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Abstract11

Reliability-based design optimization (RBDO) provides a promising approach for achieving ef-12

fective structural designs while explicitly accounting for the effects of uncertainty. However, the13

computational demands associated with RBDO, often due to its nested loop nature, pose sig-14

nificant challenges, thereby impeding the application of RBDO for decision-making in real-world15

structural design. To alleviate this issue, an approximate decoupled approach is introduced for a16

class of RBDO problems involving linear truss structures subjected to random excitations, with17

the failure event defined by compliance. This contribution aims to provide an approximate but18

efficient way for design exploration to facilitate decision-making during the initial design phase.19

Specifically, the proposed approach converts the original RBDO problem into a deterministic op-20

timization problem through a modest number of reliability analyses by the probability density21

evolution method (PDEM). Once the deterministic optimization problem is obtained, the solu-22

tion of the whole RBDO problem can be obtained by solving this equivalent problem without23

further reliability analysis, resulting in notable enhancement in terms of computational efficiency.24

In this way, this contribution expands the frontier of application of the operator norm theory25

within the RBDO framework. Numerical examples are conducted to illustrate the effectiveness26

and capabilities of the proposed approach.27
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1. Introduction30

Reliability-based design optimization (RBDO) offers a rational method to attain effective31

structural designs while ensuring an appropriate level of structural safety. Although RBDO can32

be advantageous compared with deterministic design procedures in terms of explicitly account-33

ing for the effects of different sources of uncertainty (Valdebenito and Schuëller, 2010; Beck and34

Gomes, 2012), its application is typically hindered by the high computational cost associated with35

solving the RBDO problem. In essence, the solution of the RBDO problem involves a double loop36

procedure, where the outer loop deals with the optimization exploration and the inner loop copes37

with the reliability evaluation, thus leading to unaffordable numerical efforts.38

In this context, numerous effective methods have been proposed to alleviate numerical efforts.39

These methods can be categorized into three classes: double loop methods, single loop methods40

and decoupled methods. In the double loop methods, the reliability of each set of design variables41

explored is estimated throughout the whole optimization process. By means of appropriately inte-42

grating optimization algorithms and reliability analysis techniques, higher numerical efficiency can43

be achieved (Jensen et al., 2009; Carlon et al., 2019; Weng et al., 2023). The single loop methods44

convert the original double loop problem into a single loop one, by substituting the reliability con-45

straints with approximate deterministic constraints, based on the Karush–Kuhn–Tucker (KKT)46

optimality conditions associated with the reliability problems (Kuschel and Rackwitz, 1997; Liang47

et al., 2007; Li et al., 2019). The decoupled methods circumvent double loop implementation by48

integrating information from reliability analysis into mathematical programming techniques to49

guide the optimization process. Specifically, the decoupled methods break the original problem50

down into a series of deterministic optimization cycles, with the corresponding admissible design51

spaces updated by insights gained from independent reliability analyses. Representative studies52

include sequential optimization and reliability assessment (SORA) (Du and Chen, 2004; Li et al.,53

2020) and sequential approximate programming method (SAP) (Cheng et al., 2006; Chen et al.,54

2020). To further improve the computational efficiency of RBDO, surrogate models have gar-55

nered significant attention. These models substitute costly-to-evaluate functions, such as limit56

state functions, with inexpensive local or global approximations constructed using a modest num-57

ber of evaluations of the original models (Papadrakakis and Lagaros, 2002; Jensen et al., 2020;58

Yang et al., 2022c). For a more detailed overview on the RBDO methods, readers are referred59

to (Schuëller and Jensen, 2008; Valdebenito and Schuëller, 2010; Aoues and Chateauneuf, 2010;60
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Moustapha and Sudret, 2019; Meng et al., 2020).61

Despite the achievements mentioned above, the practical implementation of RBDO remains62

challenging. Actually, the optimization process in most of the RBDO methods is more or less af-63

fected by the reliability analysis, which increases the computational expenses (Faes and Valdeben-64

ito, 2020). Moreover, it is noted that most of the above methods were developed in the context of65

static rather than dynamic problems. To tackle this challenge, Faes and Valdebenito (2020) pro-66

posed a fully decoupled approach for a specific class of RBDO problems, aiming to minimize the67

failure probability of linear systems subjected to random excitations. They subsequently extended68

this work to the RBDO problems considering discrete design variables (Faes and Valdebenito,69

2021). The approach tackles the entire RBDO problem by solving a deterministic problem fol-70

lowed by a single reliability analysis, leading to efficiency improvements of orders of magnitude.71

Building upon this development, Jiang et al. (2024) further expanded their research to solve the72

RBDO problems with reliability constraints. By establishing the mapping function between the73

operator norm and the reliability index using a small number of samples, the original reliability74

constraint is transformed into a deterministic one with respect to the operator norm, thereby elim-75

inating the nested loop. The theoretical foundation of these contributions rests on the operator76

norm theory, which has been successfully applied in the realm of imprecise reliability analysis77

(Muscolino et al., 2016) of both linear systems (Faes et al., 2020, 2021) and nonlinear systems (Ni78

et al., 2022; Jerez et al., 2024). Specifically, the core is to replace the objective or constraint79

functions related to reliability by functions defined in terms of the (∞, 2) matrix norm, which80

is inherently connected to the definition of the reliability problems (Faes et al., 2021). Despite81

the proven advantages of applying the operator norm theory, there remains ample opportunity82

for further exploration and advancement in the field of optimization to fully harness its potential83

benefits. Additionally, in the aforementioned contributions, structural displacement serves as the84

metric for defining the failure event. Nonetheless, alternative performance indicators are also of85

importance and deserve attention. One of such indicators is structural compliance — a typical86

metric adopted in deterministic topology optimization (Bendsøe and Sigmund, 1999) and robust87

topology optimization (Chen et al., 2016b; Canelas et al., 2024) of structures.88

In this context, this paper proposes an approximate decoupled approach by virtue of the op-89

erator norm theory for a specific class of problems, specifically RBDO problems concerning linear90

truss structures subjected to random excitations with failure event defined by compliance. This91
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contribution extends the application of the operator norm theory within RBDO frameworks and92

provides an powerful exploratory tool for decision-making in the initial stages of structural design.93

The core idea of the proposed approach lies in recasting the RBDO problem as a deterministic94

optimization problem through a few rounds of reliability analyses, based on the interdependency95

between the reliability index and the operator norm. Once the deterministic optimization problem96

is determined, the whole RBDO problem can be addressed by solving the deterministic optimiza-97

tion problem without additional reliability analysis. Therefore, the proposed approach is advan-98

tageous from a numerical viewpoint. In this contribution, the reliability analysis is conducted by99

the probability density evolution method (PDEM) (Li and Chen, 2008; Chen and Li, 2009), while100

the deterministic optimization is carried out by the quantum-inspired particle swarm optimization101

