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Abstract

Uncertainty quantification (UQ) has been widely recognized as of vital importance for reliability-oriented

analysis and design of engineering structures, and three groups of mathematical models, i.e., the probabil-

ity models, the imprecise probability models and the non-probabilistic models, have been developed for

characterizing uncertainties of different forms. The propagation of these three groups of models through

expensive-to-evaluate simulators to quantify the uncertainties of outputs is then one of the core, yet highly

challenging task in reliability engineering, as it involves a demanding double-loop numerical dilemma. For

addressing this issue, the Collaborative and Adaptive Bayesian Optimization (CABO) has been developed

in our previous work, but it only applies to imprecise probability models and is only capable of bounding

the output expectation. We present a substantial improvement of CABO to incorporate all three categories

of uncertainty models and to bound arbitrary probabilistic measures such as output variance and failure

probability. The algorithm is based on a collaborative active learning mechanism, that is, jointly performing

Bayesian optimization in the epistemic uncertainty subspace and Bayesian cubature in the aleatory uncer-

tainty subspace, thus allowing to adaptively produce training samples in the joint uncertainty space. An

efficient conditional Gaussian process simulation algorithm is embedded in CABO for acquiring training

points and Bayesian inference in both uncertain subspaces. Benchmark studies show that CABO exhibits a

remarkable performance in terms of numerical efficiency, accuracy, and global convergence.
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1. Introduction

Uncertainty quantification (UQ) is the process of characterizing all sources of uncertainties during nu-

merical simulation of engineering structures, and then quantifying the uncertainties of responses of the

simulators, this way to finalize the reliability and/or robustness based analysis and design of the engineering
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structures. Thus, uncertainty characterization and propagation are the two most important fundamental

problems towards this direction. It has been known that alternative types of uncertainties may exist in

model parameters, such as properties of material, initial and/or boundary conditions, and environmental

excitation [1][2], and it has been demonstrated to be of importance for distinguishing and characterizing

different types of uncertainties [3]. Thus, in this section, we briefly review the state-of-the-art scientific

understanding and methodological approaches on the categorization, characterization, and propagation of

uncertainties presented in engineering simulation, and then present the motivation and main contributions

of this work.

Though the sources of uncertainty are diverse, they can be classified into either aleatory or epistemic

uncertainty [3][4]. Basically, these two types of uncertainties can be distinguished by judging whether they

can be reduced with the enrichment of available information. The aleatory uncertainty, also called stochastic

uncertainty or type A uncertainty, is due to the intrinsic randomness of parameters or events, and cannot

be reduced with more information. The epistemic uncertainty, also called cognitive uncertainty or type B

uncertainty, is reducible as it is caused by the lack of knowledge, and can come from many different sources

such as scarcity, incompleteness and imprecision of information. There are three categories of uncertainty

characterization models, for characterizing aleatory and epistemic uncertainty: precise probability model,

imprecise probability model and non-probability model. For random parameters with sufficient samples,

the distribution type and distribution parameters can be inferred precisely, and it is safe to ignore their

epistemic uncertainty, the remaining aleatory uncertainty can be characterized by a precise probability

model. For random parameters with a lack of information, their distribution type and/or parameters may

not be precisely inferred. In this case, both types of uncertainty exist in these parameters and can be

separately characterized with imprecise probability models such as probability boxes and evidence theory,

see e.g. Refs. [5][6][7][8][9]. For deterministic parameters with a lack of information, their precise values

are unknown but known to be crisp, and then only epistemic uncertainty exists, which can be characterized

by non-probabilistic models (such as interval and convex models) or subjective probability models [10][11].

Forward propagation of the above three categories of uncertainty characterization models through expensive-

to-estimate simulators has been recognized as a vital, yet very challenging numerical task in many areas,

and is of concern in this work. Specifically, the joint propagation of the probability model, the probability

box model, and the interval model simultaneously is treated in this work.

Uncertainty propagation is a vital branch of uncertainty quantification [12][13], including the estimation

of statistical moments [14], distribution function of model response and failure probability [15][16]. The task

of this work is to estimate the bounds of the model response variance and structural failure probability given

the three types of uncertainty characterization models as inputs. Many state-of-art methods for addressing

the above problem involve a double-loop scheme. The most straightforward way to deal with these kinds of

problems is to perform global optimization to propagate epistemic uncertainty in the outer loop, and then
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for each realization of epistemic parameters in the outer loop, perform a probabilistic analysis in the inner

loop [17]. For example, following this approach, Ref. [18] proposed a double-loop scheme to perform global

optimization in the outer loop using genetic algorithms and probabilistic analysis in the inner loop using

Monte Carlo simulation (MCS). Another double-loop strategy, named as Interval Monte Carlo Simulation

(IMCS) [19], performs probabilistic analysis by MCS in the outer loop, and then interval analysis with

either intrusive or non-intrusive methods in the inner loop [20][21]. Both double-loop strategies have been

successfully applied to the 2014 NASA Langley UQ challenging problem [22]. However, both strategies are

known to be inefficient when applied to time-consuming simulators such as finite element models due to the

extensive number of required simulator calls, resulting from the double-loop nature.

Decoupling methods provide an efficient way to mitigate the computational cost caused by the double-

loop procedure, such as Extended Monte Carlo Simulation (EMCS)[23], Non-intrusive Imprecise Stochastic

Simulation (NISS)[12][24] and operator norm theory [25], etc. The EMCS is efficient for propagating im-

precise probabilities with low-dimensional epistemic input parameters. The operator norm theory is a

theoretically rigorous method capable of decoupling the probabilistic analysis and deterministic simulation

and is also proven to be efficient for propagating imprecise stochastic excitation through linear or nonlinear

systems [26][27], and has been extended for cases with random and epistemic variables [28]. The NISS is a

general methodology framework for propagating imprecise probability models with only one stochastic sim-

ulation [12][29][24][30], and equipped with advanced MCS such as subset simulation and line sampling[31],

it has been extended to address the rare failure event analysis [29]. The computational cost of all NISS

methods is of the same order as the conventional stochastic simulation methods, and thus are efficient.

However, when applied to problems with large input epistemic uncertainties, the NISS methods are shown

to be less effective especially when the bounds of model response moments and failure probability are of

concern.

Surrogate modelling approaches, such as Polynomial chaos expansion [32], neural networks [33], and

Gaussian Process Regression (GPR) [34], can be combined with the double-loop methods or decoupling

methods, in either an active learning scheme or not, with the aim of generating estimates with acceptable

accuracy and decreasing the number of simulator calls. For example, as an improvement of NISS, the

Non-intrusive Imprecise Probabilistic Integration (NIPI) has been developed [35], by combining Bayesian

inference, the GPR model, and active learning, for improving the performance of NISS when the input

epistemic uncertainty is large. However, the method is only applicable to model response expectations and

is not suitable for estimating the bounds of probabilistic responses.

An efficient decoupling approach, called Collaborative and Adaptive Bayesian Optimization (CABO),

has been developed for estimating the bounds of model response expectation, with few simulator calls [14].

The method jointly performs Bayesian Optimization (BO) and Bayesian Cubature (BC) in an active learning

way driven by two distinct acquisition functions, and is shown to own several appealing advantages over

3



the existing methods. However, the method is currently only applicable to model response expectation,

and the case with no interval inputs. The aim of this work is to generalize the method for estimating

the bounds of any probabilistic features of responses, with the consideration of all three kinds of input

uncertainty characterization models, and specifically, the bounds of model response variance and structural

failure probability are of concern. The generalization is realized with an efficient sampling of the GPR model

and Monte Carlo estimation of the acquisition functions, and owns all the advantages of the original CABO

method, but is of much wider applicability.

The remaining of this work is organized as follows. Section 2 states and analyzes the problems to be

addressed, followed by the propositions in section 3, including the review of the basic rationale and simulation

of the GPR model, the acquisition functions and their estimations, and the general framework of CABO.

Section 4 summarizes the CABO algorithm, and section 5 introduces numerical and engineering examples

for illustrating and demonstrating the proposed method, followed by conclusions in section 6.

