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Abstract

Estimating the design points with high accuracy is a historical and key issue for many reliability analysis
and reliability-based design optimization methods. Indeed, it is still a challenge especially when the limit
state functions (LSFs) show highly nonlinear behaviors, and/or the reliability index is large, and/or the
gradients of LSF are not available. To fill the above gap, two acquisition functions incorporating both the
objective function and constraints are devised, and based on which, a Constrained Bayesian Optimization
(ConBayOpt) method is firstly developed for actively learning the design points with high accuracy and
global convergence. Further, an improved algorithm, called Constrained Bayesian Subset Optimization
(ConBaySubOpt) is devised for adaptively learning the design points far away from the origin of the standard
normal space. Similar to subset simulation, the ConBaySubOpt algorithm automatically produces a set
of intermediate failure surfaces and feasible regions for approaching the true design point, but does not
require Markov Chain Monte Carlo simulation for conditional sampling. The efficiency, accuracy and wide
applicability of the proposed methods are demonstrated with two test examples and three engineering
examples.

Keywords: Bayesian Optimization; Design Point; Acquisition Function; Gaussian Process Regression;
Feasible Regions

1. Introduction

Reliability analysis and Reliability-Based Design Optimization (RBDO) under the probabilistic frame-

work have been recognized as the key for designing engineering structures with high reliability under uncer-

tainties, and many methods have been developed for these purposes. For reliability analysis, the numerical

methods include approximate analytical methods (e.g., first-order reliability method, FORM, and second-

order reliability method, SORM) [1, 2], response surface methods [3], advanced Monte Carlo simulation

(MCS) methods (e.g., importance sampling [4, 5], subset simulation and its variants [6, 7, 8], as well as line

sampling [9, 10]), active learning combining (advanced) MCS and surrogate models [11, 12, 13, 14, 15, 16],
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and probability conservation based methods [17, 18]. Some of these methods have been further developed

for solving the RBDO problem (e.g., Ref. [2, 19, 20]), under double-loop or decoupling frameworks. Despite

the above developments, devising methods with higher performance for all kinds of structural reliability

problems is an ongoing issue.

The design point has played a key role in structural reliability analysis. It is defined as the point

in the failure domain having the highest probability density value, and the region around a design point

usually contributes the most to the probability of failure in problems involving a low or middle number

of dimensions [21, 22, 23]. It is the above reason that makes the design point a very important concept

in structural reliability theory, and many of the above-mentioned methods are devised based on accurate

estimation of the design point. For example, both the SORM and FORM methods are based on Taylor series

expansion at the design point (see e.g., Ref. [24]); the important sampling density can be designed by moving

the center of density to the design point (see e.g., Refs. [25, 26]); line sampling is based on generating a set

of line samples along the important direction, identified by the design point (see, e.g., Ref. [27]); and the

response surface methods are based on actively updating the surrogate model for approximating the limit

state function around the design point with acceptable accuracy. The concept of design point has also seen

a wide application in many RBDO methods, for example, an equivalent design point concept is introduced

in Ref. [28] for transforming the time-variant RBDO problem into an equivalent time-invariant one; the

design point is combined with Kriging in Refs. [29, 30] for solving the RBDO problem, etc. Besides, the

concept of design point has also been extended for reliability analysis and RBDO under mixed uncertainties

(see, e.g., Ref. [31, 32]) and quantification of uncertainties in structural prognostics [33]. In summary, the

design point is a very important concept in structural reliability engineering, and development of effective

methods for estimating it with wide applicability and high efficiency is then a timely issue.

From a mathematical perspective, estimating the design point is a typical constrained optimization

problem. In the past half century, many methods, mostly based on gradients, have been developed. The

first milestone on this direction is Ref. [34], where a line search scheme is designed for approaching the design

point based on gradients in the standard Gaussian space. This method is later extended to accommodate the

non-Gaussian variables in Ref. [35], and the developed method is well-known as “Hasofer-Lind-Rackwitz-

Flessler (HLRF)”. Till now, this strategy has been widely used in many areas, such as for solving RBDO [36]

and slope reliability analysis [37]. Some other improvements, such as the utilization of a quadratic searching

strategy [38], has also been developed following this line, but all these methods are gradient-based. A

gradient-free method has also been developed based on interpolation and adaptive response surface in Ref.

