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ABSTRACT

Inverse uncertainty quantification commonly uses the well established Bayesian framework. Re-

cently, alternative interval methodologies have been introduced. However, in their current state of

the art implementation, both techniques suffer from a large and usually unpredictable computa-

tional effort. Thus, both techniques are not applicable in a real-time context. To achieve a low-cost,

real-time solution to this inverse problem, we introduce a deep-learning framework consisting of

unsupervised autoencoders and a shallow neural network. This framework is trained by means

of a numerically generated dataset that captures typical relations between the model parameters

and selected measured system responses. The performance and efficacy of the technique is il-

lustrated using two distinct case studies. The first case involves the DLR AIRMOD, a benchmark

case that has served as reference case for the inverse uncertainty quantification problem. The

results demonstrate that the achieved accuracy is on par with the existing interval method found
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in literature, while requiring only a fraction of its computational resources. The second case study

examines a resistance pressure welding process, which is known to require extremely fast moni-

toring and control due to the high process throughput. Based on the proposed method, and with

only a limited selection of simulated responses of the process, it is possible to identify the interval

uncertainty of the crucial parameters of the process. The computational cost in this case makes it

possible for an inverse uncertainty quantification in a real-time setting.

1 INTRODUCTION

Over the past decades, there has been growing interest in the development and utilisation of numerical

modelling techniques. There is good reason for this, as the ever rising computational power is capable

of supporting state-of-the-art techniques, often involving many degrees of freedoms, highly non-linear be-

haviour and complicated sets of governing equations. However, the information of only one deterministic

numerical model is rather limited. After all, the knowledge on a structure or process is usually incomplete, be

it due to inherent variable parameters or a lack of knowledge. Therefore, approaches for uncertainty quantifi-

cation are required to cope with the considerable uncertainty stemming from diverse factors such as variable

model parameters, boundary conditions, geometric variables or a lack of knowledge on specific parameter

values. To accommodate these variabilities and uncertainties, several philosophies are widely adopted,

including probabilistic techniques, [1], interval methods[2] or imprecise probabilistic frameworks[3]. For

many applications, e.g., process control or reliability estimation of a system, capturing the non-deterministic

parameters of a model is key for a realistic quantification of the non-determinism in the responses of the

model. However, not all parameters are trivial to measure (e.g., heterogeneous material properties) or are

unobservable, e.g., due to temporal effects (e.g. temporal (in)stability). To identify and quantify those non-

deterministic parameters of a model that cannot be measured directly, inverse uncertainty quantification

(UQ) techniques have been introduced. Following inverse UQ, the responses stemming from the structure

or process are measured and used to infer knowledge on the non-determinism in the model parameters. In

the context of inverse UQ, both probabilistic and non-probabilistic approaches have been developed, and

practically compared in terms of computational efficiency, conservatism in encompassing the dataset and

required assumptions on priors information [4, 5]. The probabilistic method, where the class of Bayesian

methods is considered the standard approach, starts from assigning a likelihood to the uncertain parame-

ters of the numerical model, and are aimed at inferring the relative likelihood of possible realisations of the

model responses [6]. On the other hand, set-based interval methods define boundaries that encompass
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non-deterministic parameters, but they lack the capability to assign a likelihood to each value within this

range. Elaborate literature exists on both techniques, comparing these concepts from a theoretical and

implementation point of view (see, e.g., [7, 8]).

It can be concluded that both methods are very valuable to provide either a tight estimation of the distri-

bution of, or at least bounds on, the uncertainty quantities under consideration. The underlying philosophy

differs greatly and the most appropriate method given an inverse UQ problem is highly case dependent.

Both approaches posses strengths and weaknesses which have to be considered, e.g., availability of the

data, desired information on the uncertainty, available computational power vs. required computational effort

for the specific problem.

This paper specifically focuses on interval approaches, as we want to focus on the specific case where

only very few data replica are available. Due to the excessive computational cost of inverse approaches,

they are typically not suitable for real-time applications. A possible solution to this problem is to replace the

expensive numerical model with an accurate surrogate model that is faster to evaluate [9]. A second main

problem lies in the high dimensionality of datasets commonly found in industrial applicable models [10].

This high dimensionality induces challenges, particularly for an inverse interval quantification, where the

calculation of convex hulls is necessary. Due to the exponential scaling of computational cost with dimen-

sionality, reducing dimensionality is crucial to maintain feasible computation times. This requires tools from

the domains of big data & machine learning [11, 12]. Various methods can be employed, e.g., based on

covariance matrix decompositions, active subspace methods or manifold learning. Also autoencoders, as

introduced by Olshausen and Field [13], are increasingly being exploited in modern machine- and deep-

learning techniques [14]. However, even when these approaches are being considered, the computational

cost that is associated with solving the inverse interval problem using the methods discussed in [15] might

be excessive. This paper presents a combined unsupervised and supervised deep learning approach for

the inverse quantification of set-theoretical uncertainty. The core idea is to construct a neural network as

an inverse surrogate model. This is achieved by training the model using data generated by a numerical

code representing the forward analysis. This paper is an extension on the work by the authors in [16]. The

method is applied on two independent cases.

The first one is a benchmark case on this topic, namely the DLR AIRMOD test setup, and its corre-

sponding dataset, which are described in detail in [17]. The second case is based on a dataset stemming

from a self developed validated Finite Element model of a resistance pressure welding (RPW) process.

These cases are selected due their challenging nature and relevance on the topic. The selection of
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the first case is based on its extensive coverage in the literature, featuring discussions on the applicability

of Bayesian and interval methods in scenarios with both abundant and scarce data [4]. The second case

is a highly relevant topic for industry, since real-time process control on the RPW process is challenging

to achieve, but is crucial to guard the process quality. The process is based on a set of nominal process

parameters, generally accompanied by very restrained controlling schemes, and is often hampered by

minor perturbations, providing significant varying results. Therefore, identifying the uncertainty in an inverse

setting provides insight for appropriate control actions.

This paper is structured as follows: section 2 elaborates the aforementioned current state-of-the-art on

the inverse interval uncertainty quantification (iUQ) approach. Section 3 discusses the general methodology

of applying a black box model in an inverse uncertainty quantification method. Section 4 and section 5

illustrate the performance of the this methodology on two distinctive cases. Finally, section 6 lists the

conclusions of this work.
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2 INVERSE QUANTIFICATION OF MULTIVARIATE INTERVAL UNCERTAINTY

This section contains an introduction to the interval approach for the inverse identification of uncertainty.

The method is briefly discussed in this work to provide the reader an insight into the state-of-the-art in

inverse interval methods. Furthermore, a practical comparison of the method with the multivariate interval

approach is presented in the context of a case study. For a more in depth study on the latter, the most

relevant literature according to the authors is given at relevant points in the summary.