2. Problem Statements

In this section, we introduce some mathematical concepts, definitions, and mathematical models required

for mathematically formulating the uncertainty propagation problems to be solved in this work. Let y =

g (xI ,xII ,xIII) denote the response function of the simulator under consideration, where y refers to the

scalar model response, xI =
(
x1I , · · · , x

nI

I

)
indicates the nI -dimensional random input vector characterized

by a precise probability density function (PDF) fI (xI) and each element is named as a “Type I variable” in

the following, xII =
(
x1II , · · · , x

nII

II

)
implies the nII -dimensional random input vector with hybrid aleatory

and epistemic uncertainties modeled by the p-box model fII (xII | θ) and each of its elements is called

a “Type II variable”, xIII =
(
x1III , · · · , x

nIII

III

)
denotes the nIII -dimensional deterministic-but-unknown

input vector with the epistemic uncertainty characterized by the hyper-rectangle
[
xL
III ,x

U
III

]
and each of its

component is called a “Type III variable”. In the above setting, the epistemic uncertainty of xII is associated

with the deterministic-but-unknown distribution parameters θ of dimension nθ, and is characterized by a

hyper-rectangular support
[
θL,θU

]
. For simplicity, all the three types of input variables are assumed to

be independent, and thus the joint PDF of the type I and type II variables can be formulated as fI (xI) =∏nI

i=1 f
i
I

(
xiI
)

and fII (xII | θ) =
∏nII

i=1 f
i
II

(
xiII | θ

i
)

respectively, with f iI
(
xiI
)

and f iII
(
xiII | θ

i
)

indicating

the marginal PDFs.

As a summary, the input aleatory uncertainties are characterized by the PDFs fI (xI) and fII (xII | θ),

while the input epistemic uncertainties are modeled by the hyper-rectangles
[
xL
III ,x

U
III

]
and

[
θL,θU

]
. Our

target is to develop an efficient method for propagating these three types of uncertainty characterization

models through an expensive-to-estimate simulator g (xI ,xII ,xIII), with the specific aim of quantifying

the epistemic uncertainties of some probabilistic features of model response y. As the CABO method
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has been developed for the model response expectation my in our previous work [14], the model output

variance Vy and the failure probability pf are specifically treated in this work. For structural reliability

problems, it is assumed that y < 0 indicates failure of structure, and then the failure domain is defined

as F = {(xI ,xII ,xIII) : g (xI ,xII ,xIII) < 0}. The indicator function of the failure domain is then de-

noted as IF (xI ,xII ,xIII) with IF (xI ,xII ,xIII) = 1 if (xI ,xII ,xIII) ∈ F and IF (xI ,xII ,xIII) = 0 if

(xI ,xII ,xIII) /∈ F . Given the above setting, both Vy and pf are functions of the epistemic parameters xIII

and θ, and are formulated by integrating out the type I and type II variables as:

Vy (xIII ,θ) =

∫
RnI+nII

(g (xI ,xII ,xIII)−my (xIII ,θ))
2
fI (xI) fII (xII |θ) dxIdxII (1)

and

pf (xIII ,θ) =

∫
RnI+nII

IF (xI ,xII ,xIII) fI (xI) fII (xII |θ) dxIdxII (2)

respectively, where

my (xIII ,θ) =

∫
RnI+nII

g (xI ,xII ,xIII) fI (xI) fII (xII |θ) dxIdxII (3)

indicates the response expectation function. The bounds of variance and probability of failure can then be

formulated as: 
VL = min

θ∈[θL,θU ],xIII∈[xL
III ,x

U
III ]

Vy (xIII ,θ)

VU = max
θ∈[θL,θU ],xIII∈[xL

III ,x
U
III ]

Vy (xIII ,θ)
(4)

and 
pfL = min

θ∈[θL,θU ],xIII∈[xL
III ,x

U
III ]

pf (xIII ,θ)

pfU = max
θ∈[θL,θU ],xIII∈[xL

III ,x
U
III ]

pf (xIII ,θ)
(5)

The most straightforward way for addressing the above problems commonly involves a double-loop

procedure, which is time-consuming for expensive-to-evaluate simulators. To overcome this challenge, in

what follows we develop the CABO algorithm with the combination of BO and BC in a collaborative

scheme.

3. Collaborative and Adaptive Bayesian Optimization: rationale and key procedures

The aim of this section is to introduce the theoretical framework of the CABO algorithm for bounding

the response variance and the failure probability, and then present some key developments for enriching and

realizing this algorithm framework. Thus, subsection 3.1 presents the theoretical rationale of the CABO

algorithm, and then highlights the necessities of sampling from the stochastic processes for approximating
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Vy (xIII ,θ) and pf (xIII ,θ), following which, the training and sampling strategies are developed in subsec-

tion 3.2. Then, the procedure of BO performed in the subspace of epistemic uncertainty, and the procedure

of BC performed in the subspace of aleatory uncertainty are presented in subsections 3.3 and 3.4 respectively.

3.1. The CABO framework

The CABO algorithm is developed based on two Bayesian numerical analysis methods [36], i.e., BO [37]

and BC [38][39], with the GPR model serving as a surrogate model of the model simulator. The Bayesian

numerical analysis is a cutting-edge direction for addressing nearly all kinds of challenging numerical tasks

such as cubature, optimization, solving ODE/PDE and structural reliability analysis, and has received

extensive attention recently [40]. Compared with traditional numerical methods, the Bayesian approaches

have many advantages; precisely, the two most appealing features are the involved active learning schemes

and the Bayesian inference strategies. In this context, the former feature allows the algorithm to achieve

acceptable estimates with much less simulator calls. Also, the latter feature allows to generate measures

of numerical errors of the estimates, which guarantees the convergence to some extent. As it will be seen

in what follows, the combination of BO and BC for solving the Eq. (4) and Eq. (5) retains the above

two features. In the CABO framework, these two Bayesian numerical algorithms are implemented in a

collaborative and adaptive way, realizing the decoupling of the two loops, thus the algorithm is named

CABO.

As can be seen from Eq. (4) and Eq. (5), estimating the bounds of response variance and failure

probability involves numerical optimization in the outer loop for searching the global optima of xIII and θ,

as well as numerical cubature in the inner loop to estimate the values of the variance and failure probability

given fixed values of xIII and θ. This typical double-loop scheme makes the required number of simulator

calls tremendously large, which is commonly unacceptable in real-world applications. Inspired by the above

process, the CABO is devised and involves the following key steps: 1) training a GPR model with an initial

design point setD in the augmented space of aleatory variables (xI and xII) and epistemic parameters (xIII

and θ); 2) performing BO equipped with a proper acquisition function in the marginal space of the epistemic

parameters to achieve a new design site
(
x+
III ,θ

+
)
, with the principle of improving the optimization solution

quality the most; 3) for fixed point
(
x+
III ,θ

+
)
, performing BC equipped with another proper acquisition

function in the marginal space of aleatory variables (e.g., the subspace of xI and xII) to identify a new

design point
(
x+
I ,x

+
II

)
, with the principle of improving the cubature accuracy the most; 4) the simulator is

then called at the joint design point
(
x+
I ,x

+
II ,x

+
III ,θ

+
)

to enrich the training data set D; 5) the algorithm

ends only if stopping criteria for both BO and BC are satisfied. The above CABO framework is schematically

shown in Figure 1.

As mentioned above, the GPR model for Bayesian inference is trained in the augmented space of

(xI ,xII ,xIII ,θ), however, the simulator function is defined in the marginal space of the three types of
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Figure 1: The CABO framework.

variables (xI ,xII ,xIII), and does not explicitly depend on θ. To fill this gap, a probabilistic transformation

needs to be implemented before implementing CABO. As the type II variables are independent of each

other, we take the individual type II variable xiII as an example. Let uII =
(
u1II , · · · , u

nII

II

)
with each

element being a random variable uniformly distributed in [0, 1]. Let F iII
(
xiII |θ

i
)

denote the cumulative

distribution function of xiII , which is assumed to be continuous. Then, it is known that this CDF admits

uniform distribution in [0, 1] whatever distribution type does xiII follow. Thus, let uiII = F iII
(
xiII |θ

i
)
, the

inverse transformation can be formulated as xiII = F i−1II

(
uiII |θ

i
)
. For the input vector xII , denote the

transformation as xII = T (uII |θ) for simplicity, then a modified simulator function can be obtained as

G (ω) = g (xI , T (uII |θ) ,xIII), where ω = (xI ,uII ,xIII ,θ).