(QPSO) algorithm (Sun et al., 2004, 2012; Weng et al., 2023). It should be noted that while these102

methods are chosen based on their demonstrated feasibility, any alternative approaches for both103

optimization and reliability analysis can be used instead, due to the nature of the underlying104

problem. The rest of this contribution is organized as follows: Section 2 describes the detailed105

formulation of the RBDO problem to be solved. Section 3 introduces the approximate decoupled106

RBDO approach. Several examples are presented to demonstrate the effectiveness of the proposed107

approach in Section 4. The paper closes with some concluding remarks and the outlook for future108

research in Section 5.109

2. Formulation of the problem110

The optimization problems pertinent to this contribution can be stated as:111

min
x∈χ

f (x)

s.t. hj (x) ≤ 0, j = 1, · · · , nh

rk (x) ≤ 0, k = 1, · · · , nr

x ∈ χ ⊂ Rnx

, (1)

where x = (x1, · · · , xnx)
T is the nx-dimensional vector of design variables belonging to an admis-112

sible value set χ ⊂ Rnx ; f (x) is the objective function; hj (x) ≤ 0, j = 1, · · · , nh is the set of113

the standard constraints independent of uncertainty; rk (x) ≤ 0, k = 1, · · · , nr is the set of the114

reliability constraints; and nx, nh, nr are the numbers of the design variables, standard constraints,115

and reliability constraints, respectively.116
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Generally, the objective function and the standard constraints, e.g., structural mass and con-117

struction consumption, are determined by design requirements. The design variables represent118

some controllable structural properties, such as cross-sectional areas and shape parameters of el-119

ements. The reliability constraints are defined in terms of some reliability measure, and thereby120

ensure structural performance in a probabilistic manner. Typical reliability measures include121

failure probability and reliability index, leading to reliability constraints defined by122

rk (x) = PF,k (x)− P th
F,k ≤ 0, k = 1, · · · , nr, (2)

or equivalently123

rk (x) = βth
k − βk (x) ≤ 0, k = 1, · · · , nr, (3)

where PF,k (x) represents the failure probability evaluated at the design x for the kth failure124

mode; P th
F,k is the predefined threshold of the failure probability for the kth failure mode; βth

k is125

the threshold of the reliability index for the kth failure mode; and βk (x) denotes the reliability126

index corresponding to PF,k (x) and is calculated by127

βk (x) = Φ−1 [1− PF,k (x)] , (4)

where Φ−1 (·) is the inverse function of the standard normal cumulative distribution. Consider128

an nθ-dimensional vector Θ = (Θ1, · · · , Θnθ
)T ∈ Rnθ of random variables, which is assumed to129

be exclusively associated with random excitations, following a joint probability density function130

(PDF) pΘ(θ). Then the failure probability can be written in terms of a multidimensional integral131

as132

PF (x) = Pr {U (Θ;x) > 1} =

∫ ∞

1

pU(u;x)du =

∫
u(θ;x)>1

pΘ(θ)dθ, (5)

where Pr {·} is the probability operator; U (Θ;x) is the normalized response function, whose value133

is greater than 1 when structural failure occurs, e.g., the response of interest of a system exceeds a134

prescribed threshold; u is a realization of U ; and θ is a realization of Θ. In addition, the subscript135

k is omitted for brevity.136

Estimating failure probabilities or reliability indices for general structures presents significant137

challenges from the numerical standpoint, due to the complexity involved in evaluating response138

functions, which are often analytically intractable. This complexity requires the use of advanced139
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reliability analysis techniques, such as the importance sampling (Au and Beck, 2001a) and the140

subset simulation (Au and Beck, 2001b), to name a few. Despite their capacity for improved141

efficiency, these techniques still require numerous re-analyses of structural responses to assess the142

failure probability. Additionally, their outcomes are prone to noise. These factors pose challenges143

in solving the RBDO problems, especially with a double loop scheme.144

3. Approximate decoupled reliability-based design optimization145

As mentioned above, the process of RBDO typically imposes significant computational de-146

mands due to its nested double-loop nature. It entails evaluating the failure probabilities within147

the optimization process for various realizations of design variables, thus requiring numerous148

repeated structural reliability analyses. Particularly, when each structural analysis in such relia-149

bility analysis consumes substantial computational resources, the overall computational expenses150

associated with RBDO rapidly become prohibitively expensive. In this section, an approximate151

decoupled approach for addressing the RBDO problems based on the operator norm theory is152

introduced and elaborated. This approach enables the generation of designs that are slightly con-153

servative, while significantly reducing the number of failure probability evaluations. Therefore, it154

emerges as a promising tool for facilitating design exploration within RBDO frameworks. Such155

explorative tools are expecially relevant in early design stages, where the computational expense156

of ’regular’ RBDO procedures might not be justifiable.157

3.1. Operator norm of compliance158

The operator norm approach proposed by Faes et al. (2020, 2021) concentrates on the problems159

where the responses of interest can be recast into the following form:160

Y (x;Θ) = A (x)Θ, (6)

where A (x) : Rnθ 7→ Rny is a continuous linear map representing the transformation of the161

uncertain input to the responses of interest, x ∈ χ ⊂ Rnx is the vector of the design variables,162

Θ ∈ Rnθ is the vector of the random variables, and Y ∈ Rny is the vector of structural responses163

of interest. Examples of such responses are the displacements of either dynamical or static models164

of linear structures subjected to random loads.165
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Consider the linear map A (x) : Rnθ 7→ Rny between two normed vector spaces Rnθ and Rny166

as defined in Eq.(6), and let ‖·‖p(i) be a specific Lp(i)-norm in these vector spaces with i ∈ [1,∞).167

According to the operator norm theory, there exists a real number c (x) ∈ R such that the following168

inequality always holds for arbitrary vector Θ ∈ Rnθ :169

‖A (x)Θ‖p(1) ≤ |c (x) | · ‖Θ‖p(2) , (7)

and hence170

‖Y (x;Θ)‖p(1) ≤ |c (x) | · ‖Θ‖p(2) . (8)

These inequalities therefore provide a metric – the operator norm – indicating the maximum extent171

to which the matrix A (x) can stretch the random vector Θ, in terms of a p(1)-norm applied to172

the stretched vector Y , relative to a p(2)-norm applied to the original vector Θ. Mathematically,173

it can be expressed as174

‖A (x)‖p(1),p(2) = inf
{
c (x) ≥ 0 : ‖A (x)Θ‖p(1) ≤ |c (x) | · ‖Θ‖p(2) , c (x) ∈ R, ∀Θ ∈ Rnθ

}
, (9)

or equivalently,175

‖A (x)‖p(1),p(2) = sup

{
‖A (x)Θ‖p(1)