An inverse method arises when parameters are unobservable or cannot be measured, and have to be

estimated based on measured responses of the system, which are only indirectly related to the parameters

though a computational model M. For simplicity in this work, vectors are expressed as lowercase boldface

characters θ. The numerical model is parameterised by a parameter vector θ ∈ F ⊂ Rk, with F the set

of physically admissible parameters and k ∈ N+. Evaluating the model M(θ) for a certain realisation of θ

yields a vector of model responses zs ∈ H ⊂ Rd, with d ∈ N+ and H the set of physically admissible model

responses, according to:

zs = M(θ). (1)

The problem statement in this paper is called inverse, because instead of propagating parameters

through a model, the goal is to use measurement data to obtain insight on the model parameters, which

constitutes an inverse problem.

In an interval context, a model parameter θ subject to uncertainty is denoted as θI . By definition, the

index I is used to indicate an interval valued parameter. The possible values in the set θI are constrained

by both an upper bound θ and a lower bound θ, where θ ≤ θ. An interval is closed when both bounds are a

member of the interval. The domain of closed real-valued intervals is denoted as R. Within R, an interval

θI is explicitly defined as:

θI =
[
θ, θ
]
=
{
θ ∈ R | θ ≤ θ ≤ θ

}
. (2)

Note that an interval can equivalently be represented as a closed section of the real line. An interval
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vector is a vector with each element a real-valued interval:

θI =



θI
1

θI
2

...

θI
k


=
{
θ ∈ F ⊂ Rk | θi ∈ θIi

}
, (3)

with θI ⊆ Rk, the domain of closed real-valued interval vectors of dimension k and F the sub-domain of

feasible parameters (e.g., non-negative material properties). Analogue to interval vectors, interval matrices

are defined on Rk×m.

2.1 Optimisation based approach

Consider θI as the interval vector containing the k uncertain input parameters, while M(θ) is a model

as described as in Eq. (1). The interval FE method can then be expressed as finding the solution set z̃ :

z̃ =
{
z | z = M(θ),∀θ ∈ θI

}
, (4)

which reads as “z̃ is the realisation set comprising all output vectors z, obtained through the deterministic

application of a numerical procedure to all vectors θ, contained in θI ”. It is important to note that the result z̃

of an interval FE computation is typically not represented as an interval vector. As per definition, all entries in

an interval vector are decoupled and are therefore not capable of describing dependency between different

variables. However, the model structure of M (e.g., in the form of sets of differential equations) provides

a coupling among all model responses z. Consequently, representing the result with an interval vector

may include non-physical model response vectors z explicitly, potentially causing a significant degree of

conservatism. Moreover, in general, z̃ spans a non-convex manifold in Rd. As such, a closed form solution

of z̃ can only be obtained when an explicit analytical solution for z = f(θ) exists.

As an alternative approach, the exact solution set z̃ can also be approximated by the construction of

an uncertain realization set z̃s under e.g., convexity assumptions. This set is obtained by calculating q
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deterministic responses zs
j of by propagating well-chosen θf ∈ θI , f = 1, . . . , q:

z̃s =
{
zs
j | zs

j = M(θf ),θf ∈ θI ; f = 1, · · · , q
}
, (5)

with zs
j ∈ Rd, j = 1, ..., q a vector containing the d-dimensional output response of the jth deterministic

model solution:

zs
j = [zs1, z

s
2, ..., z

s
d]

T
, (6)

In practice, the response quantities that constitute zs
j depend on the considered model M. It is im-

perative that the realisations represent the solution set z̃ as closely as possible, under condition that the

realisations remain within the extreme model responses defined by M(θI). Therefore, recent work has

focused on finding the smallest conservative convex approximation of z̃ [15]. Other approaches involve

sampling from a Cauchy distribution [18], or Bayesian optimisation schemes [19]

When M is a strictly monotonic FE model, the Transformation Method [20] provides an exact mapping

from θI to z̃, albeit needing 2k deterministic model evaluations for the solution of a single interval problem.

A mathematical handle to the boundaries of z̃s is provided by the convex hull Cs of the realisation set z̃s.

Cs can be considered as a set of vertices bounding the uncertain realisation set. This set of vertices in

essence equivalently represent a convex polytope in Rd according to the Minkowski-Weyl theorem. As

such, a convex hull can be endowed with a Lebesgue measure Vs on Rd. For inverse quantification of

multivariate interval uncertainty, experimental data De of the model responses z are used to construct a

measurement set z̃e:

z̃e =
{
ze
j ∈ Rd|j = 1, · · · , q

}
, (7)

with ze
j ∈ Rd, j = 1, ..., q a vector containing the d-dimensional parameters of the jth deterministic experi-

ment. The non-determinism that is present in this set is equivalently bounded by a convex hull Ce, with the

corresponding measure Ve.
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Finally, the interval uncertainty in θ̃e
MV iUQis identified by minimising the following objective function:

θ̃e
MV iUQ = argmin δ(θI) = (∆V 2

s + w0∆V
2
0 +∆c2)1/2, (8)

which includes the term ∆Vs as a measure for the difference in the measures of the experimental Ve and

simulated Vs convex hulls Ce and Cs, ∆V0 a measure for the overlap in both convex hulls and ∆c a measure

for the difference in location of the centre of gravity of both convex hulls. The weighting factor w0 is initially

set to unity, which balances the priority between maximising the overlap and matching the multidimensional

volumes. This also serves to mitigate instabilities. These would inevitably manifest in the case a large w0 is

selected due to the discontinuous behaviour of Eq. (8) as a result of the barrier-function-like term w0∆V
2
0 .

The index MV iUQ refers to the optimisation based approach in this subsection, and serves as a notation

during the comparison in the following section 4. For more details on this approach, the reader is referred

to either [15] or [21]. This method serves as the reference for our approach introduced in this work.

2.2 Point-wise inverse approach

The identification procedure in the proposed point-wise inversion process starts from the training of a

learning model G that represents the inverse of the forward model M. The objective of this surrogate is to

enable the direct calculation of the approximated interval input parameter space θ̃e
BB , with the index BB re-

ferring to the point-wise black box learning approach in this subsection, and serves as a notation during the

comparison in the following section 4. The direct calculation is based on the set of measured responses z̃e

coming from an experimental data set De. The set θ̃e
BB is obtained by inversely propagating q deterministic

measurements ze
j , with j = 1, · · · , q to the corresponding input trough the surrogate. Specifically, we aim to

represent the relation between θe and ze as:

θe
j = G(ze

j ), (9)

with G referring to the inverse model of a classic forward computational model M, that is calculated q times

with j = 1, · · · , q . The set of approximated interval input parameters θ̃e
BB is obtained by defining the bounds

stemming from the point-wise approach for each model parameter θe
BB(i):
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θ̃e(i) =
[
θe(i),θ

e
(i)
]

(10)

where:

θe(i) = min
j=1,...q

θe
j (i) (11)

θ
e
(i) = max

j=1,...q
θe
j (i) (12)

which constructs the set θ̃e for d parameters, where i = 1, · · · , d:

θ̃e =



[
θe(1),θ

e
(1)
]

...[
θe(i),θ

e
(i)
]

...[
θe(d),θ

e
(d)
]


(13)

The approximation G originates from a data driven, purely mathematical algorithm, which is trained on

input-output pairs, yet it neglects the physical constraints and boundaries, whereas M is used to solve

one or multiple differential equations for zs
j . It should be pointed out at this point that in general, M is

not injective, and hence, also not a bijection. That means that the inverse of M is, strictly speaking, not

defined. Our method, however, is aimed at finding a map that is able to provide a fast and accurate point-

wise approximation of this relation according to a well-defined accuracy metric. This is in fact similar to
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using iterative procedures that aim to approximate the same undefined inverse map.