It is now clear that the key elements of the CABO framework include training a GPR model for ap-

proximating G(ω) in the augmented space, performing BO in the marginal space of epistemic uncertainties,

and implementing BC in the marginal space of aleatory uncertainties, etc. Besides, to make the CABO

applicable to arbitrary probabilistic responses of interest (such as response variance and failure probability

concerned in this work), it is necessary to introduce an efficient sampling procedure for simulating the GPR
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model. In the following, all the above key elements will be introduced.

3.2. Gaussian process regression and sampling strategy

Assume that Ĝ (ω) follows a Gaussian process denoted as GP (m (ω) , κ (ω,ω′)), with m (ω) and κ (ω,ω′)

being the prior mean function and the prior covariance function respectively. The mean function can be

set as zero, constant or polynomial functions, and the covariance function (also named as kernel function)

measures the correlation of Ĝ (ω) at any two sites ω and ω′. The choice of the covariance function depends

on the properties (e.g., smoothness, stationarity) of G (ω), and one can refer to e.g., chapter 4 of Ref.[34] for

details. Without loss of generality, the exponential squared kernel function, which is applicable for smooth

functions, is utilized as an example in this paper, which is formulated as:

κ (ω,ω′) = σ2
0 exp

(
−1

2
(ω − ω′) Σ−1 (ω − ω′)T

)
, (6)

where σ2
0 and Σ represent the hyper-parameters of the covariance function. One should note the proposed

CABO algorithm applies whatever kernel function is utilized.

Let D = (W ,Y ) indicate the training data set of size N0, where W refers to the sample matrix with

N0 rows, whose i-th row refers to the i-th sample of ω, and Y = G(W ). Based on the prior assumptions

on Ĝ (ω), the column vector Y follows a N0-dimensional Gaussian distribution. Taking the N0-dimensional

joint probability density function as the likelihood function, which is formulated as:

L (D) =
1

(2π)
(N0)/2 |K|1/2

exp

(
−1

2
(Y −m (W ))

>
K−1 (Y −m (W ))

)
, (7)

where K = κ (W ,W ) denotes a N0 ×N0 matrix with the (i, j)-th component Kij being κ (W i,W j), and

W i is the i-th row of W . By minimizing the negative logarithm of L(D), the hyper-parameters involved in

the prior mean and covariance functions can be identified [34].

With all hyper-parameters estimated, the posterior Gaussian process ĜD (µy (ω) ,COVy (ω,ω′)) can be

derived, whose mean, variance and covariance are formulated as:

µy (ω) = m (ω) + κ (W ,ω)
T
K−1 (Y −m (W )) , (8)

,

σ2
y (ω) = σ2

0 − κ (W ,ω)
T
K−1κ (W ,ω) , (9)

and

COVy (ω,ω′) = κ (ω,ω′)− κ (W ,ω)
T
K−1κ (W ,ω′) (10)

respectively, where κ (W ,ω) is a N0-dimensional column vector, the i-th component of which is κ (W i,ω).
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It should be noted that the posterior mean µy (ω) refers to the mean prediction at any site ω, while the

posterior variance σ2
y (ω) measures the prediction error at ω.

Once the GPR model ĜD (ω) is trained, according to Eq. (1) and Eq. (2), the variance and failure

probability are functions of the GPR model ĜD (ω) and thus, are also stochastic processes and denoted by

V̂y (xIII ,θ) and P̂f (xIII ,θ) respectively. For proceeding with the proposed methods, a sampling scheme for

generating random samples of the stochastic process V̂y (xIII ,θ) and P̂f (xIII ,θ) is required. However, it is

difficult to directly sample from V̂y and P̂f as the distribution type of stochastic process and the distribution

parameters cannot be explicitly known. Alternatively, an indirect strategy is introduced here for numerically

estimating the samples for both V̂y and P̂f based on the samples generated from the posterior GPR model.

An efficient sampling procedure, named as “GPR conditioning sampling scheme”, developed in [41] is applied

to sample from the posterior GPR model ĜD (ω). Assume that ĥD (ω) follows an unconditional Gaussian

process GP (0, κ (ω,ω′)), define an auxiliary GP model ĤD (ω) as:

ĤD (ω) = µy (ω)− µ̂y (ω) + ĥD (ω) (11)

with µ̂y (ω) being

µ̂y (ω) = m (ω) + κ (W ,ω)
T
K−1

(
ĥD (W )−m (W )

)
. (12)

It was concluded in Ref. [41] that ĤD (ω) admits exactly the same probability distribution as the Gaussian

process ĜD (ω), meaning that the samples of ĜD (ω) can be obtained by simulating ĤD (ω). Moreover, it can

deduced by Eq. (11) that the samples of ĜD (ω) can be simply gained by sampling from the unconditional

GP model ĥD (ω).

There are many ways to sample from the unconditional GP model ĥD (ω) for producing the sam-

ples Ĝ(j)D (ω) with j = 1, · · · , Ng, such as, the expansion optimal linear estimation method (EOLE) [42],

Karhunen–Loéve (KL) expansion [43], stochastic harmonic function representation (SHFR) [44], Sparse

GP-based simulation [45][46], etc. In this paper, the KL expansion is employed to draw Ng samples of

the random field. These samples comprise Ncut independently standard Gaussian variables, where, Ncut

represents the truncation terms determined by the accuracy of eigenvalues and eigenfunctions derived from

eigen-decomposition of covariance function of GP model [47]. Moreover, by numerically estimating the

eigen-pairs, continuous samples of GP model can be generated with one expansion [34].

With all the above considerations, the following procedure is applied to evaluate the variance and failure

probability as cast in Eqs. (1) and (2). Generate a set of joint samples W = (XI ,U II ,XIII ,T ) of size

Nx. Once the sample set Ĝ(j)D (ω) of the posterior Gaussian process ĜD (ω) is obtained, the samples V̂(j)
y
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and P̂(j)
f of the stochastic process V̂y (xIII ,θ) and P̂f (xIII ,θ) can be deduced as:

V̂(j)
y (xIII ,θ) =

1

Nx − 1

Nx∑
i=1

[
Ĝ(j)D

(
X

(i)
I ,U

(i)
II ,xIII ,θ

)
− 1

Nx

Nx∑
k=1

Ĝ(j)D
(
X

(k)
I ,U

(k)
II ,xIII ,θ

)]2
(13)

and

P̂(j)
f (xIII ,θ) =

1

Nx

Nx∑
i=1

[
Ĝ(j)D

(
X

(i)
I ,U

(i)
II ,xIII ,θ

)
< 0
]

(14)

with X
(i)
I and U

(i)
II being the i-th row of XI and U II respectively. The corresponding mean function

µV (xIII ,θ) and variance function σ2
V (xIII ,θ) of V̂y can be evaluated as:

µ̂V (xIII ,θ) = 1
Ng

∑Ng

j=1 V̂
(j)
y (xIII ,θ)

σ̂2
V (xIII ,θ) = 1

Ng−1
∑Ng

j=1

[
V̂(j)
y (xIII ,θ)− µV (xIII ,θ)

]2 , (15)

and for P̂f (xIII ,θ), the mean function µpf (xIII ,θ) and variance function σ2
pf

(xIII ,θ) are approximated

by µ̂pf (xIII ,θ) = 1
Ng

∑Ng

j=1 P̂
(j)
f (xIII ,θ)

σ̂2
pf

(xIII ,θ) = 1
Ng−1

∑Ng

j=1

[
P̂(j)
f (xIII ,θ)− µpf (xIII ,θ)

]2 . (16)

One should note that, the above MCS estimators will converge to the true values as the sample size ap-

proaches infinity. The posterior means given by Eqs. (15) and (16) can be seen as the mean predictions

of response variance and failure probability at any site (xIII ,θ), and the corresponding posterior variances

measure the corresponding prediction errors.