‖Θ‖p(2)
: ∀Θ ∈ Rnθ with Θ 6= 0

}
, (10)

where inf {·} and sup {·} denote the infimum and the supremum, respectively; and ‖·‖p(1),p(2) repre-176

sents the operator norm. It is noted that the operator norm ‖·‖p(1),p(2) is defined in a deterministic177

sense and thus irrelevant to the random variables. This property offers significant benefits for178

design optimization under uncertainties.179

In this contribution, a specific type of problems is taken into account: RBDO of static linear180

truss structures under random loads, with the criterion for structural failure defined in terms181

of compliance, an inverse metric of the overall stiffness of a structure (Huang and Xie, 2010).182

Therefore, the failure probability is formulated by:183

PF (x) = Pr
{
|C (Θ;x) /cth| > 1

}
, (11)
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where cth is the threshold of the compliance; C (Θ;x) is the structural compliance defined by184

C (Θ;x) = F (Θ)T U (Θ;x) = F (Θ)T K−1 (x)F (Θ) . (12)

It can also be represented as an inner product, i.e.,185

C (Θ;x) =
∣∣〈F (Θ) ,K−1 (x)F (Θ)

〉∣∣ , (13)

where K−1 (x) : Rm 7→ Rm is the inverse of the stiffness matrix of the structure; F (Θ) and186

U (Θ;x) are the m-dimensional vectors of random loads and displacements, respectively, such187

that U (Θ;x) = K−1 (x)F (Θ). According to the Cauchy–Schwarz inequality, the compliance is188

bounded by the product of the norms related to each component of the inner product in Eq.(13):189

C (Θ;x) =
∣∣〈F (Θ) ,K−1 (x)F (Θ)

〉∣∣ ≤ ‖F (Θ)‖2 ·
∥∥K−1 (x)F (Θ)

∥∥
2
, (14)

where ‖F (Θ)‖2 is defined as190

‖F (Θ)‖2 =

(
m∑
i=1

|fi|2
) 1

2

, (15)

with fi ∈ F (Θ) and | · | denoting the absolute value operator. Note that the second norm on191

the right-hand side of the inequality in Eq.(14) shares the same form as the left-hand side of the192

inequality in Eq.(7). By replacing A (x) with the inverse of the stiffness matrix K−1 (x) of the193

structure, Θ with the random loading vector F (Θ) acting on the structure , and p(1) with 2,194

Eq.(7) yields195 ∥∥K−1 (x)F (Θ)
∥∥
2
≤ |c (x) | · ‖F (Θ)‖p(2) . (16)

Then, substituting Eq.(16) into Eq.(14) results in196

C (Θ;x) ≤ ‖F (Θ)‖2 · |c (x) | · ‖F (Θ)‖p(2) . (17)

Therefore, the operator norm can serve as a metric related to the upper bound of the compliance:197

‖A (x)‖2,p(2) = sup

{
‖K−1 (x)F (Θ)‖2

‖F (Θ)‖p(2)
: ∀F (Θ) ∈ Rm with F (Θ) 6= 0

}
. (18)
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The calculation of the operator norm in Eq.(10) is evidently contingent upon the selection of198

the p(1)-norm and the p(2)-norm, which is highly case dependent. Readers are directed to Faes199

and Valdebenito (2020) for comprehensive formulations of operator norm with different p(1) and200

p(2). In the context of calculating the operator norm pertaining to compliance, both p(1) and p(2)201

are prescribed as 2, which leads to202

‖A (x)‖2,2 = sup

{
‖K−1 (x)F (Θ)‖2

‖F (Θ)‖2
: ∀F (Θ) ∈ Rm with F (Θ) 6= 0

}
. (19)

As discussed in Tropp (2004), the (2, 2) operator norm equals the maximum singular value of the203

matrix K−1 (x). The choice of employing an L2 norm for the numerator stems from the Cauchy–204

Schwarz inequality, as shown in Eq.(14), while the rationale behind opting for an L2 norm for205

the denominator lies in its loose characterization as the energy content of the random load (Faes206

et al., 2020).207

The operator norm (in Eq.(18)), along with Eq.(17), somehow suggests the extend to which the208

energy within the random load can be amplified towards the compliance. Therefore, it is readily209

seen that assessing the failure probability defined in Eq.(11) can be approximated by analyzing210

the operator norm outlined in Eq.(18). This approximation is rooted in the intuition that lower211

compliance in a global sense corresponds to a reduced failure probability. Moreover, since the212

calculation of the operator norm is irrelevant to the random variables, such an approximation can213

significantly reduce the computational costs.214

3.2. Transformation of reliability constraint215

Based on the developments of Section 3.1, the operator norm correlates with the upper bound216

of compliance and thus can be used for the approximate analysis of the failure probability. In this217

contribution, this approximation is adopted within the RBDO framework to replace the reliability218

constraint by the deterministic constraint on the operator norm defined by Eq.(18). Herein, the219

reliability index serves as the chosen reliability measure, calculated through the failure probability220

as depicted in Eq.(4).221

To effectively formulate the deterministic constraint function on operator norm, it is crucial222

to identify the threshold ONth of the operator norm corresponding to the specified threshold βth223

of the reliability index (Jiang et al., 2024). Empirical studies have shown that a direct one-224

to-one mapping between the operator norm and the reliability index is elusive. To this end,225
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the threshold ONth of the operator norm is estimated using the lower segment of a convex hull226

in the space related to the operator norm and the reliability index, to ensure the feasibility of227

the solution of the deterministic optimization problem. The convex hull is constructed based228

on some randomly pre-selected samples of design vectors, whose reliability indexes and operator229

norms are evaluated ahead of the optimization implementation. This strategy for determining230

the threshold of the operator norm is justified by the fact that both computational efficiency and231

design feasibility are crucial considerations in engineering design decision-making. Specifically,232

the following strategy is employed: firstly, generate ns samples of design vector {xi}ns

i=1 from the233

design space randomly; then, calculate the reliability indexes {βi}ns

i=1 and the operator norms234 {
‖A‖i2,2

}ns

i=1
associated with these design variables; next, construct a convex hull based on the235

samples
{(

βi, ‖A‖i2,2
)}ns

i=1
; finally, parameterize the lower segment of the convex hull, which covers236

the target reliability index βth, with a polynomial function, and estimate the threshold ONth of237

the operator norm corresponding to βth through this polynomial function. Figure 1 provides a238

visual representation of this strategy. Once the threshold ONth is determined, the RBDO problem239

(Eq.(1)) is transformed into240

min
x∈χ

f (x)

s.t. ‖A (x)‖2,2 ≤ ONth

hj (x) ≤ 0, j = 1, · · · , nh

x ∈ χ ⊂ Rnx

, (20)

and can be tackled without the need for additional reliability analyses. Herein, only one reliability241

constraint is considered. The utilization of the lower segment of the convex hull to estimate the242

threshold is justified by its ability to ensure a conservative reliability level of the final design243

obtained by solving the problem specified in Eq.(20).244
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Figure 1: Illustration for identifying the threshold of the operator norm.