Furthermore, since G is solved for θe
j ,(see Eq. (9)) a final verification step becomes available to approx-

imate the measurement data ze
j by solving the identified inputs, yielding:

z̃e ≃ z̃e
BB =

{
zs
j,BB | zs

j,BB = M(θj,BB),θj,BB = G(ze
j ), j = 1, · · · , q

}
(14)

The main drawback of this method, is the prior knowledge required on the input parameters. As the pro-

posed methodology trains G based upon the available virtual experiments Ds of n samples, Ds has to be

sampled such that scarce sampled regions are avoided to minimise interpolation error in a possible re-

sponse surface model. Furthermore, Ds has be sampled such that the expected identified input parameters

are well captured within the limits of the uniformly sampled virtual experiments. This avoids any possible

extrapolation using G on the actual experiments, hence a drawback compared to the optimisation based

approach, as the optimisation path does not suffer from this effect.
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3 BLACK BOX APPROACH

This section introduces a deep learning method that can be used for the application of inverse uncer-

tainty quantification in process simulation, based on limited experimental data. Normally, inverse uncertainty

quantification problems are solved by means of iterative procedures that aim at minimising some discrep-

ancy metric between the measured and simulated responses. The quantification procedure introduced in

this paper however starts from the training of a combined unsupervised and supervised learning model G.

3.1 Overview of the approach

Virtual experiments
Ds of n samples

{
θ̃, z̃s

}

Training iter-
ation of GDR

z̃s,r

Lossdr ≤
Lossth,dr

Vary (hyper)-
parameters

no

{
θ̃, z̃s,r

}

Ds,r =
Ds,r,tr ∪ Ds,r,te

{
θ̃tr, z̃s,r,tr

} {
θ̃te, z̃s,r,te

}

Training itera-
tion of GNN

Cross-validation
of the model

Lossnn ≤
Lossth,nn

Vary hyper-
parameters

no

GDR

yes

GNN

yes

ze,r
j = GDR(ze

j ) θe
j = GNN (ze,r

j )

θe
j = G(ze

j ); j = 1, . . . q

θ̃
e
(i) =

[
min

j=1,...q
θ
e
j (i), max

j=1,...q
θ
e
j (i)

]
θ̃e
MLAz̃e

Fig. 1: Workflow, illustrating the proposed prediction structure for inverse UQ

The different steps required to train and test the proposed prediction model are schematically visu-

alised in the flowchart in Figure 1. Two main loops can be distinguished. The first loop aims at defining Gdr.

The approach starts from a dataset Ds, consisting of a set of model responses z̃s and the corresponding
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parameters θ̃s and aims at reducing the complexity of the data by applying a dimension reduction tech-

nique. There, we compare two commonly used approaches, PCA and autoencoders, to project the set of

responses z̃s into a reduced space z̃s,r. Depending on the algorithm, the first loop aims at optimising the

(hyper-)parameters until a threshold for the loss function Lossth,dr of the dimension reduction is achieved,

e.g., by varying the amount of neurons in an autoencoder or the amount of principal components that are

neglected in a PCA. When satisfied to the loss condition, a second loop is entered, which first divides the

data in a train and test set, which was superfluous until this point, due to the unsupervised approach in the

first loop. The second loop aims at defining Gnn. A neural network is fitted on a training dataset consisting

of input-output pairs, respectively the responses in the reduced space z̃s,r and the set of model parameters

θ̃s. A second loss threshold Lossth,nn is introduced to optimise the accuracy of the trained neural network.

When satisfied, the architecture and hyper-parameters in Gnn are defined, resulting in a model that is ready

to identify model parameters when given experimental data, as introduced in Eq. (9):

θe
j = G(ze

j ) ⇐⇒ θe
j = GNN (Gdr(z

e
j )). (15)

The different steps will be described in detail in the following paragraphs.

3.2 Dimension reduction

Experimental data z̃e is often largely parameterised, with a corresponding dimension d, where d≫ 1 ∈

N+, resulting in a high-dimensional space when representing its volume. The core problem arises from the

rapid expansion of this space, leading to sparse and dissimilar data. As a consequence, the computational

complexity of a neural network scales exponentially with the data. With each increase in d, connections

to every neuron in the subsequent layer are necessitated, according to Eq. (24). This key equation itself

is not computationally intensive. However, its recurrence during training, due to the architecture of neural

networks, has to be solved numerous times, as such increases the overall computational burden. This

phenomenon, commonly termed the curse of dimensionality, pertains to challenges encountered in high-

dimensional spaces. It hampers strategies to work efficiently and imposes significant problems concerning

computational expenses, which do not occur in low-dimensional spaces [22].

Various techniques for dimensionality reduction are available. They can be divided into convex and non-

convex techniques, where convex techniques optimise an objective function that does not contain any local
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optima, e.g., Principal Component Analysis (PCA), Kernel PCA, Isomaps, Local Linear Embedding(LLE)

and non-convex techniques optimize objective functions that do contain local optima, e.g., Locally Linear

Coordination (LLC), manifold charting or autoencoders [23]. It is crucial not only to consider the marginal

computation cost that is envisaged for the dimensionality reduction, but also to ensure the capability to

embed new high-dimensional data points into an existing low-dimensional data representation. Therefore

we select PCA, which is by far the most popular technique, and autoencoders, an efficient, intuitive, non-

linear transformation technique, to compare in this work.