[39], and received much attention in both engineering and academic communities. More recently, a stochastic

simulation method based on uniform sampling and taking the probability density value as weight has been

proposed for estimating the probability of failure and the design point [40], but it still requires several

hundreds or even several thousands function calls for convergence, and is thus not applicable for expensive-
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to-evaluate simulators. A probabilistic model based on cumulative distribution function has been established,

and combined with sequential quadrature optimization for estimating the design point in the original space

of input variables [41], but the performance relies on the utilized optimization algorithm. Besides, some

methods based on meta-heuristic global optimization algorithms, e.g., Ref. [42], have also been introduced

for calculating the design point, but these methods commonly require much higher number of function calls,

thus are time-consuming. Overall, estimating the design point is still a challenge for problems, where the

limit state function is highly nonlinear and multi-modal, and/or the gradient information is not available,

and or the design point is far away from the distribution center of the inputs variables, and developing

effective methods for filling this gap is an urgent demand [43].

Bayesian numerical analysis is a cutting-edge branch of engineering computation, which aims at formu-

lating a numerical analysis problem as a statistic inference problem and then solved with Bayesian inference

[44]. Till now, Bayesian numerical methods have been developed for most numerical tasks such as optimiza-

tion [45], reliability analysis [46, 47], and Ordinary Differential Equation (ODE) solution [48]. Bayesian

optimization is a set of gradient-free methods aiming at solving optimization problems with expensive-to-

evaluate objective functions with global convergence [45, 49, 50]. Due to these appealing features, two

Bayesian optimization procedures are developed for efficiently estimating the design point. Two acquisition

functions adapted from the classical Expected Improvement (EI) are firstly devised, with the incorporation

of both the objective and constraints, for transforming the constrained optimization problem into a non-

constraint one. With either of these two acquisition functions as an engine, the first Bayesian optimization

algorithm is developed for estimating the design point in those cases where this point is located relatively

close to the origin of the standard normal space. Further, a more elaborated Bayesian algorithm is devised

for searching the design point when it lies far away from the origin of the standard normal space. This

algorithm is based on automatically introducing several intermediate failure surfaces and feasible regions

for approaching the true design point in an adaptive way. The proposed methods are of wide applicability

for highly nonlinear problems with very small failure probability, and are gradient-free.

The remaining of this work is organized as follows. The problem statement as well as the review of the

Gaussian Process Regression (GPR) utilized for Bayesian optimization are presented in section 2, followed

by the two developed Bayesian optimization algorithms for searching design point in section 3. Several

benchmark examples are studied in section 4 for illustrating and demonstrating the proposed methods.

Section 5 gives conclusions.
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2. Research Materials

2.1. Problem Statement

The structural reliability problem is commonly formulated by a limit state function (LSF) y = g(x) and a

random input vector x of dimension n, with y < 0 indicating failure, and the randomness of x being described

by the joint probability density function (PDF) ϕn(x). For simplicity, the input variables are assumed to

follow independent standard Gaussian distribution throughout this work, and for the dependent and/or

non-Gaussian cases, the Nataf transformation or Rosenblatt transformation can be applied to transform the

input variables into independent standard Gaussian variables, and one can refer to Ref. [51] for details.

With the above assumption, the failure domain is defined as F = {x : g(x) < 0}, and the its indicator

function is denoted as IF (x), which equals to one if x ∈ F and otherwise zero. Given the above definition,

the probability of failure pf is defined as:

pf =

∫
F

ϕn (x) dx =

∫
Rn

IF (x)ϕn (x) dx. (1)

Evaluating the probability of failure is a challenging task especially when the LSF is non-linear and the

value of the probability of failure is very small (typically less than 10−3). In the past half century, many

methods, such as FORM, SORM and IS, have been developed for addressing the above challenging problem

based on the so-called design point. Mathematically, the design point is defined as the point in the failure

domain F which has the highest PDF value, and in the case of independent standard Gaussian inputs, the

design point is indeed the point on the failure boundary g(x) = 0 with the highest PDF value, i.e.,

xD = arg max
g(x)=0

ϕn (x) . (2)

From a geometrical perspective, the design point can also be formulated as the point in the failure boundary

with the smallest distance to the origin, i.e.,

xD = arg max
g(x)=0

1

∥x∥
(3)

, where ∥·∥ refers to the Euclidian distance. One notes that this distance is commonly called reliability

index, and is denoted as β = ∥x∥, thus the cost function can also be defined as −∥x∥. It has been noticed

that utilizing whether Eq. (2) or Eq. (3) as the cost function makes no big difference on the training process

or performance of the algorithms, but may affect the pre-specification of the algorithm parameters. For

simplicity, Eq. (3) is adopted in this work. One notes the formulation in Eq. (3) is valid as long as the

value of failure probability is not too large, for example pf ≤ 0.1.