However, directly determining the exact threshold ONth of the operator norm may be unfeasi-245

ble, if the initial number of the random samples is too limited. Moreover, the threshold could be246

obtained by extrapolating from the limited samples, since the samples may not cover the target247

reliability index. Therefore, an iterative procedure is adopted to expand the samples for updating248

the threshold of the operator norm. Specifically, substitute the inaccurate threshold of the op-249

erator norm, denoted as ONth,(1), into Eq.(20), and solve the deterministic optimization problem250

to obtain a design, denoted as x
(1)
∗ . Then, evaluate the reliability index β

(1)
∗ and the operator251

norm ‖A‖∗(1)2,2 of the design x
(1)
∗ . If the reliability index is smaller than the target reliability index,252

namely β
(1)
∗ < βth, insert the point

(
β
(1)
∗ , ‖A‖∗(1)2,2

)
to the set

{(
βi, ‖A‖i2,2

)}ns

i=1
, and implement253

the same strategy mentioned above to obtain an updated threshold ONth,(2). The threshold is254

repeatedly updated until a proper threshold ONth,(l) (l ≥ 1) is found, such that β
(l)
∗ > βth is255

satisfied. Since ONth,(l) can typically be obtained after a few iterations, the numerical costs are256

not expected to increase significantly.257

It should be noted that this strategy tends to produce slightly conservative optimization solu-258

tions, although not consistently so. Moreover, the construction of the convex hull can be influenced259

by the randomly pre-selected design samples, which consequently affects the level of conservatism260

of the optimization results. Nonetheless, the optimization results are always feasible. It is also261

noted that reliability analysis is only required for estimating and updating the threshold of the262

operator norm, as well as for calculating the reliability index of the final design. This approach,263

therefore, can significantly enhance computational efficiency of RBDO.264
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3.3. Reliability analysis265

While the proposed approach significantly reduces the number of reliability analyses, further266

efficiency gains can be achieved with the utilization of a general analysis method. In this context,267

the probability density evolution method (PDEM) is adopted (Chen and Li, 2009). The PDEM268

stands as a theoretically rigorous and universally applicable approach for analyzing structural269

stochastic responses (Cao et al., 2023). Its effectiveness in design optimization under uncertainties270

has been verified in prior research (Yang et al., 2022a,b), demonstrating its status as a powerful271

tool in the realm of RBDO.272

The theoretical foundation of the PDEM is rooted in the stochastic event description of the273

principle of preservation of probability (Chen and Li, 2009). From this standpoint, a partial274

differential equation known as the generalized density evolution equation (GDEE), which governs275

the evolution of the PDF of the structural response of interest, can be derived (Li and Chen, 2008).276

If only one stochastic response is considered, the GDEE is reduced to a one-dimensional partial277

differential equation. For the reliability analysis of the structure, the PDEM should be combined278

with either the absorbing boundary condition approach (Li and Chen, 2005) or the extreme value279

distribution approach (Chen and Li, 2007). The absorbing boundary condition approach favors280

time-dependent reliability problems, which are outside the scope of this contribution. Hence, the281

extreme value distribution approach is adopted.282

According to the extreme value distribution approach, the structural reliability could be eval-283

uated by integrating the PDF of an equivalent extreme-value random variable associated with284

structural failure events. Since the failure events are defined by structural compliance herein, the285

equivalent extreme-value random variable essentially represents the compliance. Therefore, the286

problem of reliability analysis is transferred to the solution of the PDF of the compliance. This287

can be readily achieved through the PDEM.288

Specifically, construct a virtual stochastic process associated with the normalized compliance,289

namely290

W (Θ, τ ;x) = U (Θ;x) · sin (ωcτ) , (21)

which satisfies291

W (Θ, τ ;x)|τ=0 = 0, (22)
292

W (Θ, τ ;x)|τ=τc
= U (Θ;x) , (23)
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where U (Θ;x) denotes the normalized compliance, that is |C (Θ;x) /cth| in Eq.(11); τ represents293

the virtual time; ωc and τc are the parameters of the virtural process, specified as 2.5π and 1,294

respectively.295

Then, the GDEE corresponding to the virtual stochastic process takes the following form:296

∂pWΘ (w, θ, τ ;x)

∂τ
+ Ẇ (θ, τ ;x)

∂pWΘ (w, θ, τ ;x)

∂w
= 0 (24)

whose initial condition is297

pWΘ (w, θ, τ ;x)|τ=0 = δ (w) pΘ (θ) , (25)

where pWΘ (w, θ, τ ;x) is the joint PDF of (W ,Θ); Ẇ (θ, τ ;x) is the velocity process of the virtual298

stochastic process; and δ (·) is Dirac’s delta function. This initial-value problem can be solved by299

different numerical procedures, and the finite difference method (FDM) with the total variation300

diminishing (TVD) scheme is adopted (Chen et al., 2020).301

After solving the GDEE, one can get the PDF of the normalized compliance pU(u;x) by302

calculating the marginal distribution:303

pU(u;x) =

∫
ΩΘ

pWΘ(w, θ, τ ;x)dθ

∣∣∣∣
w=u,τ=τc

. (26)

Finally, the failure probability and the corresponding reliability index of the structure can304

be calculated through Eq.(5) and Eq.(4), respectively. Readers are referred to Li and Chen305

(2009) for more technical details. For completeness, the numerical procedures implemented in306

this contribution are outlined in the Appendix.307

3.4. Optimization308

For solving the deterministic problem presented in Eq.(20), any appropriate algorithms can be309

adopted. In this contribution, the quantum particle swarm optimization (QPSO) algorithm (Sun310

et al., 2004) is utilized. Renowned as a novel optimization algorithm incorporating quantum311

mechanics theories, the QPSO and its variants have been extensively adopted to address vari-312

ous optimization problems (dos Santos Coelho, 2010; Agrawal et al., 2021). By leveraging the313

characteristics of quantum states to enhance particle movements within the search space, QPSO314

distinguishes itself from canonical particle swarm optimization (PSO), and exhibits superior con-315

vergence speed and robustness (Weng et al., 2023).316
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In the PSO, the movement of particles relies on both their positions and velocities, where the317

positions represent a collection of potential solutions to the optimization problem (Kennedy and318

Eberhart, 1995; Meng et al., 2020). In contrast, the QPSO describes the position of a particle319

probabilistically using a wave function, with its square representing the PDF of the position.320