3.2.1 PCA

Principal component analysis (PCA) performs the dimension reduction by embedding the data into a

linear subspace of lower dimensionality. PCA attempts to find a linear mapping on a basis v that maximises

the retained variance in the data by first solving the eigenproblem

(S − λI) v = 0 ⇐⇒ Sv = λv. (16)

The eigenproblem is solved for the d principal eigenvalues λ, where S ∈ Rd×d is the sample covariance

matrix of the data z̃s, e.g. in the case of 2 input parameters this becomes

S =

[
V ar [zs

1]

Cov [zs
2, z

s
1]

Cov [zs
2, z

s
1]

[zs
2]

]
. (17)

The low-dimensional data representations z̃s,r of the data points z̃s are computed by mapping them onto the

linear basis v. Since PCA tries to put maximum possible information in the first component, then maximum

remaining information in the second and so on, it is an ideal setting for making the data as compact as

possible. The dimensionality of the remaining data and the variance that is lost is the only parameter in

a PCA model that is user defined. Therefore, the eigenvalues are ranked in descending order, and the
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variance that is captured by each eigenvector is determined by

ψn =
λn∑d
i=1 λi

, (18)

where the amount of variance that is lost is given by the remaining overall variance threshold, e.g. Ψlim ≤

95%, according to

Ψ =

Ψlim∑
i=1

ψi (19)

3.2.2 Autoencoder

Autoencoders are opted for their efficiency in terms of model parameters, their capability for non-linear

transformations and their intuitive usability. These feed-forward networks are structured with an uneven

number of hidden layers Lhi,with the middle layer containing fewer neurons compared to the first and last

layers [24]. This separates the autoencoder in an input layer, an encoder section, a middle layer with l ≤ d

number of neurons, a decoder section and the reconstructed layer:

z̃s
d

Encoder→ z̃s,r
l

Decoder→ z̃′s
d , (20)

where z̃s
d ≈ z̃′s

d by means of a training in an unsupervised manner where its goal is to minimise an error

in reconstructing z̃′s
d [25]. The input layer z̃s

d has d neurons, where each neuron represents an individual

parameter from the dataset. This data is reconstructed in the final layer z̃′s
d of equal dimension d. The centre

layer in the network z̃s,r
l represents the original data in Rl, with l < d while preserving as much structure as

possible from the original data. The resulting number of dimensions l in this centre layer functions as the

input for a neural network.

The network is trained using a loss function that minimises the mean square error:

Lossth,dr(z̃
s
d, z̃

′s
d ) =

1

n

n∑
i=1

∥zs
i − z′s

i ∥ , (21)

14
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where the aim is to reduce the disparity between the original z̃s
d and reconstructed output z̃′s

d across n data

points. Estimating the optimal dimension for the middle layer involves determining the intrinsic dimension

lintr of the dataset. This intrinsic dimension denotes the minimal number of variables required in the re-

duced space to represent the full dataset. Regularly used geometric methods exploit the intrinsic geometry

of the dataset, typically relying on fractal dimensions or nearest neighbour distances [26]. Among these

methods, the correlation dimension is widely utilised. Given a set Sn = {zs
1, . . . ,z

s
n} in a metric space, the

correlation dimension is defined as [26]:

DC ≡ lim
n→∞

lim
r→∞

log Cm(r)

log r
, (22)

with:

Cm(r) =
2

n(n− 1)

n∑
i=1

n∑
j=i+1

I {∥zj − zi∥ ≤ r} , (23)

where I is the indicator function, r the number of even intervals in the high dimensional hyper-cube and n

the number of data points. The correlation dimension is estimated by plotting log Cn(r) against log r and

estimating the slope of the linear part of the curve until a predefined cut-off is achieved [26].

3.3 Neural network fitting

The approach proposed in this study aims to circumvent the necessity for extensive computational it-

erations, which are typically demanded by current state-of-the-art methods. This is achieved by training an

Artificial Neural Network (ANN) G to approximate the interval uncertainty associated with the input param-

eters θ̃s. This is accomplished by feeding the ANN with a set of responses z̃s in a reduced space z̃s,r,

see Eq. (9). The trained network can than be exploited to find an approximation of the uncertainty in the

parameter set θI by feeding it the experimental data in the reduced space z̃e,r.

As illustrated in the flowchart in Figure 1, the model G is a combination of an unsupervised dimension

reduction and a supervised neural network, which yields: z̃s GDR→ z̃s,r GNN→ θ̃s. To define GNN , the neural

network requires training, wherein the neural network iteratively updates its weights and biases. This pro-

cess ensures the network’s robustness by fine-tuning its parameters to accurately capture the underlying
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patterns and relationships within the data. Therefore, the ANN in this work uses the Bayesian regulated

back-propagation algorithm.The algorithm works efficiently by computing the gradient slope and simultane-

ously changing the weight values of the network. This iterative process continues until the overall gradient

no longer decreases, indicating optimal adjustment of the network’s parameters. The inclusion of Bayesian

regularisation integrates Bayes’ theorem into the regulation scheme, effectively mitigating discrepancies

between training and test data. This integration enhances the network’s ability to avoid the common pitfall

of over fitting, particularly in the presence of noise problems [27].

The neural network community has adopted various strategies in its quest to identify an optimal network

structure for corresponding functions [28]. A network that is too shallow, with only a limited number of

neurons, often fails to capture the complexities of non-linear relationships effectively. Conversely, a network

that is excessively ‘deep’, referring to a network with more than one hidden layer, is prone to encountering

significant over fitting issues [27]. Additionally, deep networks can pose computational challenges, as each

neuron from each layer ln is connected with all the neurons from the previous layer ln−1, as defined by:

zs,rj,l = φ(vj) = φ

(
b+

k∑
i=1

wi,j .z
s,r
i,l−1

)
. (24)

where zs,rj,l is the value z for neuron number j in layer l and s,r referring to the model responses in the

reduced space prior to the network, φ represents the activation function, zs,ri,l−1 representing neuron number i

from layer l−1, wi,j the weight assigned to each connection with the previous layer, k the number of neurons

in layer l−1 and b the bias added to the summation operator, yielding vj . In general, it can be observed that

an increased depth tends to yield improved generalisation across a diverse range of tasks [29]. However,

the selection of the number of layers in neural networks often relies on experimentation, intuition, or the

principle of ”going for depth.”

