
Augmented First-Order Reliability Method for Estimating Fuzzy1

Failure Probabilities2

Marcos A. Valdebenitoa,∗, Xiukai Yuanb, Matthias G. R. Faesa3

aChair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Str. 5, Dortmund 44227, Germany4

bSchool of Aerospace Engineering, Xiamen University, Xiamen 361005, P.R. China5

Abstract6

This paper presents an approach for estimating the fuzzy failure probability associated with reli-7

ability problems where uncertainty is characterized through random variables whose distribution8

parameters are described as fuzzy variables. The main contribution of this work is addressing9

such problem with the First-Order Reliability Method, with some minor modifications. The epis-10

temic uncertainty is addressed by resorting to an augmented reliability problem. In this way,11

a single reliability analysis suffices for estimating the membership function associated with the12

fuzzy failure probability. Numerical results suggest that the proposed approach is most useful13

for providing an estimate of the membership function associated with the failure probability with14

reduced numerical costs.15
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Highlights:18

• Focus on calculation of fuzzy failure probabilities.19

• Augmented reliability problem allows accounting for epistemic uncertainty.20

• First-Order Reliability Method is applied to solve augmented problem.21

• Single reliability analysis suffices for approximating membership function.22

1. Introduction23

Probability theory has become a widespread means for characterizing uncertainty associated24

with practical engineering systems [1]. Following this framework, the uncertainty associated with25

parameters that affect the performance of a system is described in terms of probability distribu-26

tions. Thus, the level of safety of a system can be quantified in terms of a failure probability, that27
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measures the chances that the performance of the system undergoes an undesirable behavior [2].28

For cases of practical interest, the calculation of this failure probability is a challenging task and29

therefore, several specialized methods have been devised for its calculation, involving approxima-30

tion concepts (see, e.g. [3, 4]), surrogate modeling (see, e.g. [5, 6]), probability density evolution31

methods (see, e.g. [7–9]) and simulation approaches (see, e.g. [10, 11]).32

The above discussion assumes that uncertainty associated with a problem is aleatory, that is, due33

to randomness. However, it has been acknowledged that uncertainties may be of the epistemic34

type [12] whenever they originate from issues such as lack of knowledge, imprecision, etc. Such35

type of uncertainty may be described resorting to models such as intervals or fuzzy variables, as36

discussed in e.g. [13]. More often than not, one may be confronted with both types of uncer-37

tainties in a practical situation. Under such circumstances, hybrid uncertainty models become38

most useful (see, e.g. [14]). In particular, fuzzy probability (see, e.g.[15]) constitutes a straight-39

forward yet powerful framework for modeling and capturing the effects of aleatory and epistemic40

uncertainty. In essence, fuzzy probability consists of modeling the uncertainty associated with an41

input parameter of a problem with a probability density function whose distribution parameters42

(for example, mean and/or standard deviation) are characterized as fuzzy variables (see also [16]43

for a review on recent computational methods). Under such assumption, the failure probability44

associated with a reliability problem is no longer a crisp value but instead, it becomes a fuzzy45

variable with its own membership function [17].46

The practical deployment of fuzzy probabilities is usually a challenging task. This stems out of the47

necessity of quantifying the effects of both aleatory and epistemic uncertainty, but without mixing48

them. The most direct means for solving problems of fuzzy probabilities is implementing a nested49

approach, which involves exploring the space of epistemic parameters and performing classical50

reliability analysis (the latter for fixed values of the epistemic parameters). However, this type of51

approach can become extremely demanding from a numerical viewpoint, as it requires repeated52

deterministic system analyses for different realizations of the epistemic distribution parameters53

and aleatory input parameters. In view of this challenge, several different specialized approaches54

have been developed to cope with probability estimation under aleatory and epistemic uncer-55

tainties. These approaches encompass, for example, optimization techniques [18, 19], sampling56

strategies [20–25], approximation concepts [26], meta-models [27, 28], decoupling strategies [29],57

interval analysis and simulation [30], etc. All of these works attest the enormous progress that has58
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been achieved in this area. Nonetheless, there are two issues where additional research is required.59

First, it is not obvious how to bring the calculation of fuzzy probabilities as close as possible to60

existing reliability methods. Indeed, addressing such an issue may expedite the application of61

fuzzy probabilities by practitioners. Second, there exists still a need to decrease numerical efforts,62

such that estimating fuzzy probabilities is (ideally) not substantially more demanding than per-63

forming a classical reliability in mind. With these two issues in mind, this contribution attempts64

to close this gap by proposing an approach for reliability analysis considering fuzzy probabili-65

ties. More specifically, the objective is approximating the membership function associated with66

the failure probability for a problem where the input parameters of a numerical model are char-67

acterized through random variables whose distribution parameters (e.g. mean and/or standard68

deviation) are described through fuzzy variables. Epistemic uncertainties are reckoned by means69

of an augmented reliability problem [25, 31], which is solved using the First-Order Reliability70