The available methods developed for addressing the above optimization problem are mostly gradient-

4



based, and less effective when the optimization problem is multi-modal and/or the gradients are not available

or are expensive to evaluate. The above limitations make the design point based reliability analysis methods

not applicable in many engineering applications. Besides, for LSF with multi-modal behavior, the above-

mentioned methods may lack global convergence. This motivates us to develop a gradient-free and efficient

global optimization algorithm for addressing the above limitations. The developed methods are based on

Bayesian optimization, where the LSF is approximated by a Gaussian Process Regression (GPR) model,

which is briefly reviewed in the following subsection.

2.2. Gaussian Process Regression

Following the prior assumption of a Bayesian inference procedure, without knowing any information of

the deterministic LSF g(x), it is assumed to follow a Gaussian process ĝ (x) ∼ GP (m (x) , κ (x,x′)), where

m (x) indicates the prior mean function which can be assumed to be of any appropriate form such as zero,

constant and polynomials, and κ(x,x′) refers to the prior covariance function quantifying the correlation

of ĝ(x) at any two different sites x and x′. Many kinds of kernel functions, such as polynomial kernel,

squared exponential kernel and Matérn kernel, can be utilized, but the optimal kernel function for a specific

problem depends on the behavior of the LSF. One can refer to Ref. [52] for guidance on kernel selection.

Given a set of training data D = (X ,Y), where X is a (N × n)-dimensional sample matrix with the i-th

row being the i-th sample of x, and Y refers to a N -dimensional column vector with the i-th element

being y(i) = g(x(i)), it is known that vector Y follows a N -dimensional Gaussian distribution with mean

vector m(X ) =
(
m

(
x(1)

)
,m

(
x(2)

)
, · · ·m

(
x(N)

))⊤ and covariance matrix K whose (i, j)-th element is

κ
(
x(i),x(j)

)
. The likelihood function can then be formulated as the joint PDF of this Gaussian vector, and

the hyper-parameters involved in m(x) and κ(x,x′) can be computed by maximum likelihood estimation.

With the above concept, a posterior GPR model can be inferred by conditioning on the observed data D

as ĝD (x) ∼ GP (µg (x) , cg (x,x
′)), where the posterior mean function µg (x) and the posterior covariance

function cg (x,x
′) are formulated as:

µg (x) = µ (x) + κ (X ,x)
⊤ K−1 (Y − µ (X )) (4a)

cg (x,x
′) = κ (x,x′)− κ (X ,x)

⊤ K−1κ (X ,x) (4b)

, where κ (X ,x) refers to a N -dimensional column vector with the i-th element being κ
(
x(i),x

)
. The

posterior variance is computed as σ2
g (x) = cg (x,x). Given an unobserved point x, although its LSF value

g(x) can not be precisely known, the Gaussian distribution with mean µg (x) and σ2
g (x) can be used for

summarizing the available knowledge on this deterministic value, and provides fruitful information for active

learning of the MPP, as discussed in the remaining parts of this work. It needs to be clarified that both the

prior and posterior Gaussian assumption is made on the value of the LSF g(x), instead of the input vector
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x, thus the GPR model does not restricts the distribution type associated with x.

3. The Proposed Methods

In this section, two gradient-free Bayesian optimization algorithms will be developed for computing

the design point near the origin and those far away from the origin, respectively. The performance of

a Bayesian optimization algorithm is determined by the utilized acquisition function to a large extent

[49], thus devising new acquisition functions has long been a focus. For an optimization algorithm, where

“exploration” refers to the ability of exploring new regions and thus it serves to escape from a local optimum,

whereas “exploitation” indicates the ability of searching local optimum in the neighborhood of the current

solution, thus determines the convergence rate once the vicinity of the true optimum is found. Thus, a

good acquisition function should have a balance between exploration and exploitation at different stages of

searching. Many acquisition functions, such as the probability of improvement function [53], the Expected

Improvement (EI) function and its variants [54, 55], the knowledge-gradient function [56], the entropy search

function [57] and the predictive entropy search function [58], have been developed, where the EI functions

are the most popular ones as they commonly admit closed-form expressions, and provide reasonable balance

between exploration and exploitation. Motivated by this fact, the idea of EI function is utilized in this

section to devise new acquisition functions for searching the design points.