In this study, a stepped random oriented approach is adopted to determine the optimal network archi-

tecture. The training process follows an iterative scheme, aiming to maximise regression between the output

and the target across a range of iterations. During each iteration, adjustments are made to the structure and

hyper-parameters of the network, e.g., the size of the hidden layer(s), the type of activation function. It is im-

portant to highlight that this strategy takes the regression from the test data, rather than the training data, to

prevent overfitting. The code is configured to randomise variable parameters within a uniformly distributed

region. The data is distributed in training and test data, respectively with a ratio of 95/5%. The algorithm
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trains a 100 networks before a step is allowed. The step allows for an extra fully connected, hidden layer

in the architecture, to try and limit the size of the network in case this is possible. To prevent over fitting,

Bayesian regularisation functions are applied, readily accessible within tools like the deep learning toolbox

in Matlab 2018.b and newer versions. The loop is iteratively executed until the regression coefficient on

the training dataset reaches a minimum threshold of 98%. The duration of training for each network varies,

contingent upon factors such as the network’s size, dataset dimensions, hardware specifications, and code

parallelisation. Consequently, the total training time for each parameter configuration can extend to several

hours or more. It’s crucial to highlight that the resulting parameters, specifically the number of neurons and

layers, may vary in function of the characteristics of the selected dataset. Furthermore, a topic that remains

relevant in literature is the required amount of samples to train a network on [30, 31]. There is no ‘one

size fits all’ answer, because the required sample-size depends both on the nature of the problem and the

complexity of the architecture implemented [32, 33].
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4 CASE STUDY 1:DLR AIRMOD STRUCTURE

Fig. 2: Illustration of experimental AIRMOD test setup (adapted after [17])

The DLR AIRMOD test structure, designed as a scaled replica of the GARTEUR SM-AG19, serves

as a benchmark model for this study. This model, characterized as a ‘beam type model’ of a generic

aeroplane, comprises deterministic properties extracted from axis beam-like components with bolted con-

nections, along with statistics derived from measured eigenfrequencies. These properties collectively rep-

resent the main vibrational characteristics of an aircraft. To facilitate stochastic model updating methods,

the structure has undergone disassembly and reassembly procedures 130 times, maintaining identical as-

sembly characteristics. A comprehensive set of 18 parameters, encompassing support and joint stiffness

values, as well as mass properties, has been carefully selected for analysis. To be consistent with existing

literature on the case, certain parameter pairs, specifically the 4th − 5th and 9th − 10th pairs are considered

perfectly dependent. The dataset comprises 86 measured eigenfrequencies, revealing inherent challenges

for uncertainty quantification procedures, such as asymmetric modal behavior and closely spaced modes To

be consistent with prior studies on the subject, only 14 modes (1st−8th, 10th−12th, 14th, 19th and 20th) are

selected for identification from the set. These modes encompass suspension motions in yaw, roll, pitch and

heave(Modes 1-4), out-of-plane wing bending (Modes 5-8), wing torsion (Mode 10), in-plane wing bending

(Modes 11 and 12), and local tail-plane modes (Modes 14, 19, and 20). Automated modal identification

was carried out in the work of Govers et al. [17] in which the mode families have been assembled auto-

matically using a pairing algorithm based on the modal assurance criterion (MAC > 0.6) and thresholds for

maximum frequency deviations (Df < 30%). For a detailed review of the experimental campaign that was

followed to construct this dataset, the reader is referred to [17]. For the purpose of this study, the set of
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actual measurements representing ze are available to validate the methodology and identify the uncertainty

in corresponding input parameters θe.

4.1 Deep learning

4.1.1 Dimension Reduction

In order to implement the proposed black-box method G according to Figure 1 , a dimensionality reduc-

tion Gdr is required prior to the training of Gnn. The pre-selected eigenfrequencies, obtained from the Finite

Element Method (FEM) model, serve as input for the dimension reduction. The input data for the FEM

model is generated using a Monte Carlo sampling technique, employing a uniform distribution with ±100%

bounds on the nominal parameters.

Fig. 3: Reduction error ϵ in function of the reduced dimension for the two compared dimension reduction
techniques, based on the results from [34] and [15]

Figure 3 illustrates the reduction error, by means of Mean Squared Error (MSE) in function of the

reduced dimension for both a PCA and autoencoder based approach. The mean squared error is computed

using Eq. (21). For PCA, ϵ represents the MSE in function of the amount of eigenvectors used for the

projection (Eq. (18)). The data is reconstructed by mapping the PCA projections back with the same subset

of eigenvectors as the reduced dimension. Alternatively, in case of the autoencoder, ϵ represents the MSE

in function of the dimension of the middle layer in the autoencoder. It is noted that for both techniques

the MSE decreases when the dimension increases. Furthermore, the difference in MSE from the different

approaches is negligible for dimensions lower than 9. It should be noted that, since both algorithms are

based on a completely different approach, the almost exact MSE for the lower dimensions is remarkable.
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The intrinsic dimension, computed according to Eq. (22) reveals that d = 11 for this dataset. Therefore,

the set of 14 measured eigenfrequencies is projected trough the encoder part of the autoencoder onto an

11-dimensional space, which serves as the reduced dataset for the remainder in this case. The MSE for

encoding the data in a low dimensional space and then decoding it back onto the original space is 4, 37.10−6.

4.1.2 Neural Net Training

After applying the dimension reduction, the second loop from the flowchart in Figure 1 is entered.

There, a neural network is trained and optimised to identify the input parameters θ̃e. The training dataset

is stemming from the responses projected in the reduced space zs,r. The data in the reduced space,

together with the inputs θs from the FEM model are used as input-output pairs to train the neural network.

This training completes the architecture and hyperparameters for Gnn, defining the overall model G (see

Eq. (15)). According to the strategy discussed in section 3, a seperate neural network is trained for each

input parameter θ(i). Figure 4 indicates the architectures from each network above the predicted bounds.

The architecture can be interpreted as follows: First, the dimension reduction reduces the data from 14

to 11 parameters. Next, to identify parameters θ1−5, θ10 and θ13−16, only 1 hidden layer is required, while

training θ6−9, θ11 and θ12 requires up to 4 hidden layers, respectively with the size of each layer indicated.

4.2 Results

Figure 4 presents the achieved bounds resulting from the proposed deep learning topology method.

These bounds, derived by propagating the available measurement data through the trained algorithm G,

are represented by interval bars denoted as θBB . For ease of interpretation, the results are normalized

with respect to θ̃BB/θ0. Comparison with the bounds obtained from the interval approach described in [4] is

conducted, where the latter is depicted as a blue interval denoted as θMV iUQ. Normalization with an equal

normalisation vector as the results from the black box approach θ̃MV iUQ/θ0 is applied to the interval approach

results, enabling a direct comparison. Minimal discrepancies are observed between the bounds obtained

from both methods across most parameters. Parameters θ7 and θ14 demonstrate slight conservatism in

each approach, while parameters θ11 and θ12 demonstrate a slight bias when comparing both approaches.

To assess the impact of the obtained offset in the results, the vertexcombinations of the identified bounds

are propagated through the FE solver. This verification step yields eigenfrequencies that can be compared

with the original experimental data.

Figure 5 illustrates the measured eigenfrequencies for the 86 data points with green dots, using a bee-
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Fig. 4: Normalised bounds of the posterior samples, red bar indicating the interval achieved from the black
box model θBB , compared to the blue visualised intervals achieved via the Multivariate interval quantification
θMV iUQ from [4]. The ANN architecture per i is given above the graph, with the dimension reduction part
between horizontal lines followed by the size of each hidden layer .