Method (FORM, see e.g. [32]). In this way, it is possible to roughly approximate the membership71

function associated with the failure probability at strongly reduced numerical costs, as only a72

single reliability analysis is required. The expected range of application of the proposed approach73

is similar to that of FORM for classical reliability analysis (see, e.g. [33]). This is due to the fact74

that the fuzzy probability problem is projected into the standard normal space and in addition,75

the limit state surface is linearized about the so-called design point. Furthermore, the practical76

implementation of the proposed approach is quite straightforward, as it demands minor modifi-77

cations with respect to a classical reliability analysis conducted with FORM. In this sense, it is78

expected that this contribution may be useful for practitioners who want to perform a sensitivity79

analysis with respect to sources of epistemic uncertainties by means of well-known, classical tools80

for reliability analysis.81

It is important to note that the application of FORM for reliability analysis under epistemic un-82

certainty has already been explored in the past. For example, in [18, 34–36], the calculation of83

a bounding value for the probability entails solving an optimization problem involving aleatory84

and epistemic parameters. In [37], bounding values for the failure probability are determined by85

locating a representative design point associated with the FORM approximation. In contrast, the86

approach proposed in this work allows obtaining an explicit approximation of the failure proba-87

bility as a function of the epistemic parameters once the augmented reliability problem is solved.88

Therefore, bounding values for the failure probability can be determined in closed form by using89
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the aforementioned explicit approximation.90

This paper is organized as follows. Section 2 formulates the reliability problem involving fuzzy91

probabilities. Section 3 discusses the formulation of an augmented reliability problem which is92

solved with FORM and that allows approximating the failure probability as an explicit function93

of the epistemic parameters. The application of the approach developed in Section 3 is illustrated94

by means of a numerical example in Section 4. Finally, the paper closes with discussions and95

conclusions in Section 5.96

2. Formulation of the problem97

2.1. Failure Probability as a Function of the Distribution Parameters98

Consider an engineering system which is represented using an appropriate numerical model99

by means of, e.g. the finite element method [38]. The behavior of this system is characterized in100

terms of the so-called performance function g, which is dependent on a set of input parameters101

collected in vector x of dimension nx × 1, where x ∈ ΩX . Whenever a particular value of these102

input parameters causes an undesirable behavior of the system, the performance function assumes103

a value equal or smaller than zero, that is, g(x) ≤ 0. It is assumed that the input parameters are104

not known precisely and their (aleatory) uncertainty is characterized by means of a random variable105

vector X with joint probability distribution fX(x|θ), where θ denotes a vector of distribution106

parameters of dimension nθ × 1, which contains values such as mean, standard deviation, etc.107

Considering the previous assumptions, the probability of failure pF associated with the system108

given θ is expressed as (see, e.g. [39, 40]):109

pF (θ) =

∫
g(x)≤0

fX(x|θ)dx. (1)

As noted from eq. (1), the failure probability depends on the value assumed by the distribution110

parameters θ. This makes sense from a physical viewpoint. For example, it is expected that111

changes in the expected value of a physical parameter can significantly affect the numerical value112

of the failure probability.113

2.2. Fuzzy Distribution Parameters114

In practical situations, establishing crisp values for these distribution parameters θ may be115

a challenging task due to issues such as lack of knowledge, the scarceness and/or imprecision116
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of measurements, etc. Such type of uncertainty corresponds to the epistemic type and can be117

characterized, for example, by means of fuzzy variables (see, e.g. [17]). Thus, each distribution118

parameter is described in terms of a fuzzy set θ̃l:119

θ̃l =
{(
θl, µθ̃l

(θl)
)
: (θl ∈ Θl) ∧

(
µθ̃l

(θl) ∈ [0, 1]
)}
, l = 1, . . . , nθ, (2)

where θl denotes the value of the l-th distribution parameter; Θl denotes the set of possible values120

that θl may assume; and µθ̃l
(θl) is the membership function. The fuzzy set θ̃l in eq. (2) assigns121

a membership to each value contained in Θl, where membership is understood as the degree with122

which θl belongs to θ̃l. In this contribution, it is assumed that fuzzy variables possess a triangular123

membership function (see, e.g. [17]). In such case, the membership is characterized by its lower124

bound θl and upper bound θl for which µθ̃l
(θl) = µθ̃l

(θl) = 0; and the so-called mean value θl,µ125

for which µθ̃l
(θl,µ) = 1; these data are written in compact form as ⟨θl, θl,µ, θl⟩. Figure 1 contains126

a schematic representation of a triangular membership function.127

θl

µθ̃l
(θl)

0

1

θl

α

θl,αθl,α θlθl,µ

θIl,α

Figure 1: Fuzzy triangular membership function.