For illustrating the above sampling strategy, we take a simple numerical example with model function

g (x) = x1 (cos (πx2) + 1) + x2 as an example, where x1 follows standard normal distribution and x2 is an

interval variable with support [0, 2]. With this setting, both the model response variance and the failure

probability depend on the epistemic parameter x2. A training sample set of size 15 is randomly generated and

used for training the GPR model, and then one hundred functional samples are generated for the posterior

GPR model based on the above “GPR conditioning sampling scheme”. With Eq. (13) and (14), each of

these functional samples results in a functional sample for Vy (x2) and pf (x2), as shown in Figure 2, together

with the true functions Vy (x2) and pf (x2) for comparison. It is shown that these functional samples show

variations, adapted from the variation of the GPR model. Although the probability distribution of V̂y and

P̂f cannot be precisely known, these function samples do provide sufficient information for performing BO

in the subspace of epistemic uncertainties.
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Figure 2: An example of generating random samples for the stochastic processes V̂y (x2) and p̂f (x2), and the corresponding
true functional curves of Vy (x2) and pf (x2) are also given for comparison.

3.3. Bayesian optimization in subspace of epistemic uncertainties

BO is a typical Bayesian numerical analysis method. It is based on surrogating the objective function

with the GPR model, and then inferring the most plausible global optima and the next training point

which results in the best improvement for inferring the global optima. The core of a BO algorithm is the

acquisition function, which is responsible for identifying the best design points. Many acquisitions have been

developed for BO, such as the Probability of Improvement (PI) function [48], the Expected Improvement

(EI) function [49], the knowledge-gradient (KG) function [50], and the entropy search (ES) function [51].

Of this approaches, the EI function is the most popular one as it admits a closed-form expression when the

objective function is approximated with the GPR model. Many variants of the EI function have also been

developed for better balancing global exploration and local exploitation. In this work, we extend the EI

function for searching the global optima of both V̂y (xIII ,θ) and P̂f (xIII ,θ) where the surrogate models

do not follow a Gaussian distribution. Without loss of generality, the EI functions for the lower bounds of

the response variance function and the failure probability function are formulated as:

LBO
V (xIII ,θ) = ED

[
max

(
µV (x∗III ,θ

∗)− V̂y (xIII ,θ) , 0
)]

(17)

and

LBO
pf

(xIII ,θ) = ED
[
max

(
µpf (x∗III ,θ

∗)− P̂f (xIII ,θ) , 0
)]
, (18)

respectively, where ED [·] refers to the expectation operator taken over the Gaussian process ĜD (ω).

In Eqs. (17) and (18), µV (xIII ,θ) and µpf (xIII ,θ) denote the posterior means of the response variance

function and the failure probability function respectively, and (x∗III ,θ
∗) represents the current best guess
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of the global optimum point, which can be obtained by the following equation

(x∗III ,θ
∗) = arg minµV (xIII ,θ) + ασV (xIII ,θ) (19)

and

(x∗III ,θ
∗) = arg minµpf (xIII ,θ) + ασpf (xIII ,θ) , (20)

where α denotes the degree of risk aversion, which is set to be 1 in this work. For saving computational cost,

the solutions of Eq. (19) and Eq. (20) are found in the training data set D. The theoretical explanation of

the EI function is given as follows. Consider the estimation of the failure probability as an example. The

quantity max
(
µpf (x∗III ,θ

∗)− P̂f (xIII ,θ) , 0
)

measures the amount of reduction of the failure probability

function value at (xIII ,θ) compared to the current best guess (x∗III ,θ
∗), and this quantity is a random

variable due to the randomness of the stochastic process P̂f (xIII ,θ). The EI function defined by Eq. (18)

is then explained as the expected reduction of the failure probability value at (xIII ,θ) compared to the

current best guess, and by observing the point with the highest EI value and adding it to the training data

to update the GPR model and then the induced stochastic process P̂f (xIII ,θ), the next best guess of the

global minimum point can be inferred.

The next issue of concern is to compute the global maximum point of the EI functions. Unfortunately,

both Eq. (17) and Eq. (18) do not admit closed-form expressions since the probability distribution of V̂y and

P̂f cannot be explicitly known. We propose to compute the two functions with MCS based on the random

samples of V̂y and P̂f generated with the sampling strategy developed in the last subsection. Specifically,

the Monte Carlo estimators for the two EI functions are formulated as:L̂
BO
V (xIII ,θ) = 1

Ng

∑Ng

j=1 max
(
µ̂V (x∗III ,θ

∗)− V̂(j)
y (xIII ,θ) , 0

)
L̂BO
pf

(xIII ,θ) = 1
Ng

∑Ng

j=1 max
(
µ̂pf (x∗III ,θ

∗)− P̂(j)
f (xIII ,θ) , 0

) . (21)

By maximizing Eq. (21), a new design site
(
x+
III ,θ

+
)

can be solved, i.e.,

(
x+
III ,θ

+
)

= arg max L̂BO
V (xIII ,θ) (22)

or (
x+
III ,θ

+
)

= arg max L̂BO
pf

(xIII ,θ) . (23)

The objective functions of the above two optimization problems are cheap to estimate, and thus many global

optimization algorithms can be used for efficiently finding the solutions. In this work, the Particle Swarm

12



Optimization (PSO) is suggested. The stopping criterion for BO can be defined as:

LBO
(
x+
III ,θ

+
)
< ∆BO (24)

or
LBO

(
x+
III ,θ

+
)(

max V̂y (xIII ,θ)−min V̂y (xIII ,θ)
)
ω∈D

< ∆BO

LBO
(
x+
III ,θ

+
)(

max P̂f (xIII ,θ)−min P̂f (xIII ,θ)
)
ω∈D

< ∆BO

(25)

, where ∆BO is specified by the users selected from 10−3 − 10−2.

3.4. Bayesian cubature in subspace of aleatory uncertainties

By maximizing the EI acquisition function introduced in subsection 3.3, the next design site
(
x+
III ,θ

+
)

in the marginal space of epistemic uncertainty is identified. In this subsection, the joint identification of the

training point
(
x+
I ,u

+
II

)
in the aleatory subspace is of interest, such that this point reduces the posterior

variances of predictions. One notes the acquisition functions for the two quantities are in totally different

form, as the one for response variance seeks to reduce the numerical error of the simulator function over the

full support of the aleatory variables, while the one for failure probability aims at improving the accuracy

of the failure boundary. In what follows, the Posterior Variance Contribution (PVC) acquisition function

for response variance, and the U acquisition function for failure probability are respectively introduced.

3.4.1. Posterior variance contribution function for response variance

The PVC function is originally developed by some of the authors in Ref.[52] for active design of training

points for BC where the integrand is approximated by a GPR model. However, in Ref.[53], the PVC function

is also shown to be effective for computation of the response variance and variance-based sensitivity indices.

Thus, the PVC function is utilized here for the response variance. Mathematically, the PVC function is

defined as:

LPVC (xI ,uII) = fI (xI) fu (uII)

∫
RnI+nII

covy
((
xI ,uII ,x

+
III ,θ

+
)
,
(
x′I ,u

′
II ,x

+
III ,θ

+
))
fI (x′I) fu (u′II) dx′Idu

′
II ,

(26)

where fu (uII) is the density function of the uniform probability distribution with unit support [0, 1]. It can

be easily proved that the PVC function formulated in Eq. (26) has the following property,

σ2
m̂y

(
x+
III ,θ

+
)

=

∫
RnI+nII

LPVC (xI ,uII) fI (xI) fu (uII) dxIduII , (27)

13



where, the variance σ2
m̂y

(
x+
III ,θ

+
)

denotes the predict error of the response expectation function formulated

in Eq. (3). As can be seen from Eq. (26) and (27), the value of PVC function measures the contribution of the

prediction uncertainty at the site (xI ,uII) to the posterior variance of m̂y

(
x+
III ,θ

+
)

with the consideration

of the spatial correlation of this site with all the others over the marginal space of the aleatory uncertainties.