Fig. 5: Normalised measured eigenfrequencies of the AIRMOD structure indicated by the green dots vs.
the bounds achieved via propagating the identified input parameters through the forward model, with inputs
stemming from: a. The black box model (blue crosses, z̃e

BB); b. The multivariate interval quantification
from [4](red crosses,, z̃e

MV iUQ).
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swarm type plot, with added jitter for improved visualization and to prevent overlap in dense areas. The

distribution spread of the measurement data highlights the significance of interval Uncertainty Quantifica-

tion (iUQ), providing a direct observation of the occurring variability in the identified experimental modal

parameters. Notably, distributions can be observed at both lower and higher frequencies, with the plot

normalized for improved visualization. The propagated identified bounds from the black box approach are

depicted using red crosses. The blue crosses represent the propagated predicted bounds from the mul-

tivariate interval approach described in [4]. It is noteworthy that the minimal discrepancies observed in

the posterior samples (Fig. 4) correspond with minimal discrepancies when propagated through the FE

model. The first four eigenfrequencies, representing the rigid body modes, exhibit a noticeable spread,

effectively encapsulated by both approaches with only minor conservatism in the upper bound of the fourth

eigenfrequency. Eigenfrequency 5, representing the second wing bending mode, and eigenfrequency 6,

representing the third wing bending mode, have minor conservatism in the bounds stemming from the iUQ

method. Meanwhile, the proposed black box approach can not completely capture the data, by missing

some datapoints with its upper bound. Eigenfrequencies 7 and 8, representing the first asymmetrical and

symmetrical wing torsion modes, respectively, are barely or not at all within the bounds, indicating the least

accurate results from the black box approach. Similarly, the higher frequencies, including the fourth wing

bending mode (eigenfrequency 10), the first and second wing fore-aft bending modes (eigenfrequencies 11

and 12), the first vertical tail piece torsion mode (eigenfrequency 14), the second horizontal tail piece bend-

ing mode (eigenfrequency 19), and the first horizontal tail piece fore-aft bending mode (eigenfrequency 20),

have their bounds situated at the edges of the data, without entirely encapsulating it.

The computational overhead for processing the measurements through the network is minimal. Training

the autoencoder is efficient, with all computations performed using a single thread of an Intel Xeon E5 @

3.7 GHz processor. Loading the full dataset into memory requires 0.409 seconds, with an additional 23

seconds to achieve optimal training performance for the autoencoder. Despite the longer training time, the

autoencoder remains highly employable for real-time applications. Additionally, it is worth noting that due to

the unsupervised nature of the autoencoder, labeling of data is unnecessary, rendering it cost-effective. This

characteristic allows for denser datasets, which are particularly effective for training purposes. Propagating

new data through the autoencoder is efficient, requiring only 0, 0284s for each measurement. Similarly,

testing the network by propagating data vectors from the reduced space to identified parameters only takes

0, 0643s for the 16 networks corresponding to the 16 parameters.
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5 CASE STUDY 2: RESISTANCE PRESSURE WELDING PROCESS

Resistance pressure welding (RPW) is a highly efficient, low cost and easy realisable joining technique.

The process employs two welding electrodes that press two or more overlapping sheet-like workpieces to-

gether. The heat generated by the then-applied electric current, in correspondence with Joule’s law, causes

local melting at the workpiece’s common faying surface, leading to joining these workpieces. Thanks to its

wide-spread use, RPW has grown to a mature joining technique, with literature dating back to the second

half of the 20th century (experimentally oriented) [35] and early 2000’s (on-line monitoring, Finite Element

methods) [36, 37]. In the context of process monitoring, real-time weld quality estimation based on data

driven techniques are becoming ever more common [38, 39, 40]. These approaches typically link process

parameters and on-line measurements to product quality metrics in order to guard the process. In this

respect, deep learning approaches yield very fast black box models enabling on-line application for process

control. Yet, in industrial practice, the process still suffers from a high sensitivity to often uncontrollable

and variable process conditions, yielding inconsistency of the welds, which generally leads to significant

degradation of the weld quality.

Fig. 6: Cross-section of the axisymmetric RPW model, illustrating two workpieces (individual thickness ≈
1mm) that are being welded together (grey,meshed) and the two electrodes pressing against the workpieces
(orange,meshed)
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5.1 Overview of the RPW process model

The model in this work is visualised in Figure 6, which represents a simplified 2D-axisymmetric model of

a RPW-process, welding with realistic, industry-like boundary conditions and specimen dimensions accord-

ing to ISO 14270:2016. The nominal process parameters in the model are chosen as such that there is a

realistic weld nugget formation according to ISO 10447:2022. Multiple controllable (four) and uncontrollable

(two) process conditions are sampled uniformly between decided bounds, based on expert knowledge on

the topic. The complete dataset in this work contains 10.000 propagations on a polynomial chaos expan-

sion surrogate model, based on 200 propagations of the FE model, generated based on the code from the

UQLab library [41]. The model results in seven measured responses, containing important quality indicators

on the process. For this work, the set of input parameters representing θe and the responses representing

ze are available to test the methodology and identify the uncertainty in corresponding input parameters

θ̃e
BB . The model parameters are sampled uniformly, in a latin-hypercube sampling scheme and include

respectively, the current [kA], force [kN ], initial temperature of the electrode [◦C], initial temperature of the

workpieces [◦C], the film thickness between the electrode and the workpiece [mm] and the film thickness

between the workpieces [mm]. The responses include the height of the generated weld nugget (NHS),

the width of the generated weld nugget (NWS), the heat affected zone (HAZ), the contact area between

electrode and workpiece top and bottom (CWET & CWED), the peak temperature in the top workpiece and

the bottom workpiece (MaxT1 & MaxT2).

5.2 Deep learning

The first step, prior to training the neural network is a reduction of the dimension of the measured

data. The goal in this work is to provide a well performing, yet low-effort approach. For the application

of the proposed deep learning method, a reduction of the dimension is applied prior to computing the

identified parameters. However, there is no criteria in what or when dimension reduction techniques are

beneficial. Therefore, the neural network is trained on both a reduced measurement set zs,r, as well as the

full dimensional measurement set zs for a comparison in computational effort and accuracy on this case.

Following the notation from the flowchart in Figure 1, zs ≡ zs,r in the case no technique is used to reduce

the dimension of the measurement data. Figure 7 illustrates the reduction error as a function of the reduced

dimension. In case of the autoencoder ϵ represents the MSE (Eq. (21)) in function of the dimensionality of

the middle layer in the autoencoder and for PCA, ϵ represents the MSE (Eq. (21)) in function of the amount

of eigenvectors used for the projection (Eq. (18)). It is noted that for both techniques the MSE decreases
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when the dimension increases, while both approaches achieve an almost identical result. It should be

noted that, since both algorithms are based on a completely different approach, the negligible difference is

remarkable. The application of Eq. (22) to establish the intrinsic dimension of the dataset, reveals d = 4.

