very small failure probabilities will likely demand more efficient techniques than crude446

MCS.447
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Appendix A. Brief introduction to Gaussian process regression461

For notational simplicity, we denote the input of the performance function as u and the corresponding462

output as z, i.e., u = [x, ŷ(t), t] and z = g(u). GPR places a GP prior over the performance function:463

g0(u) ∼ GP(mg0(u), kg0(u,u
′)), (A.1)

where g0 denotes the prior distribution of g before seeing any observations; mg0 and kg0 are the prior mean464

and covariance functions, respectively.465
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Given a dataset of n observations, D = {U , z}, where U is an n-by-(d1+d2+1) matrix with its i-th row466

being u(i) and z is an n-by-1 vector with its i-th element being z(i) = g(u(i)) for i = 1, 2, · · · , n, conditioning467

this dataset on the prior distribution gives rise to a GP posterior for the performance function:468

gn(u) ∼ GP(mgn(u), kgn(u,u
′)), (A.2)

where gn denotes the posterior distribution of g after seeing n observations; mgn and kgn are the posterior469

mean and covariance functions respectively, which are given by:470

mgn(u) = mg0(u) + kg0(u,U)⊤K−1
g0 (z −mg0(U)), (A.3)

471

kgn(u,u
′) = kg0(u,u

′)− kg0(u,U)⊤K−1
g0 kg0(U ,u′), (A.4)

where mg0(U) is an n-by-1 vector with its i-th element being mg0(u
(i)); kg0(u,U) and kg0(U ,u′) are two472

n-by-1 vectors with their i-th elements being kg0(u,u
(i)) and kg0(u

(i),u′), respectively; Kg0 is an n-by-n473

matrix with its entry being kg0(u
(i),u(j)).474
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