The type of membership considered in this work correspond to a convex one. This implies128

that for a particular membership level α ∈ (0, 1], one may extract an interval θIl,α whose lower129

and upper bounds are θl,α and θl,α, respectively. This interval θIl,α is depicted schematically in130

Figure 1. Hence, a fuzzy set with a convex membership function can be actually interpreted as a131

collection of intervals indexed by the membership level α [41]. Note that there are several types of132

membership functions which are convex, such as triangular or trapezoidal ones. However, in this133

work, the focus is exclusively on triangular membership functions. The reason is that such class134

of membership function is most useful for cases where limited information concerning the fuzzy135

variables is available.136
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2.3. Fuzzy Probability137

Problems where uncertainty on the input parameters x of a model is characterized in terms138

of a probability density function fX(x|θ) while uncertainty on the distribution parameters θ is139

characterized in terms of fuzzy sets θ̃ fall in the category of fuzzy probabilities, see e.g. [15].140

Indeed, this class of problems can be interpreted as a collection of probability models which are141

indexed by the distribution parameters and is able to capture aleatory and epistemic uncertainty,142

without mixing them. Under such model for uncertainty characterization, the failure probability143

as cast in eq. (1) becomes a fuzzy variable as well and as such, it possesses its own membership144

function µp̃F (pF ). Determining the membership function µp̃F (pF ) is of much relevance, as it145

provides a type of sensitivity measure which reveals how sensitive the failure probability is with146

respect to the epistemic uncertainty associated the distribution parameters.147

2.4. α-Level Optimization148

Different methods have been developed for coping with fuzzy sets and calculating the mem-149

bership function of quantities of interest, see e.g. [42]. In this work, the membership function is150

determined using the so-called α-level optimization [43]. The basis of α-level optimization is fo-151

cusing on a particular membership level α ∈ (0, 1]. As already discussed in Section 2.2, for a given152

membership level α and in view of convexity, the uncertainty associated with the l-th distribution153

parameter can be interpreted as an interval θIl,α. Therefore, for that particular membership level154

α, it is possible to assess the interval associated with the failure probability pIF,α, whose lower pF,α155

and upper bounds pF,α are equal to:156

p
F,α

= minθ∈θI
α
(pF (θ)) (3)

pF,α = maxθ∈θI
α
(pF (θ)) (4)

where θI
α denotes the hyper-rectangle defined by the individual intervals θIl,α, l = 1, . . . .nθ. The157

pair of eqs. (3) and (4) actually corresponds to an interval analysis carried out at the given α-level,158

where the bounds are determined by means of optimization. This interval analysis can be repeated159

for different values of the membership level in order to produce a collection of intervals for the160

failure probability. This collection provides a discrete approximation of the membership function161

associated with the failure probability. This concept is depicted schematically in Figure 1, where162

for simplicity, only two α-levels α1 and α2 have been considered.163
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θl

µθ̃l
(θl)
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θIl,α2

θIl,α1α1

pF

µp̃F,l
(pF )

0

1

α2
pIF,α2

pIF,α1α1

interval analysis

interval analysis

Figure 2: α-Level optimization.

The α-Level optimization process as described in eqs. (3) and (4) and Figure 2 can be inter-164

preted as a triple-loop procedure. Indeed, in the outer loop, different membership values α are165

swept in order to produce a discrete approximation of the membership function associated with166

the failure probability. In the middle loop, different realizations of the distribution parameters θ167

are explored in order to determine the extrema of the failure probability such that θ ∈ θI
α. In168

the inner loop and given a specific realization of the distribution parameters, a classical reliability169

analysis is performed. For most problems of practical interest, even a classical reliability analysis170

with fixed distribution parameters is quite demanding from a numerical viewpoint. Therefore, it171

is expected that the numerical costs associated with the calculation of the membership function172

of the failure probability may become extremely high. In view of this challenge, this contribution173

proposes an approach for significantly decreasing numerical efforts, as described in the sequence.174

3. Augmented First-Order Reliability Method175

3.1. General Remarks176

This Section presents an approach termed as augmented First-order Reliability Method (aFORM)177

that is most useful to approximate the membership function associated with the failure probabil-178

ity. This approach is based on the reformulation of the imprecise probabilistic problem into an179

augmented reliability problem that is solved by means of FORM. The concept of the augmented180

reliability problem is first discussed in Section 3.2. Then, Section 3.3 discusses how to project181

the augmented reliability problem into the standard normal space. Section 3.4 discusses the solu-182

tion of the augmented reliability problem in the standard normal space by means of FORM and183

also proposes an explicit approximation of the failure probability with respect to the distribution184

parameters. Finally, Section 3.5 discusses some aspects for the practical implementation of the185

proposed approach.186

7



3.2. Augmented Reliability Problem187

A possible means to speed up the calculation of the target membership function would be188

approximating the failure probability as an explicit function of the distribution parameters. With189

such an approximation, the solution of eqs. (3) and (4) would entail an almost negligible effort.190