Fig. 7: Reduction error ϵ in function of the reduced dimension for the two compared dimension reduction
techniques

Following Eq. (9), the inverse model is trained based on the input-output pairs to determine G, consisting

of GDR and GNN . Training the networks according to the method described in section 3 yields networks

witch an architecture provided in table 1. To implement the strategy discussed in section 3.3, a neural

network is trained for each input parameter θ(i) separately, with the architecture of each network provided

in table 1. The table can be interpreted as follows: to identify parameter θ1 without a prior dimension

reduction, one layer consisting of four neurons is required; with a PCA prior to the neural network, the input

dimension is reduced from seven to four, and the neural network has a hidden layer of three neurons and

likewise for the case with an autoencoder.

5.3 Results

As proposed in the flowchart in Figure 1, the neural network is trained with the dataset as introduced

in 5.1. The thick green line in Figure 8 indicates the bounding corners of the convex hull that covers

the uniformly sampled training points for all combinations of θsi . For this case study, the bounds of the

sampling are chosen arbitrarily, within the known limits of physically admissible parameters, while keeping

a very conservative overestimate on the expected experimental data. For a fair evaluation of the model,
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Table 1: Trained ANN architectures, with between brackets the dimension reduction part

θi ANN archit. PCA-ANN archit. AE-ANN archit.

1 7 - 4 - 1 (7 - 4) -3- 1 (7 - 4) -3- 1

2 7 - 3 - 1 (7 - 4) -2- 1 (7 - 4) -2- 1

3 7 - 4 - 1 (7 - 4) -3- 1 (7 - 4) -2- 1

4 7 - 6 - 1 (7 - 4) -6- 1 (7 - 4) -6- 1

5 7 - 6 - 1 (7 - 4) -5- 1 (7 - 4) -6- 1

6 7 - 4 - 1 (7 - 4) -3- 1 (7 - 4) -3- 1

the measured responses ze are based on a new and unseen generated dataset De stemming from the

RPW model. To be clear, the data De is not included during the training stage, to provide an unbiased final

evaluation of the model fit. This will be referred to as the experimental dataset in further discussion. The

experimental set is chosen such that the boundaries are well capturing the expected region of the model,

whilst the training set was chosen such that the domain of feasible parameters has a large overlap. This

makes sure that in case the model G has an inaccurate prediction, the model is not extrapolating into an

unknown region. The test data are given by the red dots in Figure 8. The identified bounds, established

by propagating the available test data through the trained algorithm are given by the blue, purple and red

hull, respectively for the pure neural network fit, the neural network fit with prior PCA dimension reduction,

and the neural network fit with prior dimension reduction based on an autoencoder. It can be noted that the

convex hulls encapsulate the data very well for θ1,2 and θ5,6. However, the model fails in encompassing θ3

and θ4 completely and predicts a too narrow interval. In the case where a dimension reduction is applied,

the model fails in encompassing θ4 completely and has a more or less a fixed value corresponding to the

centre of the distribution.

As in the previous case, the times required to process the data through the network is marginal. All

computations for the training are made using a single-thread of an Intel Xeon E5 3.7 Ghz. To load the

full dataset in the memory 0,318 s is required. It takes a total time of 125 s to reach the best training

performance of the autoencoder. However this long time is irrelevant regarding real-time applications, as

the autoencoder is fully employable to be used as dimension reduction technique. It should be noted that,

due to the unsupervised manner of the autoencoder, data should not be labelled and is therefore deemed

cheap. This allows for a more dense dataset, which is even more effective for training. Propagating new

data through the autoencoder takes only 0,0410 s for a single measurement from the dataset ze. Testing the

network by propagating a single data vector from the reduced space ze,r towards the identified parameters
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Fig. 8: Scatter plot of all combinations of process parameters. The hull encapsulating the training data is
indicated in green. The red dots indicate the test data. The predicted bounds on the test data are indicated
for the different proposed techniques in respectively blue, magenta and yellow

θ̃e takes a total of 0,0218 s for the 6 networks, corresponding to the 6 parameters θ(i).

To verify the accuracy of the obtained identified parameters, the bounds are used as an input for the FE

solver ( Section 5.1). This results in measurements which can be compared with the experimental data used

for the inverse identification. The red dots in Figure 9 represent the experimental data that is used for the

inverse identification. The identified bounds of the model parameter ranges from the different approaches

are calculated by propagating the vertex-combinations of the identified interval bounds through the FE

model and the resulting bounds are illustrated with crosses. It can be concluded that all the experimental

data is encapsulated, with a noticeable small conservatism on both the lower and upper bound for the

CWED, MaxT1 and MatxT2. Furthermore, it can be concluded that there is less then 1% offset between the

different approaches, except for the lower bound of the CWET (2.9%) and the upper bound of the CWED

(3.0%).
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Fig. 9: Responses of the RPW FE-model used for identification are indicated by the blue dots, with upper
and lower bound of the responses of the RPW FE-model based on the identified parameters based on dif-
ferent approaches, respectively in black, green and magenta. Note that the centres of the crosses indicates
the resulting value.

Further investigation indicates that, for this case, parameter θ3 and θ4 have almost no contribution in

the variance of the responses from ze, except for ze
4 and ze

5 there is a contribution between 10 and 20%.

Therefore it is concluded that the network doesn’t necessary fail to establish a proper fit on parameter θ3

and θ4, as the complete input-output relation is randomised. The above hypothesis is based on the Sobol

indices as provided in Figure 10.

Fig. 10: Total Sobol indices to provide a global sensitivity analysis of the parameters
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5.4 Validity of the proposed black-box and its verification

It should be noted that, despite the numerical efficient and accurate results, the proposed approach

requires basic knowledge on the imposed problem. On the ground that black boxes are becoming ever

more common, one might assume it’s plug-and-play. However, as concluded in Section 5.3, and depicted

in Fig. 10, the accuracy of the method largely depends on the relevance of the selection of quantities of

interest. To demonstrate, we include two deviations on the example.

Significance of process parameters

A first example examines the effect of selecting the correct parameters prone to identification. For

this approach, according to the proposed flowchart in Figure. 1, a process parameter is excluded in the

training of G. This is done by propagating the FE model n times with non-deterministic parameters, except

for one fixed process parameter, which is chosen in this case as the mean nominal value of the dataset.