Moreover, the QPSO assumes that the wave function adopts the same form as that associated321

with a real physical particle in a Delta potential well. Therefore, the wave function can be yielded322

by solving the corresponding time-independent Schrödinger equation. Based on the wave function,323

the particle’s position can be updated by using Monte Carlo simulation.324

For practical implementation, the positions of the particles are updated by the following equa-325

tion:326

x
(i,ℓ+1)
j = η

(i,ℓ)
j ±

L
(i,ℓ)
j

2
ln
(
1/u

(i,ℓ)
j

)
, j = 1, · · · , nx, (27)

where x(i,ℓ+1)
j denotes the jth component of the ith particle’s position at the (ℓ+ 1)th optimization327

step; η(i,ℓ)j is the local attractor of the particle’s position component, given by328

η
(i,ℓ)
j =

φ
(i,ℓ)
j pb

(i,ℓ)
j + ϕ

(i,ℓ)
j gb

(ℓ)
j

φ
(i,ℓ)
j + ϕ

(i,ℓ)
j

; (28)

L
(i,ℓ)
j is the characteristic length defined by329

L
(i,ℓ)
j = 2α ·

∣∣∣x(i,ℓ)
j − η

(i,ℓ)
j

∣∣∣ ; (29)

u
(i,ℓ)
j , φ

(i,ℓ)
j , ϕ

(i,ℓ)
j are random numbers sampled from a uniform distribution within the range [0, 1];330

pb
(i,ℓ)
j is the jth component of the ith particle’s optimal position; gb(ℓ)

j is the jth component of the331

global best position of the particle swarm; and α denotes the contraction–expansion coefficient,332

which regulates the convergence rates of particles. The selection of the contraction–expansion333

coefficient α can be referred to Sun et al. (2012). Additionally, to cope with the constraints334

of the optimization problem, a penalty-based method is employed to transform the constrained335

optimization problem into an unconstrained one (Weng et al., 2023), which is subsequently solved336

by the QPSO introduced in this section.337

3.5. Summary of the proposed approach338

The proposed approach for RBDO of a linear truss structure subjected to random loads can339

be summarized as follows:340
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1. Formulate the RBDO problem to be solved into the form presented in Eq.(1).341

2. Determine the threshold of the operator norm and formulate the deterministic optimization342

problem, as illustrated in Section 3.2, i.e.,343

a) Generate a limited number of samples of the design vector from the design space, calculate344

their operator norms, and evaluate their reliability indexes with the PDEM introduced345

in Section 3.3.346

b) Evaluate the threshold of the operator norm corresponding to the target reliability index,347

by fitting the lower segment of the convex hull with polynomials.348

c) Transform the RBDO problem (Eq.(1)) into a deterministic optimization problem (Eq.(20))349

based on the threshold of the operator norm.350

d) Solve the deterministic optimization problem using the QPSO introduced in Section 3.4.351

e) Update the threshold of the operator norm iteratively. Specifically, assess the reliability352

level of the final design of the deterministic optimization problem in Step 2.c). If the353

reliability constraint in Eq.(1) is satisfied at the final design, terminate the iteration and354

go to Step 3. Otherwise, return to step 2.b) to update the threshold of the operator355

norm, while considering the reliability index and operator norm associated with the last356

final design.357

3. Output the final results in Step 2 and terminate the whole algorithm.358

4. Numerical examples359

In this section, four numerical examples are conducted to demonstrate the effectiveness and360

efficiency of the proposed approach. Two termination criteria for the optimization process are361

adopted: (1) reaching the maximum number of reliability function calls; (2) reaching the maximum362

number of iteration NIt. The first example aims primarily to validate the effectiveness of the363

proposed approach. Therefore, only the second termination criterion is employed to ensure a364

thorough search of the design space.365

4.1. Test example: Shape optimization of a 5-bar linear truss structure366

The first example focuses on the shape optimization of a 5-bar linear truss structure, as shown367

in Figure 2. The truss is simply supported on the left side and subjected to a random Gaussian368

load modelled as a random variable. The mean value and coefficient of variation of the Gaussian369

load are assumed to be 44.4822 kN and 0.15, respectively. The structural parameters are set as:370
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the mass density ρ = 2.768 × 10−6 kg/mm3, and the modulus of elasticity E = 68947.573 MPa,371

the cross-sectional areas of all the bars Ai = 645.16 mm2 (i = 1, · · · , 5).372

Figure 2: A 5-bar truss structure (Test example).

The objective of the design optimization is to minimize the total mass of the truss struc-373

ture, while ensuring that the reliability index of the structure remains higher than βth = 2.34,374

(i.e., P th
F = 0.01). The structure is considered to be failed if structural compliance exceeds375

the prescribed threshold of the compliance, cth = 4 (×112.984 kN ·mm). The design vector376

x = (x1, x2)
T(×25.4 mm) represents the vertical coordinates of the structural supports. There-377

fore, the optimization problem is formulated as:378

min
x1,x2

∑5
i=1 Aili (x1, x2) ρ

s.t. 2.34− β (x1, x2) ≤ 0

x1 ∈ [60, 140]

x2 ∈ [−20, 60]

, (30)

where li is the length of the ith bar.379

For comparison, the RBDO problem is solved by both a double loop approach and the proposed380

approach, with a brute-force search scheme: that is, the solution of the optimization problems381

(both the original RBDO problem and the corresponding deterministic optimization problem) are382

obtained by finding the optimal designs among a large number of designs generated randomly.383

To this end, a total of 10000 sets of design variables are randomly generated. The double loop384

approach utilizes the PDEM to evaluate the reliability index for each realization of the design385

vector during the optimization process. The reliability index of the structure is calculated with386

100 representative points.387
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Figure 3 presents the operator norm as a function of the reliability index. It illustrates a388

discernible overall trend wherein the reliability index exhibits an increase as the operator norm389

decreases. To demonstrate the effectiveness of the proposed approach, 20 samples of the design390

variables are considered initially to evaluate the threshold of the operator norm, yielding the391

threshold ONth of 0.041, as shown in Figure 4. The contours of the operator norm and the392

reliability index are depicted in Figure 5, along with the feasible domains for both approaches.393

It is observed in Figure 5 that the feasible domains of the two approaches are close to each394

other, which makes it appropriate to replace the original RBDO problem with the deterministic395

problem. Table 1 presents the final results obtained by both brute-force search with 10000 designs.396

The results reveal that the proposed approach yields a slightly conservative design, showcasing397

its feasibility for design optimization under uncertainty. Additionally, in the case of the double398

loop approach, exploration of the feasible domain necessitates assistance from reliability analysis.399

However, for the proposed approach, only the calculation of the deterministic operator norm is400

required to explore the feasible domain, which thereby enhances optimization efficiency.401

The RBDO problem is also solved by the QPSO algorithm introduced in Section 3.4. The402

population size Np and the maximum number of iteration NIt are set as 30 and 100, respectively.403

Table 2 presents the final results obtained by the QPSO optimizer. It demonstrates the feasibility404

of the proposed approach for generating effective designs. Figure 6 shows the failure probability405

curve evaluated at the final design of the proposed approach (see Table 2) by the PDEM with406

100 representative points and by Monte Carlo simulation (MCS) with 10000 samples. It is seen407

that the curve obtained by the PDEM is in accord with that obtained by MCS, demonstrating408

the effectiveness of the PDEM in terms of the reliability analysis.409

Table 1: The results obtained by brute-force search within 10000 designs (Test example).