By adding the maximum point of the PVC function, denoted as
(
x+
I ,u

+
II

)
, jointly with the design site(

x+
III ,θ

+
)
, to the training data for updating the GPR model, it is expected to reduce the prediction errors

of the model response expectation and variance the most, one can refer to Ref. [52] for more details. Consider

a simple numerical example, the posterior distribution of the GPR model is shown in the first panel of Figure

3, the corresponding PVC function is displayed in the second panel. With the maximum point of the PVC

function added to the training data set, the updated posterior information is given in the third panel of

Figure 3. As it can be seen, the posterior variance has been reduced to a large extent, indicating that the

accuracy of posterior mean function for replacing the true g-function has been greatly improved.

Figure 3: The illustration of PVC function for a simple numerical example.

As that the closed-form expressions of the PVC function are available for specific pairs of probability

density function and kernel function [38], we propose to compute the PVC function value by MCS. Given

the joint samples W = (XI ,U II ,XIII ,T ) of size Nx, the Monte Carlo estimator of the PVC function is

formulated as:

L̂PVC (xI ,uII) = fI (xI)× fu (uII)×
1

Nx

Nx∑
i=1

covy

((
xI ,uII ,x

+
III ,θ

+
)
,
(
X

(i)
I ,U

(i)
II ,x

+
III ,θ

+
))
. (28)

The next design site
(
x+
I ,u

+
II

)
is then generated by computing the maximum point of Eq. (28), and similarly,

the PSO algorithm is suggested as the PVC function is very cheap to compute.

With the above collaborative design strategy, a design site ω+ =
(
x+
I ,u

+
II ,x

+
III ,θ

+
)

is then obtained in

the augmented space of aleatory and epistemic uncertainties. By adding this point to the training data set,
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not only the knowledge on the global optimum point can improved to a large extent, but also the estimation

accuracy of the response variance at this point can be largely enhanced. For each iteration, we need only to

call the simulator for one time, making the method approach the true solution in a high convergence speed.

The stopping condition of L̂PVC (xI ,uII) is set as:

COVV

(
x+
III ,θ

+
)

=

√
σ̂2
V

(
x+
III ,θ

+
)

µ̂V
(
x+
III ,θ

+
) < ∆PVC, (29)

where COVV

(
x+
III ,θ

+
)

denotes the Coefficient Of Variation (COV) of response variance, ∆PVC denotes

the stopping threshold, which, based on our experience, can be any value between 0.01 and 0.05, depending

on the users’ tolerance on numerical error. The value of COVV

(
x+
III ,θ

+
)

represents the normalized error

of the mean prediction µ̂V
(
x+
III ,θ

+
)
. The lower the value of COVV

(
x+
III ,θ

+
)

is, the more precise the

estimate µ̂V
(
x+
III ,θ

+
)

is. In this context, it is assumed that the estimate µ̂V
(
x+
III ,θ

+
)

is precise when

COVV

(
x+
III ,θ

+
)

is less than ∆PVC.

The above collaborative active learning procedure is repeated until both the stopping condition for BO

in Eq. (24) and the one for BC in Eq. (29) are satisfied. It is then known that the knowledge on the lower

bound of model response can no longer be improved, both the global minimum point as well as the response

variance value at this point are accurately computed.

3.4.2. U function for failure probability

Similarly, many acquisition functions for failure probability estimation have been developed, for example,

the U function [54], the expected feasibility function [55], the H function [56], and the expected integrated

error reduction function [39], where the U function is the mostly well-known, and thus is utilized in this

work. The U function is defined as:

U (xI ,uII) =
| µ̂y

(
xI ,uII ,x

+
III ,θ

+
)
|

σ̂y
(
xI ,uII ,x

+
III ,θ

+
) . (30)

The value of Φ (−U (xI ,uII)) measures the probability of misjudging the sign of G
(
xI ,uII ,x

+
III ,θ

+
)
. Thus,

with the minimum point of U (xI ,uII) added to the training set, the estimate of failure probability will be

more accurate. Search the minimum point
(
x+
I ,u

+
II

)
in the given joint samples setW = (XI ,U II ,XIII ,T ),

i.e., (
x+
I ,u

+
II

)
= arg min

(xI ,uII)∈(XI ,UII)
U (xI ,uII) . (31)

The stopping criteria is formulated as:

COVpf

(
x+
III ,θ

+
)

=

√
σ̂2
pf

(
x+
III ,θ

+
)

µ̂pf
(
x+
III ,θ

+
) < ∆U, (32)
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where COVpf

(
x+
III ,θ

+
)

denotes the posterior COV of the failure probability estimate, and ∆U indicates

the stopping threshold, which is usually chosen within the range [0.01, 0.05].

Once the pair
(
x+
I ,u

+
II

)
being identified, add ω+ =

(
x+
I ,u

+
II ,x

+
III ,θ

+
)

and y+ = G (ω+) to the training

data set and update the GPR model, until Eq. (24) and Eq. (32) are satisfied simultaneously. Similar to

the case for response variance, the above CABO procedure for estimating the bounds of failure probabil-

ity requires only one simulator call for each iteration. Benefiting from the global convergence of the BO

algorithms, the CABO algorithm is expected to have good performance on global convergence.

4. Collaborative and Adaptive Bayesian Optimization: algorithms

Based on the theoretical developments given in Section 3, the aim of this section is to present the detailed

CABO algorithms for bounding the response variance (in subsection 4.1) and the failure probability (in

subsection 4.2).

4.1. Bounds of response variance

With all the developments in section 3, the pseudocode of CABO for estimating the lower bound of the

response variance is summarized in Algorithm 1. The algorithm can be easily extended for computing the

upper bound by setting the training data generated for computing the lower bound as the initial training

data, and modifying the EI function as the one for upper bound estimation. Therefore, additional details

for locating the upper bound are omitted.

Before implementing Algorithm 1, some algorithm parameters, including the sample size Nx of W , the

sample size Ng of the GPR model, the stopping thresholds ∆BO and ∆PVC, need to be pre-specified. The

value of Nx needs to be specified such that the COV of the estimator for each of the response variance sample

V̂(j)
y is less than a threshold, and this parameter can also be adaptively adjusted if the implementation process

to adaptively meet the above requirement. Based on the experience, setting Nx as several thousands meets

the requirement for most examples. The value of Ng is set based on the principle that the COVs of the

estimators for all acquisition functions and variance response terms need to be less than a threshold, and

based on numerical experience, setting Ng as a value between 103 and 5 × 103 is a reasonable choice. The

settings for the two stopping thresholds has been reported in subsection 3.3 and 3.4 respectively.

It should be noted that, although Algorithm 1 is specifically developed for estimating the lower bound

of the response variance, it also applies to the upper bound computation, and the bounds of any order of
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moments of model response.

Algorithm 1: CABO method for estimating the bounds of response variance

Input: Augmented g-function G (W ), sample size Nx, Ng, N0, stopping threshold ∆BO, ∆COV

Output: Bounds of response variance and its corresponding sites.

1 Generate a set of joint samples W = (XI ,U II ,XIII ,T ) of size Nx by random sampling;

2 Create the initial training set D of size N0 by random sampling from W , let Ncall = N0;

3 while (1 = 1) do

4 Train or update the GPR model ĜD (ω) based on training data set D;

5 Generate a set of Ng samples Ĝ(j)D (ω) for ĜD (ω) with j = 1, · · · , Ng by using the GPR

conditioning sampling scheme introduced in subsection 3.2;

6 Find the current best solution (x∗III ,θ
∗) by solving Eq. (19) in D;

7 Compute the design site
(
x+
III ,θ

+
)

by Eq. (22);

8 Evaluate the response variance µ̂V
(
x+
III ,θ

+
)

by utilizing Eq. (15);

9 Compute the design site
(
x+
I ,u

+
II

)
by maximizing Eq. (28);

10 if both Eq. (24) and Eq. (29) are satisfied then

11 break while-do;

12 else

13 Compute the value of G (ω+) by calling the simulator, where ω+ =
(
x+
I ,u

+
II ,x

+
III ,θ

+
)
, and

let Ncall = Ncall + 1;

14 Add (ω+,G (ω+)) to the training data set D;

15 end

16 end

17 Output the minimum µ̂V
(
x+
III ,θ

+
)

of response variance, and minimum point
(
x+
I ,u

+
II ,x

+
III ,θ

+
)
.