Next, this input-output relation set
{
θ̃, z̃s

}
is used to train and test the network. Finally, an experimental

dataset is generated, where all parameters are sampled within a selected interval, including the parameter

that was nominal during the training of the black box. The vertex-combinations of the identified interval

bounds are propagated through the FE model. This is repeated for both a parameter with rather high

Sobol indices towards responses and made for a parameter with rater low Sobol indices, respectively θ1

and θ3 are excluded. The identified bounds in both cases are compared with the set of identified bounds

in Section 5. Figure 11 illustrates the results for both cases. For the case where θ3, an input parameter

with low significance level is excluded during training, the resulting identified bounds are almost similar. For

most parameters, only minor differences are noticeable. However, θ4 is now indicating an even larger misfit

compared to the original case, see Section. 5. When θ1 is excluded from training the black box, the results

are more noticeable. For both θ2,3,5,6, the identified hull is largely overestimated. θ4 achieves a similar, but

incorrect identification. Fig. 13a further acknowledges this, as the propagated vertex combinations of the

identified bounds trough the FE model indicate a similar response. When θ1 is left out in the training phase,

the experimental data is not encapsulated by the bounds anymore, with noticeable offsets for ze
1,2,3,6,7 and a

large overestimation, exceeding the bounds of the illustration, for ze
4,5. When excluding the parameter with

low significance level, θ3, the responses of the propagated parameter vertex combinations trough the FE

model deviate slightly, often causing a slight conservatism, but within acceptable limits. This leads to the

conclusion that, although the proposed approach is a complete black-box, prior knowledge on the relevance

of the data is required for a well-fit model.

29



Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

Fig. 11: Identified process parameters; Exclusion of either θ1 or θ3 from θs

Significance of measurements

A second example examines the effect of missing data, which is often the case when quality indica-

tors are not trivial to measure, or unobservable. This example complies with the proposed flowchart in

Figure. 1. The training of G is executed thrice, consecutively decreasing the amount of information, respec-

tively by leaving ze
4, ze

3,4 and ze
2,3,4 out of the analysis. After training, when deploying G for the point-wise

identification, the experimental data is also excluding the information on these responses. Figure 12 de-

picts the results, compared to the trained black-box from Section. 5. It is noticed that, the bounds deteriorate

further when less information is available. When excluding all ze
2,3,4, the variance in θ1 is even largely un-

derestimated. Fig. 13b illustrates the propagated vertex combinations of the identified bounds trough the

FE model. This indicates minor changes. However, the bounds on ze
3, are not encapsulating the complete

experimental dataset when ze
3 or ze

3,4 were not part of the training. Reviewing the Sobol indices in Fig. 10

reveals that ze
3 almost solely depends on θ1, which was the parameter where the extremes in the experi-
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mental data were not included in the identified hulls. It can be concluded that measurement data is often

coupled, and, therefore, excluding quantities of interest do not per se lead to a worse identification, but

indicate that an increase in lack of information lead to a worse identification in an interval context.

Fig. 12: Identified process parameters; Exclusion of either ze
4, ze

3,4 or ze
2,3,4 from z̃s
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(a) Exclusion of either θ1 or θ3 from θs (b) Exclusion of either ze
4, ze

3,4 or ze
2,3,4 from z̃s

Fig. 13: Results from propagating Identified bounds trough FE model
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6 CONCLUSIONS

The aim of this study is to develop an efficient method for the inverse quantification of uncertainty

with black box numerical simulation models. Existing methodologies, including probabilistic, interval and

imprecise probabilistic techniques, have demonstrated their effectiveness in computing posterior results.

However, their iterative nature often demands substantial and unpredictable computation load, rendering

them impractible for real-time applications.

The black box approach that is presented in this work integrates a combination of unsupervised and su-

pervised methodologies, resulting in a point-wise identification of input parameters. This technique involves

employing dimension-reduction methods such as autoencoders or principal component analysis, prior to

an artificial neural network, to identify input parameters based on a set of measurements of the system’s

responses. By training the methodology on input-output pairs generated by a finite element model of the

structure, the necessity for iterative procedures is eliminated. The trained system is capable of processing

experimental measurement data to accurately identify input parameters, thereby showcasing its potential

for practical application in diverse real-time engineering scenarios.

Two cases are presented in this work, where the first case compares with the existing interval technique

and the second case elaborates more on different approaches.

First, to evaluate the efficacy of the proposed methodology, we selected the DLR AIRMOD test structure

and its corresponding dataset. This dataset is chosen due to its complexity and the availability of estab-

lished benchmark solutions. A comparison with the inverse method outlined in [4] demonstrates a notable

improvement in numerical efficiency achieved by our black box approach, while maintaining comparable ac-

curacy levels. During the implementation phase, our proposed network training strategy swiftly identifies the

specific requirements for each parameter. Some parameters yield minimal error on test data with an ANN

featuring only one hidden layer, while others demand deeper networks to achieve satisfactory performance.

In terms of accuracy in identified bounds, our proposed black box model delivers results analogue to those

obtained from the multivariate interval approach. However, it is worth noting that a few outcomes from the

ANN fail to exactly encapsulate the experimental dataset.

The second case is a practical example based on the resistance pressure welding joining technique.

The dataset stems from a self developed validated Finite Element model of the process. The identified

uncertainty on the model parameters are a very tight fit on four out of six parameters. Further investigation

based on global sensitivity analysis indicates that the two inaccurate predicted parameters have a very low

influence on the variance in the responses of the model, which is likely the cause for a misfit of the model
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on these parameters. Propagating the identified bounds through the Finite Element model yields bounds

that encompass the experimental data very well, with only two out of seven outputs for which the predicted

range is slightly conservative. Comparing the neural network where there is a prior dimension reduction

based on PCA or autoencoders reveals that the offset between the different approaches is limited to 1%,

except for the lower bound of the CWET (2.9%) and the upper bound of the CWED (3.0%). Furthermore,

the difference in Mean-squared error from both the PCA and autoencoder dimension reduction approach

is negligible when reducing the dimensions drastically. It should be noted that, since both algorithms are

based on a completely different approach, the almost exact MSE for the lower dimensions is remarkable.

Furthermore, the second case is used to provide insight on the importance of process knowledge regarding

the context of inverse interval identification. To achieve this, two deviations of the case are depicted, where

in each alteration information is left out of the training of the black box. This is obtained by leaving out

process parameters or leaving out measurable quantities of interest. Both scenarios contribute to the

importance of process knowledge, based on the results of a prior sensitivity analysis on the case study.

The results indicate a high loss in accuracy of the obtained identified bounds when a significant parameter

is left out, and only a minor, negligible loss in accuracy when an insignificant parameter is left out. Excluding

measured quantities of interest in the training indicate a loss in accuracy parallel to the degree of discarded

information.

Computations on both cases were executed on commonly available hardware. Training times on both

cases were limited, with training times < 1h for both cases, including sampling the predefined surrogate

models of the forward model M. Once trained, identifying parameters is extremely fast (≪ 1s), from which

can be concluded that this approach is feasible in a real-time setting. Limiting even faster identification is

only a matter of techniques to load the data in the memory and the efficiency of the all encompassing code.

Compared to conventional interval methods, no guarantee of the exact bounds can be proven, however at

strongly reduced computational cost, the method has proves its capability to provide reliable estimations of

the exact bounds.
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