Naturally, the major challenge for implementing such a strategy lies precisely in constructing the191

aforementioned explicit approximation. A possible means for achieving such goal is resorting to an192

augmented reliability problem (see, e.g. [31, 40, 44]), that consists of associating auxiliary prob-193

ability distributions to each of the distribution parameters. The latter may seem contradictory,194

as the uncertainty associated with distribution parameters has already been characterized using195

fuzzy sets. However, the association of auxiliary probability distributions should be regarded as an196

artifact that is useful for the sole purpose of constructing the sought approximation of the failure197

probability [31]. While in principle there are several possible auxiliary probability distributions198

which could be associated with the distribution parameters, usually a uniform distribution is the199

simplest choice. Thus, the auxiliary probability density function fΘl
(θl) associated with θl is:200

fΘl
(θl) =


1

θl,D−θl,D
θl ∈

[
θl,D, θl,D

]
0 otherwise

, l = 1, . . . , nθ, (5)

where θl,D and θl,D denote the lower and upper bounds for the uniform distribution. The precise201

criterion for selecting these bounds is discussed in detail in Section 3.5. However, it should be202

noted that θl,D ≤ θl and θl,D ≥ θl. That is, the support of the uniform distribution associated203

with θl should be equal or larger than the support associated with the triangular fuzzy variable204

θ̃l.205

Once auxiliary probability distributions have been associated with each distribution parameter,206

it is possible to define the so-called augmented failure probability pAF (see, e.g. [40]):207

pAF =

∫
g(x)≤0

fX(x|θ)fΘ(θ)dxdθ, (6)

where fΘ(θ) represents the product of the individual auxiliary probability density functions208

fΘl
(θl), l = 1, . . . , nθ. Note that the aim is not to calculate the augmented failure probabil-209

ity pAF . Instead, the objective is to construct an approximation of eq. (1) which is an explicit210

function of θ by considering the augmented reliability problem, as discussed in detail below.211
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3.3. Transformation to Standard Normal Space212

A convenient means for solving the augmented failure probability integral in eq. (6) is projecting213

it into the standard normal space. Under the simplifying assumption that all random variables214

contained in vectorX are independent between them, the expressions for transforming the random215

variables involved in the augmented reliability problem into the standard normal space are:216

zP,i = Φ−1
(
FXi

(
xi|θ(i)

))
, i = 1, . . . , nx (7)

zA,l = Φ−1 (FΘl
(θl)) , l = 1, . . . , nθ (8)

where xi denotes the i-th input parameter and is a realization of the random variable Xi with dis-217

tribution parameters θ(i) and cumulative distribution function FXi
(·); FΘl

(·) denotes the uniform218

cumulative density function associated with the l-th distribution parameter θl; Φ(·)−1 denotes the219

inverse of the standard normal cumulative distribution function; zP,i denotes the realization in the220

standard normal space associated with the pair
(
xi,θ

(i)
)
; and zA,l denotes the realization in the221

standard normal space associated with θl. Appendix A provides explicit expressions for eqs. (7)222

and (8) for the specific case of normal and lognormal random variables.223

The set of transformations given by eqs. (7) and (8) can be expressed in compact form as:224

z =

zP

zA

 =

TXP (x|θ)

TΘA(θ)

 (9)

where zP = [zP,1, . . . , zP,nx ]
T and zA = [zA,1, . . . , zA,nθ

]T ; and where TXP (x|θ) : ΩX 7→ Rnx
225

and TΘA(θ) : [θ1,D, θ1,D] × . . . × [θnθ,D
, θnθ,D] 7→ Rnθ are vector-valued functions that contain226

the relationships in eqs. (7) and eq. (8), respectively. Note that the dimension of vector z is227

(nx + nθ) × 1. With all the above definitions, the augmented failure probability in the standard228

normal space is cast as:229

pAF =

∫
gz(z)≤0

fZ(z)dz (10)

where fZ(z) is the standard normal probability density function in nx + nθ dimensions; and230

gz(z) is the performance function in the standard normal space, which is defined as gz(z) =231

g (TPX (zP |TAΘ(zA))) = g (TPX (zP |θ)) = g(x), where TPX and TAΘ denote the inverse vector-232

valued functions of TXP and TΘA, respectively.233
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3.4. Approximation of the Failure Probability as Function of the Distribution Parameters234

The augmented failure probability integral in eq. (10) can be estimated by means of the First-235

Order Reliability Method (FORM, see e.g. [32]). For that purpose, the first step is identifying the236

so-called design point z∗, which is the realization of z with smallest Euclidean norm with respect237

to the origin of the standard normal space such that gz(z) = 0. Methods for determining the238

design point are well documented in the literature, see e.g. [45, 46]. The well-known improved239

Hasofer-Lind-Rackwitz-Fiessler (iHLRF, [47]) is employed for determining the design point, as it240

exhibits an adequate performance for the class of problems considered in this work. The iHLRF241

algorithm demands repeated evaluations of both the performance function gz(z) and its gradient242

∇gz. Details about the calculation of the gradient are discussed in Section 3.5.243