4.2. Bounds of failure probability

Using the EI function formulated in Eq. (21) for BO and U function given in Eq. (30) for BC, the

pseudocode of CABO for estimating the lower bound of the failure probability is described as Algorithm 2.

For the upper bound, one can easily make the extension thus, details are omitted. This algorithm is also

applicable for estimating the bounds of CDF of the model response.

The settings of sample size Nx of W , the sample size Ng of the GPR model, the stopping thresholds

∆BO and ∆U involved in Algorithm 2 follow the same principles as Algorithm 1. The value of Nx can be set

to be 100/pf for making the COV of each failure probability sample P̂(j)
f less than a given threshold. The

value of Ng is recommended to be chosen from interval [1000, 5000] such that the COVs of the estimators

for all acquisition functions and failure probability terms are less than a threshold. The values of two

stopping thresholds ∆BO and ∆U are proposed in subsection 3.3 and 3.4 respectively. It should be noted

17



that the upper bound gets more attention among the bounds of failure probability in practical engineering

application. For precisely and efficiently estimating the bound of failure probability (less than 10−3), subset

simulation, line sampling, etc, can be integrated to CABO, which is not the focus of this work.

Algorithm 2: CABO method for estimating the bounds of failure probability

Input: Augmented g-function G (W ), sample size Nx, Ng, N0, stopping threshold ∆BO, ∆COV

Output: Bounds of variance and its corresponding sites.

1 Generate a set of joint samples W = (XI ,U II ,XIII ,T ) of size Nx by random sampling;

2 Create the initial training set D of size N0 from sample pool W , let Ncall = N0;

3 while (1 = 1) do

4 Train or update the GPR model ĜD (ω) based on training set D;

5 Generate a set of Ng samples Ĝ(j)D (ω) for ĜD (ω) with j = 1, · · · , Ng;

6 Find the current best solution (x∗III ,θ
∗) by solving Eq. (20) in D;

7 Compute the design site
(
x+
III ,θ

+
)

by Eq. (23);

8 Evaluate the response variance µ̂pf
(
x+
III ,θ

+
)

by utilizing Eq. (16);

9 Compute the design site
(
x+
I ,u

+
II

)
by solving Eq. (31);

10 if both Eq. (24) and Eq. (32) are satisfied then

11 break while-do;

12 else

13 Compute the value of G (ω+) by calling the simulator, where ω+ =
(
x+
I ,u

+
II ,x

+
III ,θ

+
)
, and

let Ncall = Ncall + 1;

14 Add (ω+,G (ω+)) to the training data set D;

15 end

16 end

17 Output the minimum µpf
(
x+
III ,θ

+
)

of variance, and minimum point
(
x+
I ,u

+
II ,x

+
III ,θ

+
)
.

5. Benchmark studies

In this section, we present one numerical example to illustrate the implementations details and demon-

strate the feasibility of the CABO algorithm for bounding both the response variance and the failure prob-

ability given the three types of uncertainty characterization models as inputs, and then introduce three

engineering examples across distinct disciplines to demonstrate the wide applicability of the CABO method

to real-world engineering problems.

5.1. An numerical illustrative example

For illustrating the effectiveness of the proposed method for estimating the bounds of response variance

and failure probability, two numerical examples are utilized respectively, and the corresponding model
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functions are formulated as:

g1 (x) = x1
(
x22 + x2 + cos (πx3)− 7

)
(33)

and

g2 (x) = 7− (x1 + x3)
2

+ x2. (34)

For g1-function, x1 follows standard normal distribution, x2 follows the normal distribution N (µ, 2), with

µ ∈ [−1.3, 1.8], and x3 is a interval variable supported by [−0.5, 1.3]. For g2-function, x1 follows standard

normal distribution N (0, 1), x2 is a random variable modeled by the normal p-box N (µ, 2) with µ ∈ [−2, 1],

and x3 is a deterministic-but-unknown variable with the epistemic uncertainty characterized by the interval

[−1, 2].

We perform the CABO method to estimate the bounds of variance of g1-function by setting the initial

training size N0 to be 30, the sample size Nx of W to be 10000, the sample size Ng of the GPR model

to be 1000, ∆BO to be 0.005, and ∆PVC to be 0.01. The results of CABO are displayed in Figure 4 and

Table 1, together with the reference computed analytically for comparison. For this implementation, the

CABO consumes 35 simulator calls for estimating the lower bound, and then 20 more simulator calls for

estimating the upper bounds. Thus, the total number of simulator calls for estimating both bounds is 85. As

can be seen From Figure 4, as the stopping conditions are satisfied, the CABO algorithms has successfully

reached the global optimal points where the bounds of response variance locate, demonstrating the accuracy

and convergence of CABO for this problem. Comparing the ultimate results of CABO and the reference

solutions summarized in Table 1, it is found that both the locations and values of each bound computed by

CABO match well with the reference solutions, and the Posterior COVs of estimates for both bounds are

sufficiently small, indicating that the CABO algorithms converges to the global optima with high accuracy

and numerical robustness.

Table 1: Results for the bounds of response variance of the numerical illustrative example with simulator function g1.

Method Bounds Means Optima of (x3, µ) Posterior COVs (%) Ncall

Reference
Lower 19 (0, 1.3028) –

–
Upper 54.563 (1, -0.5) –

CABO
Lower 18.980 (0.05, 1.26) 0.06

30+35+20=85
Upper 54.627 (1.0207, -5726) 0.01

Then, the bounds of failure probability of g2-function is evaluated by the CABO algorithm with N0 = 12,

Nx = 10000, Ng = 1000, ∆BO = 0.005, and ∆U = 0.01, the corresponding results are displayed in Figure 5

and Table 2, where the reference values are evaluated by a double-loop scheme, where the PSO is performed

in the outer loop for optimization and the MCS with 100000 samples is implemented in the inner loop

for estimating the failure probability values. The training details of CABO in the subspace of epistemic

uncertainty shown in Figure 5 reveal that the proposed CABO has successfully converged to the global
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Figure 4: Training details of CABO in the epistemic subspace for estimating the lower bound (left) and upper bound (right)
for the numerical illustrative example with simulator function g1, where the heat maps refer to the reference solution of the
response variance function V (x3, µ)..

optima for both lower and upper bounds. The results reported in Table 2 indicate that both bounds

of failure probability are accuratelly estimated with CABO as the values match well with the reference

solutions and the Posterior COVs are sufficiently small. It is also shown that the posterior COV of the

lower bound is obviously higher than that of the upper bound, and this is due to the fact that the lower

bound of failure probability is significantly smaller than the upper bound, resulted from the large epistemic

uncertainties of inputs. It is shown in Table 1 that this phenomenon also appears for the response variance.

Table 2: Results for the bounds of response variance of the numerical illustrative example with simulator function g2.