Approach Threshold Objective function value Operator norm β x1 x2

Double loop approach βth = 2.34 70.956 0.042 2.360 121.898 -11.400
Operator norm-based approach ONth = 0.041 71.053 0.041 2.365 128.658 -6.168
Note: the unit of the objective function value is (× 0.4536 kg); the unit of the design variables xi, i = 1, 2, is (× 25.4 mm).

Table 2: The results obtained by the QPSO optimizer (Test example).

Approach Threshold Objective function value Operator norm β x1 x2

Double loop approach βth = 2.34 70.922 0.043 2.326 118.794 -13.617
Proposed approach ONth = 0.041 71.038 0.041 2.366 128.056 -6.605

Note: the unit of the objective function value is (× 0.4536 kg); the unit of the design variables xi, i = 1, 2, is (× 25.4 mm).
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Figure 3: Reliability index versus operator norm (Test example).
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Figure 4: The evaluation of the threshold of the operator norm (Test example).

4.2. Application 1: Size optimization of a 15-bar linear truss structure410

The second example involves the size optimization of a 15-bar linear truss structure illustrated411

in Figure 7. The structure is subjected to a random Gaussian load with the mean value of412

44.4822 kN and the coefficient of variation of 0.15. The structural parameters are the same as413

those of Test example, including the mass density and the modulus of elasticity.414

The design optimization aims at minimizing structural mass under a constraint on the reli-415

ability index of the structure. The threshold of the compliance for defining failure event is set416

as 50 (×112.984 kN ·mm). The design variables are the cross-sectional areas of the 15 bars, all417

of which belong to the interval [0.001, 2] (×645.16 mm2). The design optimization problem is418
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(a) Operator norm (b) Reliability index

Figure 5: The contours of the operator norm and the reliability index (Test example). (The regions in the lower
right part of the red contour lines represent the feasible domains; the units of the design variables x1 and x2 are
(× 25.4 mm).)
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Figure 6: Probability failure curve obtained by the PDEM and MCS (Test example).

formulated as419

min
x=(x1,··· ,x15)

T

∑15
i=1 xiliρ

s.t. 2.34− β (x) ≤ 0

xi ∈ [0.001, 2], i = 1, · · · , 15

. (31)

The optimization problem is also solved by both the double loop approach and the proposed420

approach. For both approaches, the reliability index of the structure is estimated through the421

PDEM with 200 representative points; the population size Np is 30; and the maximum number422
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Figure 7: A 15-bar truss structure (Application 1).

of iteration NIt is 300. Initially, the threshold of the operator norm is evaluated with 50 samples423

of the design vector. For updating the threshold of the operator norm, additional 4 rounds of424

reliability analysis are required, as shown in Figure 8.425
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Figure 8: The evaluation of the threshold of the operator norm (Application 1).

Figure 9 shows the the operator norms and failure probabilities associated with 10000 randomly426

selected design variables, revealing a trend that the reliability index increases as the operator norm427

decreases. The objective function values and the corresponding design variables resulting from the428

proposed approach and the double loop approach are presented in Tables 3-4. The optimization429

termination criterion stipulates a maximum of 1000 calls to the reliability function. The results430

show that the proposed approach allows for the generation of a design whose objective function431

value is comparable to that obtained by using the double loop approach, but at a greatly lower432

computational cost, with the number of function evaluations reduced by an order of magnitude.433
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It is important to note that for calculating the number of function evaluations for the proposed434

approach, the number of operator norm evaluations involved in solving the deterministic optimiza-435

tion problem is considered, due to the necessity to evaluate the inversion of the stiffness matrix.436

The number of operator norm evaluations is associated with the selection of the optimizer for437

solving the deterministic optimization problem.438

It should also be noted that a better result may be obtained by continuing the optimization439

process for the double loop approach. For example, if the maximum number of iteration NIt =440

300 is reached, the double loop approach can yield a design whose objective function value and441

operator norm are 132.708 (× 0.4536 kg) and 0.790, respectively. However, achieving a 12.2%442

improvement in the objective function value compared to that obtained by the proposed approach443

(see Table 3) entails a substantial computational cost, necessitating 9000 rounds of reliability444

analyses. For the preliminary phases of engineering projects, engineers usually prioritize efficiency445

and computational feasibility. In this context, the approach proposed in this paper emerges as446

an effective tool, offering the ability to achieve competitive design outcomes with significantly447

reduced computational burdens.448
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Figure 9: Reliability index versus operator norm (Application 1).

4.3. Application 2: Size and shape optimization of a 15-bar linear truss structure449

4.3.1. Case 1: A single random load450

The third example involves the size and shape optimization of the 15-bar linear truss structure451

illustrated in Figure 7. The load condition and the structural parameters are the same as those452
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Table 3: The results obtained by different approaches (Application 1).

Approach Threshold Nr Nf Objective function value Operator norm β

Double loop approach βth =2.34 990 198000 147.876 0.790 2.409
Proposed approach ONth=0.612 54+1 20000 148.938 0.612 2.409

Note: (1) Nr and Nf denote the numbers of reliability analyses and function evaluations; (2) the unit of the objective
function value is (× 0.4536 kg).

Table 4: The design variables obtained by different approaches (Application 1).