Once the design point has been found, the next step associated with FORM is approximating the244

performance function gz(z) about the design point z∗ by means of a first-order Taylor expansion245

gLz (z). Recalling that gz(z
∗) = 0, this linear approximation of the performance function is:246

gz(z) ≈ gLz (z) = ∇gz(z∗)T (z − z∗) . (11)

where (·)T denotes transpose of the argument. Taking into account the above approximation, it is247

possible to obtain an estimate of the augmented failure probability integral in eq. (10). However,248

it should be recalled that the objective is not estimating this augmented probability but instead,249

calculating the failure probability as a function of the distribution parameters. For that purpose,250

consider that:251

pF (θ) = P [gz(z) ≤ 0|θ] (12)

where P [·] denotes probability of the term within brackets. The above equation indicates that252

pF (θ) is the probability that the performance function in the standard normal space is equal or253

smaller than zero given a fixed value of the distribution parameters θ. Eq. (12) can be solved by254

considering the linear approximation of the performance function in eq. (11).255

pF (θ) ≈ P
[
gLz (z) ≤ 0|θ

]
≈ P

[
∇gz(z∗)T (z − z∗) ≤ 0|θ

]
(13)
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This last expression can be further simplified by taking into account the following two issues. First,256

it is recalled from Section 3.3 that z = [zT
P , z

T
A]

T , which implies that the linear approximation of257

the performance function can be split into two parts associated with zP and zA. Second, eq. (13)258

is conditioned on a particular value of the distribution parameters θ. According to Section 3.3,259

for each realization θ, there is a realization zA which is given by eq. (8). This implies that in260

eq. (13), vector zA assumes a specific value. With these two considerations, eq. (8) can be further261

simplified as:262

pF (θ) ≈ P
[
∇gzP (z∗

P )
T (zP − z∗

P ) +∇gzA(z∗
A)

T (zA − z∗
A) ≤ 0

]
≈ P

[
∇gzP (z∗

P )
TzP ≤ ∇gzP (z∗

P )
Tz∗

P −∇gzA(z∗
A)

T (zA − z∗
A)
]

(14)

where z∗
P and z∗

A contain the first nx and last nθ entries of the design point z∗, respectively;263

and where ∇gzP (z∗
P ) and ∇gzA(z∗

A) contain the first nx and last nθ entries of the gradient of the264

performance function evaluated at design point ∇gz(z∗), respectively. Note that in eq. (14), the265

dependence with respect to θ is dropped as zA fulfils that role. Eq. (14) can be further simplified266

by noting that ∇gzP (z∗
P )

TzP follows a normal distribution with zero mean and standard deviation267

∥∇gzP (z∗
P )∥, where ∥·∥ denotes Euclidean norm of the argument. Thus:268

pF (θ) ≈ Φ

(
∇gzP (z∗

P )
Tz∗

P −∇gzA(z∗
A)

T (TΘA(θ)− z∗
A)

∥∇gzP (z∗
P )∥

)
(15)

where Φ(·) is the standard normal cumulative distribution function. In this last equation, the269

equality zA = TΘA(θ) has been introduced (see Section 3.3) to express the approximation in270

terms of θ.271

The approximation in eq. (15) involves the design point z∗ and the gradient of the performance272

function evaluated at the design point ∇gz(z∗). Both quantities are obtained after determining273

the design point associated with the augmented reliability problem. It is noted that the approxi-274

mation in eq. (15) is an explicit function of the distribution parameters θ, which can be evaluated275

at negligible numerical costs. Hence, this approximation can be plugged directly into eqs. (3) and276

(4) in order to estimate the membership function associated with the failure probability.277

From the above discussion, it is noted that the proposed approach for coping with fuzzy failure278

probability can be extremely convenient from a numerical viewpoint. Indeed, only a single relia-279

bility analysis performed in the augmented reliability space suffices for constructing the explicit280

11



approximation of the failure probability shown in eq. (15). Nevertheless, it should be stated that281

this approximation can be relatively rough. Indeed, the approximation is based on a linearization282

of the performance function about the design point. Therefore, possible nonlinear behavior of the283

limit state surface may not be captured appropriately. Moreover, the linearization is performed284

in the standard normal space. This introduces another source of error, as transformations from285

physical space to standard normal are, in most cases, nonlinear. Hence, the proposed approach286

can be regarded as a trade off between accuracy of the approximation and decreased numerical287

efforts.288

3.5. Implementation Aspects289

3.5.1. Selection of Support for Auxiliary Probability Distributions290

The auxiliary probability distribution associated with the l-th distribution parameter θl corre-291

sponds to a uniform one, that is Θl ∼ U [θl,D, θl,D], as already discussed in Section 3.2. In principle,292

the bounds [θl,D, θl,D] for this auxiliary uniform distribution could be selected equal to the support293

[θl, θl] of the fuzzy triangular set θ̃l. However, such selection may be not be appropriate: as the294

augmented reliability problem is solved in the standard normal space and taking into account295

eq. (8), it would happen that the bounds [θl,D, θl,D] would be located at minus/plus infinity in the296

standard normal space. To avoid this situation, it is proposed to fix the location of the bounds297

[θl, θl] of the fuzzy triangular set θ̃l in the standard normal space at ±βD, where βD is a real298

number. Such criterion is represented schematically in Figure 3, which illustrates the auxiliary299

uniform probability density function associated with θl. From this figure, it is noted that the300

probability content between θl,D and θl as well as the probability content between θl and θl,D is301

equal to Φ (−βD) according to the aforementioned criterion.302

θl

fΘl
(θl)

0 θl,D θlθl θl,D

1

θl,D−θl,D

Φ (−βD)

Figure 3: Schematic illustration of slope stability problem.