Method Bounds Means Optima of (x3, µ) Posterior COVs (%) Ncall

Reference
Lower 0.0071 (-0.0264, 1) – –
Upper 0.4296 (2, -2) –

CABO
Lower 0.0076 (-0.0353, 1) 0.50

12+13+4=29
Upper 0.4203 (2, -2) 0.04

5.2. Application to a spacecraft control system

We then apply the proposed CABO algorithm to the pitch control system of a spacecraft with its body

modeled as rigid body. The problem is adapted from Ref. [57]. Ignoring the inertance of the engine swing
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Figure 5: Training details in interval space of x3 and µ of CABO for evaluating the bounds of failure probability for the
illustrative example with model function g2, where the heat maps refer to the reference solution of the failure probability
function pf (x3, µ).

tube, the linearized motion control function is formulated as:

∆θ̇ = (c2 − c1) θ + c1∆ϕ+ c3δϕ + F̄y

∆ω̇z =b2∆θ − b2∆ϕ− b1∆ωz − b3δϕ + M̄z

∆ϕ̇ =∆ωz

(35)

with ∆θ, ∆ωz, ∆φ and δφ being the speed dip, pitch rate, pitch angle, and the equivalent swing angle of

tail nozzle respectively, the rigid body coefficients are expressed as:

c1 =
P + CαLqS

mV
, c2 =

g sin θ

V
, c3 =

P

mV

b1 =− CωzmzqSL
2

JzV
, b2 = −C

α
mzqSL

Jz
, b3 =

CδzmzqSL

Jz

(36)

where P , V , q, S, L, m and Jz denote the engine thrust, the spacecraft speed, the dynamic pressure,

the reference area, the reference length, the mass and the moment of inertia respectively, all of the above

parameters are set to be constant. The aeronautic parameters are represented by CαL , Cωzmz, C
α
mz and Cδzmz,

their detailed information is displayed in Table 3. Following the notations given in section 2, xI = CαL ,

xII = (Cωzmz, C
α
mz), xIII = Cδzmz, and θ = (µ1, µ2, σ1, σ2).
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Table 3: The information of the pneumatic parameter of the space control.

Parameters Distribution type Means Std Ranges
CαL Beta 6.4013 0.3201 [5.4411, 7.3615]
Cωzmz Beta µ1 ∈ [−0.11,−0.09] σ1 ∈ [0.0045, 0.0055] [-0.1150, -0.0850]
Cαmz Beta µ2 ∈ [−0.30,−0.25] σ2 ∈ [0.0125, 0.0150] [-0.3290, -0.2432]
Cδzmz – – – [-0.3211, -0.2373]

Based on the above equations of motion, the spacecraft rigid body transfer function is formulated as:

Wb = − b3s+ (b3c1 − b2c1 − b3c2)

s3 + (b1 − c2 + c1) s2 + (b1c1 − b1c2 + b2) s− b2c2
. (37)

The dynamic characteristics of the servo system of the engine oscillation are replaced by the inertia link

approximation, and the corresponding transfer function is given by

Wsf =
1

Tcs+ 1
(38)

, where Tc represents the time constant of the servo system. The feedback Proportional plus Derivative

(PD) controller is applied as the control methods, and the transfer function of which is formulated as:

Wc = (a0 + a1s) (39)

where a0 and a1 denote the static and dynamic gain respectively. In summary, the open loop transfer

function of the whole control system can be given by

W = WsfWbWc (40)

The concern for the control system is whether it can remain stable under disturbances and commands,

and achieve reasonable dynamic performance on this basis. In the frequency domain, the limit state function

concerning the amplitude margin is a function of x =
(
CαL , C

ωz
mz, C

α
mz, C

δz
mz

)
, and defined as:

g (x) = 12− Lc (x) (41)

, where Lc (x) = 20 lg | W (jωg) | represents the amplitude margin with W (jωg) being the cut frequency.

Next we use CABO to estimate the bounds of variance and failure probability of g-function.

To estimate the bounds of response variance , the algorithm parameters of CABO are set as follows.

The initial training data size N0 is set to be 30, the sample size Nx of W is set to be 10000, the sample

size Ng of the GPR model is set to be 1000, the stopping thresholds ∆BO and ∆COV are set to be 0.01 and

0.02 respectively. The results are summarized in Table 4. The reference solutions are computed with the
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double-loop procedure, where the PSO is implemented in the outer loop for estimating the bounds, and the

MCS based on 104 samples is utilized in the inner loop for computing the values of response variance. As

can be seen, both the optima and the bound values computed by CABO are in good agreement with the

reference solutions, and the posterior COVs of both bounds are sufficiently small. The above facts indicate

that the CABO results are accurate and robust.

Then, the CABO method is also utilized to estimate the bounds of failure probability. The parameters

of CABO are selected as N0 = 30, Nx = 104, Ng = 103, ∆BO = 0.01, and ∆U = 0.02. The results of CABO

and the reference one are displayed in Table 5, where the reference results are obtained by utilizing the

same double-loop scheme as above. As can be seen, the bounds of failure probability estimated by CABO

show no difference with the reference values and the corresponding COVs are very small. Based on the

above results, it can be demonstrated that the CABO method can efficiently and accurately estimate the

bounds of failure probability. The differences between the optimal points obtained by CABO and reference

points are somewhat large as revealed in Table 4 and Table 5, it is probably because the sensitivities of the

response variance to some pneumatic parameters are lower in the area around the extreme point or there

are multiple extreme points in the whole epistemic space.

Table 4: Results of response variance bounds for the spacecraft control system.

Method Bounds Means Optima of (xIII ,θ) Posterior COVs (%) Ncall

Reference
Lower 0.3026 (0.2373, 0.11, 0.3, 0.0045, 0.0125) –

–
Upper 0.4118 (0.3211, 0.09, 0.2551, 0.0055, 0.0150) –

CABO
Lower 0.3052 (0.2373, 0.11, 0.2812, 0.0053, 0.0125) 0.001

30+14+2=46
Upper 0.4439 (0.2373, 0.11, 0.2930, 0.0055, 0.0150) 0.17

Table 5: Results of failure probability bounds for the spacecraft control system.

Method Bounds Means Optima of (xIII ,θ) Posterior COVs (%) Ncall

Reference
Lower 0 (0.2851, 0.0914, 0.2533, 0.0052, 0.0126) –

–
Upper 0.0565 (0.2373, 0.11, 0.3, 0.0048, 0.015) –

CABO
Lower 0 (0.2547, 0.1051, 0.2525, 0.005, 0.0147) –

30+0+11=41
Upper 0.0545 (0.2373, 0.11, 0.3, 0.0055, 0.015) 1.09

5.3. Transmission tower

Consider a electricity transmission tower utilized in the power grid system, the structure of the tower is

shown in Figure 6, one can refer [31] and [58] to for details. The Finite Element (FE) model of the trans-

mission tower is build and solved with Matlab. Eighty bars make up the tower, the properties of all bars are

linear elastic, four dynamic loads are applied to the tower at the top nodes displayed in Figure 6. The young’s

modulus Ec1−Ec4 and the cross-section Ac1−Ac4 of four of the corner are assumed to be random variables, the

distributional information of Ec1−Ec4 and Ac1−Ac4 are reported in Table 6. Let x = (Ec1, · · · , Ec4, Ac1, · · · , Ac4)

be the 8-dimensional input variables. Following the notations in section 2 and the assumption in Table 6, it
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can be known that the random variables consists of xI = (Ec1, E
c
2) and xII = (Ec3, E

c
4), while the epistemic

parameters include xIII = (Ac1, A
c
2, A

c
3, A

c
4) and θ = (µE3, µE4, σE3, σE4). Assume that when the displace-

ment of node A denoted by dA exceeds 0.0432, the structure of the transmission tower failures, then, the

limit state function can be formulated as:

g (x) = 0.0432− dA (x) (42)

4 m

3.42 m

2.93 m

2.51 m

2.14 m

A
F

F
F

F

z
y

x

Figure 6: The geometric structure and environmental condition of the transmission tower.

Before performing the CABO method to evaluate the bounds of response variance, the parameters

involved in CABO are need to be assigned. Let N0 be 35, Nx be 10000, Ng be 1000, ∆BO be 0.01, and

∆PVC be 0.02. The results are given in Table 7. The reference results are evaluated by a double-loop

procedure as described above. As it can be seen, both of bounds and optimal points estimated by CABO

show good consistency with the reference values and the corresponding posterior COVs are quite small.