Approach x1 x2 x3 x4 x5 x6 x7 x8

Double loop approach 1.409 1.057 0.725 1.152 1.250 0.149 0.001 0.092
Proposed approach 1.996 1.066 0.414 1.976 1.265 0.308 0.006 0.001

Approach x9 x10 x11 x12 x13 x14 x15

Double loop approach 0.857 0.059 1.076 1.407 0.153 0.300 0.987
Proposed approach 0.070 0.708 0.842 0.780 0.539 0.348 0.538

Note: the unit of the design variables xi, i = 1, · · · , 15, is (×645.16 mm2).

of Application 1. The objective of this problem is to minimize structural mass under a reliability453

constraint. The threshold of the compliance is taken as 50 (×112.984 kN ·mm). The design454

variables are comprised of the cross-sectional areas ai (×645.16 mm2), i = 1, · · · , 15, and part455

of the nodes’ coordinates, namely xc = (xc2, xc3, yc2, yc3, yc4, yc6, yc7, yc8)
T (×25.4 mm) (Ho-Huu456

et al., 2015). Therefore, the RBDO problem to be solved is457

min
x=(a1,··· ,yc8)T

∑15
i=1 aili (xc) ρ

s.t. 2.34− β (x) ≤ 0

ai ∈ [0.001, 2], i = 1, · · · , 15

xc2 = xc6

xc3 = xc7

100 ≤ xc2, yc2, yc3 ≤ 140

220 ≤ xc3 ≤ 260

50 ≤ yc4 ≤ 90

−20 ≤ yc6, yc7 ≤ 20

20 ≤ yc8 ≤ 60

. (32)

The problem is solved by both the double loop approach and the proposed approach, with458

identical settings described in Application 1, except for the population size Np set as 50 and the459
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maximum number of iteration NIt set as 500.460

Figure 10 illustrates the values of the operator norm and failure probability associated with461

10000 design variables. The figure shows a trend similar to that observed in Application 1, i.e., the462

increase in the operator norm comes with the decrease in the reliability index. For the proposed463

approach, the threshold of the operator norm is evaluated with only 50 rounds of reliability464

analyses, as shown in Figure 11. Table 5 presents the results obtained by both the proposed465

approach and the double loop approach, wherein a maximum of 2000 calls to the reliability466

function are restrained. The corresponding designs are shown in Figures 12-13.467

It is seen that the proposed approach can generate a design comparable to that of the double468

loop approach in terms of the objective function value, while significantly reducing the compu-469

tational costs. When the maximum number of iteration NIt = 500 is reached, the double loop470

approach can produce an improved design, as shown in Figure 14, with the objective function471

value of 108.364 (× 0.4536 kg) and the operator norm of 0.837. Nonetheless, such a 5.5% im-472

provement in the objective function value, compared to those in Table 5, demands considerable473

computational expense. Specifically, 25,000 rounds of reliability analyses are required to achieve474

this improvement. Given this, the proposed approach can efficiently deliver competitive design475

outcomes under limited computational resources, which is therefore advantageous in the prelimi-476

nary phases of engineering design.477
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Figure 10: Reliability index versus operator norm (Application2: Case 1).
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Figure 11: The evaluation of the threshold of the operator norm (Application2: Case 1).

Table 5: The results obtained by different approaches (Application2: Case 1).

Approach Threshold Nr Nf Objective function value Operator norm β

Double loop approach βth =2.34 2000 400000 115.024 0.828 2.409
Proposed approach ONth=0.682 50+1 35200 114.346 0.682 2.366

Note: (1) Nr and Nf denote the numbers of reliability analyses and function evaluations; (2) the unit of the objective
function value is (× 0.4536 kg).

Figure 12: The final truss structure obtained by the proposed approach (Application2: Case 1).
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Figure 13: The final truss structure obtained by the double loop approach at 40th optimization iteration (Appli-
cation2: Case 1).

Figure 14: The final truss structure obtained by the double loop approach at 500th optimization iteration (Appli-
cation2: Case 1).

4.3.2. Case 2: Multiple random loads478

The last example is an extension of Case 1, to demonstrate the effectiveness of the proposed479

approach for RBDO under the case of multiple random loads. The truss structure is subjected480

to six Gaussian random loads, as shown in Figure 15. The loads independently follow the same481

distribution, with the mean value of 44.4822 kN and the coefficient of variation of 0.15. For the482
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reliability analysis, the threshold of the compliance is taken as 500 (×112.984 kN ·mm), and 300483

representative points are adopted. Other settings are identical to those of Case 1.484

Figure 16 shows the threshold of the operator norm evaluated with 50 samples of design vector.485

Table 6 presents the results of both the proposed approach and the double loop approach, with486

the maximum number of the calls to the reliability function being 2000. The results demonstrate487

the proposed approach achieves a superior design compared to the double loop approach, while488

significantly reducing computational costs. When the double loop approach reaches its maximum489

iteration number NIt = 500, the objective function decreases to 93.055 (× 0.4536 kg), represent-490

ing a 1.7 % improvement compared to the proposed approach (see Table 6). Nevertheless, this491

improvement comes at the expense of conducting 25000 reliability analyses. In this regard, the492

proposed approach offers a powerful way for structural design under uncertainty.493

To provide a more comprehensive analysis of the proposed approach, it is further compared494

with the method recently introduced by Yang et al. (2022b), denoted as Gradient-based method495

1. The method has been successfully extended to the reliability-based topology optimization496

(Yang et al., 2022a, 2024). It combines the globally convergent version of the method of moving497

asymptotes (GCMMA) (Svanberg, 2002) with a highly efficient strategy for sensitivity analysis.498

Although many recent studies on surrogate models can significantly reduce computational costs,499

they are outside the scope of this study and thus not included in the comparisons. Nonetheless, the500

proposed approach can be integrated with surrogate models to further reduce computational costs,501

for example, by incorporating surrogate models into the reliability analysis process or solving the502

deterministic optimization problems. The original RBDO problem is also solved by the GCMMA503

with the finite difference method for obtaining the gradient information, denoted as Gradient-504

based method 2. Both methods use the first feasible design found by the double loop approach505

adopted in this example as the initial solution. The algorithms are terminated if they fail to506

converge within 100 iterative steps. It should be noted that the GCMMA includes an inner loop507

at each optimization step to ensure the feasibility of intermediate solutions, which can increase508

the number of the reliability analyses. The corresponding optimization results are presented in509

Table 7. It is seen that Gradient-based method 1 demonstrates significantly better efficiency than510

Gradient-based method 2, which fails to converge in this example. But Gradient-based method511

1 dose not achieve a solution as good as the proposed approach, partly due to the complex512

and irregular reliability contour surface. To illustrate this point, the sliced contour map of the513
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reliability index in dimensions x18 and x21 (the vertical coordinates of nodes 2 and 6), with the514

other dimensions fixed, is plotted and shown in Figure 17. It is shown that the contour exhibits515

a high degree of non-linearity and that the reliability index is a non-bijective function of the516

design variables. From this sliced contour map, it can be inferred that the whole contour map517

of the reliability index is much more complex and irregular. Given this, the proposed approach518

can be advantageous in both computational efficiency and robustness. Furthermore, if the final519

solution of the proposed approach is used as the initial solution for Gradient-based method 1, a520

better solution is obtained, with an objective function value of value 92.640 (× 0.4536 kg) and521