From a mathematical viewpoint, the proposed criterion implies fulfilling the follow set of303
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equations (see eq. (8)).304

θl − θl,D

θl,D − θl,D
= Φ(−βD) (16)

θl − θl,D

θl,D − θl,D
= Φ(+βD) (17)

The solution of the above equations allows determining the bounds [θl,D, θl,D] for the auxiliary305

uniform distribution associated with θl. Numerical validation suggests that an appropriate value306

for βD is 1.5.307

As an additional remark, it should be noted that the proposed criterion for selecting the bounds308

of the auxiliary uniform probability distribution ensures that θl,D < θl and θl,D > θl. A similar309

idea has been applied in [48].310

3.5.2. Gradient of Performance Function311

The identification of the design point associated with the augmented reliability problem de-312

mands evaluation of the gradient of the performance function in the standard normal space ∇gz,313

as already discussed in Section 3.4. A convenient means for evaluating such gradient is using the314

associated Jacobian matrix J , that is:315

∇gTz = ∇gTxJ (18)

where ∇gx is the gradient of the performance function with respect to the input parameters x316

and whose dimension is nx × 1. The Jacobian matrix J possesses dimensions nx × (nx + nθ) and317

is defined as:318

J =


∂x1

∂zP,1
. . . ∂x1

∂zP,nx
...

. . .
...

∂xnx

∂zP,1
. . . ∂xnx

∂zP,nx

∂x1

∂zA,1
. . . ∂x1

∂zA,nθ
...

. . .
...

∂xnx

∂zA,1
. . . ∂xnx

∂zA,nθ

 (19)
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The partial derivatives ∂xi/∂zP,j, i, j = 1, . . . , nx can be obtained by differentiating eq. (7), leading319

to:320

∂xi
∂zP,j

=


ϕ(zP,j)

fXi(xi|θ(i))
, if i = j

0, otherwise

, i, j = 1, . . . , nx, (20)

where ϕ(·) denotes the standard normal probability density function; while partial derivatives321

∂xi/∂zA,l, i = 1, . . . , nx, l = 1, . . . , nθ can be obtained by differentiating eq. (8), leading to:322

∂xi
∂zA,l

=


− 1

fXi(xi|θ(i))
∂FXi(xi|θ(i))

∂θl

(
θl,D − θl,D

)
ϕ (zl) , if θl ∈ θ(i)

0, otherwise

, i = 1, . . . , nx, l = 1, . . . , nθ.

(21)

Several important issues should be noted from eqs. (18)–(21). First, from eq. (18), it is noted323

that the gradient in the standard normal space ∇gz possesses dimension (nx + nθ)× 1 while the324

gradient ∇gx possesses dimension nx × 1. In this sense, the gradient ∇gx expresses the rate of325

change of the performance function with respect to the input parameters. However, the gradient326

∇gz measures the rate of change in the standard normal space, which is constructed based on327

the augmented reliability problem. The latter explains the different in dimensions of these two328

gradients. Second, the two gradients ∇gx and ∇gz are related between them by the Jacobian329

matrix J . This matrix measures the rate of change of the input parameters x with respect to the330

coordinates z in the standard normal (and augmented) space. Third, the first nx columns of this331

Jacobian are calculated using eq. (20). This equation appears when applying FORM in a purely332

probabilistic framework (see, e.g. [32]). Fourth, the last nθ columns of the Jacobian matrix are333

calculated using eq. (21) and appear as a consequence of the augmented reliability problem. Fifth,334

closed-form expressions of eqs. (20) and (21) can be deduced for specific distributions.335

From the above discussion, it is important to note that while this paper uses an augmented relia-336

bility approach, this does not significantly affect the calculation of the gradient of the performance337

function. In fact, only the gradient of the performance function with respect to the input param-338

eters x is required, as in a standard FORM analysis. Therefore, the solution of the reliability339

problem in the augmented space which implies looking for the design point can be performed us-340

ing standard algorithms (such as iHLRF) without significant modifications other than calculating341
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the Jacobian matrix in eq. (19).342

4. Examples343

4.1. General Remarks344

The performance of the proposed approach for solving problems of fuzzy probability analysis345

is illustrated in this Section by means of two examples. The first example involves a slab resting346

on a Winkler foundation, which is characterized considering a linear finite element model. The347

second example considers the stability analysis of a slope and involves a nonlinear finite element348

model. Both of these examples offer an excellent test bed, as validation calculations indicate that349

the First-Order Reliability Method is suitable for addressing them in a classical reliability setting350