For the case of calculating the bounds of probability of failure, we initialize the parameters N0, Nx,

Ng, ∆BO and ∆U included in CABO be 30, 10000, 1000, 0.01 and 0.02 respectively. The results of CABO
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Table 6: The distributional information of the transmission tower.
Parameters Distribution type Means ×

(
×1011

)
Std

(
×1011

)
Ranges

(
10−3

)
Ec1 (Pa) Log-normal 2.1 0.1 –
Ec2 (Pa) Log-normal 2.1 0.1 –
Ec3 (Pa) Log-normal µE3 ∈ [1.5, 2.5] σE3 ∈ [0.15, 0.25] –
Ec4 (Pa) Log-normal µE4 ∈ [1.5, 2.5] σE4 ∈ [0.15, 0.25] –

Ac1
(
m2
)

– – – [7,8]

Ac2
(
m2
)

– – – [7,8]

Ac3
(
m2
)

– – – [7,8]

Ac4
(
m2
)

– – – [7,8]

are displayed in Table 8 companying with the reference values obtained by the same double-loop scheme as

above. As shown in Table 8, the estimates of the bounds of failure probability evaluated by are consistent

with the reference bounds. The optimal points of CABO show no difference with the reference points. In

summary, the CABO method can well estimate the bounds of variance and failure probability with high

accuracy and efficiency.

Table 7: Results for bounds of response variance of the transmission tower.

Method Bounds Means Optima of xIII and θ Posterior COVs (%) Ncall

Reference
Lower 1.1320

(0.008,0.008,0.008,0.008)
(2.5, 2.5, 0.15, 0.15)× 1011

–
–

Upper 2.6431
(0.007, 0.007, 0.007, 0.007)
(1.5, 1.5, 0.25, 0.25)× 1011

–

CABO
Lower 1.269

(0.0074,0.0073,0.008,0.008)
(2.5, 2.27, 0.23, 0.246)× 1011

0.41
25+6+20=51

Upper 2.605
(0.007, 0.008, 0.0075, 0.007)
(1.5, 1.5, 0.25, 0.15)× 1011

0.24

Table 8: Results for bounds of failure probability of the transmission tower.

Method Bounds Means Optima of xIII and θ Posterior COVs (%) Ncall

Reference
Lower 0

(0.007, 0.008, 0.007, 0.007)
(2.5, 2.5, 2.07, 0.25)× 1011

–
–

Upper 0.0736
(0.008, 0.008, 0.008, 0.008)
(2.5, 2.5, 0.249, 0.25)× 1011

–

CABO
Lower 0

(0.0077, 0.0079, 0.0074, 0.0074)
(1.74, 1.67, 0.18, 0.23)× 1011

–
30+0+13=43

Upper 0.0765
(0.008, 0.008, 0.008, 0.008)
(2.5, 2.5, 0.25, 0.25)× 1011

0.06

5.4. Dynamic analysis of satellite

Consider a satellite(see Ref.[59]) whose FE model is displayed in Figure 7. The main structure of

the satellite is a cubic core reinforced by the internal stiffening beams, and reflectors and photovoltaic

are connected to the core by connecting beams. The corresponding FE model is composed of beam and
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shell elements with 1262 elements and 7146 degrees-of-freedom. Assume that the Young’s modulus of

different components of the satellite are non-deterministic variables and modeled by different uncertainty

characteristic models, and the specific distributional information of which is given in Table 9. Following the

notations given in section 2, we have xI = (E1, E2), xII = E3, xIII = (E4, E5) and θ = (µE3, σE3). For

this satellite structure, the first natural frequency of satellite plays an important role in reliability analysis,

therefore, we assume that, the satellite will fail when the first natural frequency is less than a given threshold,

the limit state function of the satellite is formulated as:

g (x) = dA (x)− 1.794 (43)

Figure 7: The geometric structure and environmental condition of the transmission tower.

Table 9: The distributional information of Young’s modulus of the satellite.

Parameters Distribution type Means Std Ranges
E1 (cubic core,Pa) Log-normal 6.89× 109 3.49× 108 –

E2 (photovoltaic panels,Pa) Log-normal 6.89× 109 3.49× 108 –
E3 (reflectors,Pa) Log-normal µE3 ∈ [6.4, 9.6]× 1010 σE3 ∈ [0.4, 0.8]× 1010 –

E4 (connecting beams,Pa) – – – [6.4, 9.6]× 1010

E5 (stiffening beams,Pa) – – – [6.4, 9.6]× 1011

To estimate the bounds of the response variance, let the value of N0 be 30, the sample size Nx of W

be 104, the sample size Ng of the GPR model be 103, the stopping threshold ∆BO be 0.001 and ∆PVC be

0.01. With the above settings, the results of CABO are shown in Table 10. The results displayed in Table

10 indicate that the estimates of bounds are accurate and reliable as the COVs are adequately small. By

using the procedure of evaluating the bounds of variance, the estimates of bounds of failure probability are

given in Table 10. It also can be observed that the upper bounds are accurately approximated by 0.0064

with COV being 0.06.

6. Conclusions

We conclude the developments and main findings in this section. As has been reported, an efficient

framework named as CABO is proposed to estimate the bounds of variance and failure probability of
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Table 10: Results of response variance and failure probability bounds for the satellite estimated by CABO.

Objective Bounds Means Optima of xIII and θ COVs (%) Ncall

Variance
Lower 4.87× 10−5

(
6.4× 1010, 6.4× 1011

)(
7.703× 1010, 0.04× 1010

) < 10−4
30+4+2=36

Upper 19.079× 10−5
(
9.6× 1010, 6.621× 1011

)(
9.6× 1010, 0.08× 1010

) < 10−4

Failure probability
Lower 0

(
7.079× 1010, 8.4748× 1011

)(
7.085× 1010, 0.0429× 1010

) –
30+0+10=40

Upper 0.0064

(
6.4× 1010, 6.8115× 1011

)(
6.4× 1010, 0.0598× 1010

) < 10−4

an engineering structure with three categories of non-deterministic inputs variables, i.e. precise random

variables, imprecise random variables, and interval variables, where the imprecise random variables are

modeled by a parameterized p-box. Before applying the procedure of CABO, it is necessary to transform the

imprecise random variables to independent uniform distributional inputs and interval epistemic parameters,

then the variance and failure probability are functions of interval variables and interval epistemic parameters.

The BO and BC are then implemented in a collaborative and adaptive way by updating the GPR model

in the augmented space of aleatory and epistemic uncertainties. Specifically, the BO equipped with the EI

acquisition function is implemented in the marginal space of epistemic uncertainties for searching the global

optima, and the BC equipped with PVC or U acquisition functions is jointly implemented for inferring the

posterior distribution of the response variance and failure probability at deterministic sites specified by BO.

The above two steps produce a new training point in the augmented space until both stopping conditions for

BO and BC are satisfied. Benefiting from the collaborative learning scheme, the CABO algorithm requires

only one simulator call for each iteration, making the algorithm especially efficient.

Benefiting from the collaborative and active learning scheme in the augmented space, the CABO algo-

rithm has several superiority. First, the double-loop curse is completely broken, making the computation

of bounds of any probabilistic descriptors (e.g., response variance and failure probability) efficient. Sec-

ond, the global convergence of the EI function, which was theoretically proved in Refs. [60, 61], has been

inherited by the CABO algorithm. Third, the CABO algorithm is gradient-free, thus does not require

any extra numerical effort for computing gradients. For sure, nothing is given without a disadvantage in

it. Due to the necessity of active learning in the augmented space, the GPR model needs to be trained

in the (nI + nII + nIII + nθ)-dimensional space, which limits the applicability of the CABO algorithm to

high-dimensional problems with e.g., nI + nII + nIII + nθ > 30. This limitation can be further overcame

by introducing some built-in dimensional reduction techniques (see e.g., Ref. [62]). This is a general issue

for training the GPR model, and we don’t present more details. Besides, the performance of the CABO

algorithm largely depends on the utilized acquisition functions, and this work open the door for designing

more effective acquisition functions with better trade-off between exploration and exploitation.
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The results of benchmark studies show that, for all examples, the bounds for both response variance and

failure probability are accurately and robustly estimated with high efficiency even when the input epistemic

uncertainty is large. It is also noted from the results that, in case that the bounds of failure probability are

very small values (typically less than 10−3), the MCS procedure embedded in CABO may not be appropriate

due to the large variation of estimates, and advanced MCS procedures, such as subset simulation and line

sampling need to be properly integrated into the CABO framework. This will be treated in future work.
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