11558 function evaluations. This indicates that the proposed approach can effectively serve as a522

pre-optimizer for gradient-based optimization algorithms.523

To evaluate the performance of the PDEM in the reliability assessment step, subset simula-524

tion (SS), Latin hypercube sampling (LHS), and MCS are also adopted to estimate the failure525

probability of the structure. In particular, the failure probability with different thresholds at the526

design found by the double loop approach (see Table 6) is calculated using the four methods, as527

shown in Figure 18. The PDEM uses 300 representative points, while MCS and LHS use 100000528

and 1000 samples, respectively. For SS, the probability of the intermediate events is set to 0.1,529

with 400 samples employed at each stage, resulting in a total of 1120 samples to estimate the530

failure probability. As observed in Figure 18, both SS and the PDEM accord well with MCS,531

whereas LHS performs less accurately. In terms of efficiency, the PDEM requires fewer determin-532

istic analyses but takes little time to solve the GDEE (less than 2 seconds). Although SS involves533

more deterministic analyses, the short computation time for the response analysis ensures that the534

overall efficiency remains high. Thus, in this example, both the PDEM and SS demonstrate satis-535

factory accuracy and efficiency. Based on this comparison, it is easy to infer the influences of the536

reliability analysis methods on the RBDO results, since the reliability analysis and optimization537

process are decoupled in the proposed approach.538

To further examine the performance of the QPSO, the PSO and a gradient-based optimization539

algorithm, i.e., GCMMA, are employed to solve the decoupled deterministic optimization problem.540

For the QPSO and the PSO, the population size Np and the maximum number of iteration NIt541

are set to 50 and 500, respectively. Given the stochastic nature of the QPSO and the PSO, each542

algorithm is run 10 times. For the GCMMA, the gradient information is obtained using the finite543

difference method, and the initial solution is the first feasible design found by the QPSO. The544
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iteration histories, in terms of the average objective function value, obtained by the QPSO and the545

PSO are shown in Figure 19. The iteration history for the GCMMA are shown Figure 20. The final546

average objective function values for the QPSO and the PSO are 95.343 and 125.021 (× 0.4536547

kg), respectively, while the final objective function value for the GCMMA is 94.510 (× 0.4536548

kg). All the solutions are feasible. It is found that the QPSO demonstrates better global search549

capability and optimization performance compared to the PSO, which often shows premature550

convergence. The results of the gradient-based GCMMA are similar to those of the QPSO, with551

an acceptable difference in the objective function values. However, as previously analyzed, when552

the GCMMA is adopted to directly solve the original RBDO problem, the optimization results553

are not ideal. On the other hand, the QPSO performs well in handling both the original RBDO554

problem and the decoupled deterministic optimization problem. This also indicates that the555

decoupled deterministic optimization problem is easier to solve than the original RBDO problem.556

Figure 15: A 15-bar truss structure (Application 2: Case 2).

Table 6: The results obtained by different approaches (Application 2: Case 2).

Approach Threshold Nr Nf Objective function value Operator norm β

Double loop approach βth =2.34 2000 600000 101.590 0.919 2.366
Proposed approach ONth =0.823 50+1 40300 94.632 0.823 2.366

Note: (1) Nr and Nf denote the numbers of reliability analyses and function evaluations; (2) the unit of the objective
function value is (× 0.4536 kg).

Table 7: The results obtained by the gradient-based RBDO methods (Application 2: Case 2).

Approach Nr Nf Objective function value Operator norm β

Gradient-based method 1 101 33658 138.651 0.835 2.330
Gradient-based method 2 14676 4402800 198.234 0.553 Inf
Note: (1) Nr and Nf denote the numbers of reliability analyses and function evaluations; (2) the unit of the objective
function value is (× 0.4536 kg).
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Figure 16: The evaluation of the threshold of the operator norm (Application2: Case 2).
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Figure 17: Sliced contour maps of the reliability index (Application 2: Case 2).

5. Conclusions557

This contribution presents an approximate decoupled reliability-based design optimization ap-558

proach for a specific class of RBDO problems concerning linear truss structures under random559

loads, with failure event defined by compliance. Grounded in the operator norm theory, this560

approach offers a potent and efficient means for design exploration with acceptable accuracy561

trade-offs. The key innovation lies in the application of the operator norm theory in terms of562

structural compliance. Based on it, the proposed approach transforms the RBDO problem into a563

deterministic optimization task through a limited number of reliability analyses, facilitated by the564
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Figure 18: Probability failure curve obtained by different methods (Application 2: Case 2).
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Figure 19: Iteration history in terms of the average objective function value obtained by the QPSO and the PSO
(Application 2: Case 2).

probability density evolution method (PDEM). Once the deterministic optimization problem is565

formulated, the solution of the whole RBDO problem can be obtained without further reliability566

analysis, which results in a considerably improved computational efficiency. Numerical exam-567

ples demonstrate that, with restrained computational resources, the proposed approach efficiently568

provides designs comparable to those obtained through the double loop technique. This contribu-569

tion not only extends the frontier of the operator norm theory in the RBDO framework but also570

provides a valuable exploratory tool for decision-making in the early design phases of real-world571

engineering structures.572

Future research efforts include finding more effective ways for determining the threshold of573
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Figure 20: Iteration history in terms of the average objective function value obtained by the GCMMA (Application
2: Case 2).

the operator norm. Another direction for future research involves extending the approach to the574

reliability-based design optimization of dynamical systems.575
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7. Appendix: Numerical procedures for the PDEM583

The numerical procedures for solving the GDEE (Eq.(24)) are as follows:584

1. Discretize the probability-assigned space ΩΘ with a representative point set Psel = {(θq, Pq)}nsel

q=1585

based on the generalized F-discrepancy minimization-based point selection strategy (Chen586

et al., 2016a; Chen and Chan, 2019); nsel is the number of the representative points;587

θq = (θq1, · · · , θqnθ
)T is qth representative point corresponding to the representative region588

31



ΩΘq ; and Pq is the assigned probability of θq given by589

Pq =

∫
ΩΘq

pΘ (θ) dθ. (33)

2. Perform deterministic structural analyses for the representative points θq, q = 1, · · · , nsel, to590

evaluate the velocity responses Ẇ (θq, τ ;x) , q = 1, · · · , nsel.591

3. Substitute each of the velocity responses Ẇ (θq, τ ;x) , q = 1, · · · , nsel, into the GDEE (Eq.592

(24)), and solve the GDEEs by the finite difference method (Li and Chen, 2009) to obtain593

the joint PDFs pWΘ (w, θq, τ ;x) , q = 1, · · · , nsel.594

4. Synthesize the results of the GDEEs to obtain the PDF of the normalized compliance,595

namely596

pU(u;x) =

∫
ΩΘ

pWΘ(w, θ, τ ;x)dθ

∣∣∣∣
w=u,τ=τc

=

nsel∑
q=1

pWΘ (w, θq, τ ;x)|w=u,τ=τc
. (34)
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