(that is, without epistemic uncertainty) with sufficient accuracy.351

In each of the two examples mentioned above, the performance of the augmented First-Order352

Reliability Method is compared with that of the classical First-Order Reliability Method in com-353

bination with the so-called vertex approach for coping with epistemic uncertainty. Comparisons354

with more advanced sampling approaches as those reported in, e.g. [21, 22, 49], etc., are not355

included in here, as the main purpose is illustrating how the First-Order Reliability method can356

be adapted with minimal modifications in order to estimate fuzzy probabilities.357

4.2. Fuzzy Probability Analysis of a Slab Resting on a Winkler Foundation358

This example is partially taken fom [50, 51]. It involves a simply supported slab that rests359

over a Winkler foundation. This slab supports a vertically uniformly distributed load pointing360

downwards. Figure 4 illustrates the slab.361

slab foundation

load

Figure 4: Slab resting on a Winkler foundation

The slab possesses a thickness of 20 [cm] and the length of its edges is 5 [m]. The Young’s362

modulus and Poisson ration of the slab are E = 2 × 1010 [Pa] and ν = 0.2, respectively. The363

modulus of the Winkler foundation (cw) and the uniformly distributed load (w) are modeled as364
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lognormal random variables whose distribution parameters are characterized as fuzzy variables365

with triangular membership as shown in Table 1.366

Distribution parameter Triangular membership
mean of cw ⟨180, 200, 220⟩ [MPa]

std. deviation of cw ⟨18, 20, 22⟩ [MPa]
mean of w ⟨9, 10, 11⟩ [kPa]

std. deviation of w ⟨0.9, 1.0, 1.1⟩ [kPa]

Table 1: Triangular membership functions associated with distribution parameters of cw and w

The objective is calculating the membership function associated with the probability that the367

vertical displacement of the slab at its center point exceeds a threshold level of 0.8 [mm]. This368

displacement is determined by means of a linear finite element model comprising about 2700369

degrees-of-freedom. The Winkler foundation is included by means of equivalent springs at the370

nodes of the finite element model [52]. The gradient of the performance function is calculated371

analytically and is a byproduct of a structural analysis [53].372

The membership function of the failure probability µp̃F (pF ) is calculated by means of α-level373

optimization considering 11 discrete levels. The approximate expression for estimating the failure374

probability as a function of the distribution parameters as presented in eq. (15) is considered375

for performing α-level optimization. The results obtained are shown in Figure 5 under the label376

‘aFORM’.
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FORM

Figure 5: Membership function of failure probability pF associated with slab over Winkler foundation

377

To validate the results produced with the proposed approach, the membership function is378

calculated using standard FORM to conduct reliability analysis combined with the vertex method379

(see, e.g. [41]) to analyze each α-level. The results obtained with this procedure are labeled as380
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‘FORM’ in Figure 5. It is observed that there is an overall good match between both membership381

functions. This is quite remarkable taking into account that the proposed approach (aFORM)382

demanded only 0.6% of the number of structural analyses required by the reference approach383

(FORM and vertex analysis).384

4.3. Fuzzy Probability Analysis of Slope Stability385

This example involves slope stability analysis. This problem is based on an example contained386

in [54] and is solved with the nonlinear finite element software provided in that reference. Figure387

6 illustrates the physical dimensions of the problem.388

12 [m] 20 [m] 10 [m]

10 [m]

10 [m]

slope

soil

Figure 6: Schematic illustration of slope stability problem.

The soil is modeled as elastoplastic according to the Mohr-Coulomb criterion. The Young’s389

modulus and Poisson ratio of the soil are taken as 100 [MPa] and 0.3, respectively, while its390

unit weight is 20 [kN/m3]. The friction angle of the soil ψ and cohesion c are uncertain and are391

described considering lognormal random variables. The mean and standard deviation of each of392

these random variables are characterized as fuzzy variables with triangular membership functions.393

The specific values considered are summarized in Table 2.394

Distribution parameter Triangular membership
mean of ψ ⟨22◦, 23◦, 24◦⟩

std. deviation of ψ ⟨2.2◦, 2.3◦, 2.4◦⟩
mean of c ⟨4, 5, 6⟩ [kPa]

std. deviation of c ⟨0.4, 0.5, 0.6⟩ [kPa]

Table 2: Triangular membership functions associated with distribution parameters of ψ and c

According to results reported in the literature, friction angle and cohesion are negatively395

correlated [55]. Ignoring their correlation may lead to overestimation of the failure probability396

[56]. Nonetheless, it has also been reported that estimates of the failure probability are highly397

sensitive to the model considered for characterizing the dependence between these two parameters398
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[57]. Therefore, and for the sake of simplicity, the correlation between friction angle ψ and the399

cohesion c is disregarded in the following. This simplification is not detrimental with respect to400

illustrating the capabilities of the proposed approach.401

The objective is determining the probability that the so-called factor of safety associated with the402

slope is smaller or equal than 1, as this separates a stable slope from an unstable one. In this403

context, the factor of safety is understood as the ratio of the soil shear strength to the shear stress404

of a possible sliding surface in the slope. Whenever the value of this safety factor is smaller than405

one, an undesirable behavior occurs. Therefore, the performance function is in this case:406

g(x) = FS(x)− 1 (22)

where FS(x) represents the factor of safety as a function of the input parameters, where x = [ψ, c]T .407

The gradient of the performance function ∇gx is estimated using finite differences [58].408

Given that the uncertainty in the input parameters of the slope model are characterized using fuzzy409

probabilities, the failure probability becomes a fuzzy variable itself. The membership function of410

the failure probability µp̃F (pF ) is characterized using the α-level optimization procedure. For this411

purpose, 11 discrete levels are considered. The proposed approximation of the failure probability as412

cast in eq. (15) is considered for carrying out the α-level optimization. The obtained membership413

function is reported in Figure 7 with the label ‘aFORM’.414
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Figure 7: Membership function of failure probability pF associated with slope stability problem

A reference membership function is then produced by combining standard FORM for reliabil-415

ity analysis with the vertex method for solving α-level optimization. The membership function416

obtained by such method is plotted in Figure 7 with the label ‘FORM’. It is readily observed that417
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both membership curves possess an overall good match, in the sense that the correct order of418

magnitude of the failure probability is predicted for different membership values. Of course, when419

comparing specific points of both membership curves, some differences are observed. Nonetheless,420

it should be kept in mind that the numerical efforts associated with the proposed approach (labeled421

as ‘aFORM’) are much lower than the reference one (labeled as ‘FORM’). In fact, the proposed422

‘aFORM’ approach demands performing a total of 12 finite element analyses. In comparison, the423

approach labeled as ‘FORM’ entails 2151 finite element analyses. This implies that the proposed424

approach demands only 0.56% of the numerical effort associated with the reference solution.425

5. Conclusions and Outlook426

This paper has presented an approach for estimating fuzzy failure probabilities. The approach427

is specifically targeted at problems where input parameters of a model are described through ran-428

dom variables while the associated distribution parameters are characterized as fuzzy sets. The429

core of the proposed approach lies in formulating an augmented reliability problem, where epis-430

temic distribution parameters are characterized through auxiliary probability distributions. The431

resulting augmented reliability problem is solved using the First-Order Reliability Method. By432

using the information retrieved from this augmented reliability analysis, it is possible to generate433

an approximation of the failure probability which is an explicit function of the distribution pa-434

rameters.435

The results obtained from the example indicate that the membership function calculated using the436

proposed approach offers an overall reasonable match with reference results. In other words, the437

proposed approach provides a rough approximation of the membership function. However, such an438

approximation is obtained at reduced numerical costs, as a single reliability analysis suffices for de-439

termining the complete membership function. Furthermore, numerical results indicate that failure440

probabilities are highly sensitive with respect to epistemic uncertainty associated with distribution441

parameters. In fact, variations of the failure probability in orders of magnitude were observed in442

both examples. This highlights the relevance of conducting the class of analysis proposed in this443

work, as it may reveal important information on the sensitivity of the failure probability. More-444

over, the approach implemented in this work requires minimal modifications with respect to the445

well-established First-Order Reliability Method. This constitutes an important advantage, as the446

approach can be easily integrated with existing numerical algorithms.447

19



Future research efforts will aim at extending the range of application of the proposed approach. A448

path for development would involve constructing multiple approximations of the failure probabil-449

ity instead of a single one. Such an approach could be most useful for capturing possible nonlinear450

behavior of the limit state surface. Indeed, individual linear approximations can be combined in451

order to produce a nonlinear approximation with improved quality (see, e.g. [59, 60]). Undoubt-452

edly, this nonlinear approximation could lead to a better estimation of the membership function453

associated with the failure probability.454
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Appendix A. Transformation to Standard Normal Space for Normal and Lognormal458

Random Variables459

Closed-form expressions for eqs. (7) and (8) can be deduced for several types of random vari-460

ables. For example, assuming that nx = 1 and that X represents a normal distribution with461

distribution parameters θ = [µ, σ], where µ and σ denote mean and standard deviation, it is462

possible to deduce that:463


zP

zA,1

zA,2

 =


x−µ
σ

Φ−1
(

µ−µ
D

µD−µ
D

)
Φ−1

(
σ−σD

σD−σD

)
 . (A.1)

Assuming that nx = 1 and thatX represents a lognormal distribution with distribution parameters464

θ = [µ, σ], where µ and σ denote mean and standard deviation, it is possible to deduce that:465


zP

zA,1

zA,2

 =


ln(x)−µG(µ,σ)

σG(µ,σ)

Φ−1
(

µ−µ
D

µD−µ
D

)
Φ−1

(
σ−σD

σD−σD

)
 (A.2)
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where µG and σG are defined as:466

µG(µ, σ) = ln

(
µ2√
µ2 + σ2

)
(A.3)

σG(µ, σ) =

√
ln

(
1 +

σ2

µ2

)
. (A.4)

467
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