Most developments in Bayesian optimization are applicable to problems with rectangular feasible regions

and without constraints. There are commonly two strategies for extending those methods to problems with

various types of constraints, where the first is to develop an acquisition function with the incorporation

of the constraints. Such an approach has been termed as constrained Bayesian optimization (ConBayOpt)

(see e.g., Ref. [59, 60] for examples). The second strategy is to transform the constrained problems into

unconstrained ones using the augmented Lagrangian relaxation [61, 62]. In this section, the first strategy is

adopted as the second commonly requires coping with non-stationary GPR models [63].

3.1. Constrained Bayesian Optimization for design point near origin

Let ϵ denote a small positive value. For incorporating the equality constraint g(x), the following deter-

ministic function is defined:

h (x) =
1

∥x∥
I [|g (x)| ⩽ ϵ] (5)

, where I [·] denotes the indicator function which equals to one if the argument holds and, otherwise, zero.

The above h-function is interpreted as follows. The point x with the maximum h-function value is the

one which is located in the narrow strip −ϵ ⩽ g (x) ⩽ ϵ (i.e., on the failure surface), and meanwhile the

nearest to the origin. This point would indeed tend to the design point as ϵ approaches zero. Therefore,
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with h(x), the constrained optimization problem in Eq.(3) for estimating the design point is reformulated

as the following unconstrained optimization problem:

xD = arg max
x∈Rn

h (x) (6)

, which can then be solved with a Bayesian optimization procedure. However, Bayesian optimization cannot

be directly applied as modeling the non-negative and non-smooth objective function h(x) with a GPR model

may result in a poor performance on convergence.

We develop a more reasonable scheme to fill the above gap. Assume now a GPR model ĝD (x) is trained

for approximating the LSF g (x) with an initial training data set D. It is then clear that ĥD(x), defined by

replacing g(x) in Eq. (5) with ĝD(x), is a random process having two possible outcomes at each site of x.

It takes a value of either 1/∥x∥ with probability p(x) or 0 with probability 1− p(x), i.e.,

 Pr
(
ĥD (x) = 1

∥x∥

)
= p (x)

Pr
(
ĥD (x) = 0

)
= 1− p (x)

(7)

, where Pr (·) refers to the probability measure, p (x) = Φ
(

ϵ−µg(x)
σg(x)

)
− Φ

(
−ϵ−µg(x)

σg(x)

)
, and Φ(·) indicates

the Cumulative Distribution Function (CDF) of the univariate standard normal distribution. The posterior

mean µh (x) of ĥD(x) is then derived as:

µh (x) =
1

∥x∥
ED [I [|ĝD (x)| ⩽ ϵ]] =

1

∥x∥
p (x) (8)

, where ED [·] indicates the expectation operator taken over the GPR model ĝD (x). A reference point can

be computed by solving:

x∗ = arg max
x∈Rn

µh (x) . (9)

As µh (x) admits a closed-form expression, Eq. (9) can be efficiently solved by evolutionary optimization

algorithms, and in this work, the Particle Swarm Optimization (PSO) algorithm is suggested.

After solving Eq. (9), the next step is to decide whether the GPR model should be improved with an

additional evaluation of the LSF. For this purpose, it is necessary to define an acquisition function following

the EI based Bayesian optimization procedure [45]. The first EI function is defined as:

AEI1 (x) = ED

[
max

(
ĥD (x)− µh (x

∗) , 0
)]

. (10)

The value of AEI1 (x) quantifies the expected increment of h(x) at the point x compared to that at the

current best guess x∗. By observing and adding the point with highest EI value to the training data to
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update the GPR model, it is expected to improve the knowledge on the global maximum point to the

greatest extent. Based on the explicit distribution of ĥD (x) given in Eq. (7), the closed-form expression of

AEI (x) can be derived as:

AEI1 (x) = p (x)max

(
1

∥x∥
− 1

∥x∗∥
p (x∗) , 0

)
. (11)

The EI function defined in Eq. (10) evaluates the expected improvement with the posterior mean

prediction at the reference point x∗ as basis, and thus the prediction uncertainty at the reference point is

omitted in the acquisition. To alleviate this, the second EI function is defined as:

AEI2 (x) = ED

[
max

(
ĥD (x)− ĥD (x∗) , 0

)]
(12)

, of which the closed-form expression is derived based on the joint probability distribution of ĥD (x) and

ĥD (x∗) as:

AEI2 (x) =
1

∥x∥
p (x) (1− p (x∗)) + max

(
1

∥x∥
− 1

∥x∗∥
, 0

)
p (x) p (x∗) . (13)

The second EI function can then be interpreted as the expected improvement of objective function value

at x compared to that at x∗ with the consideration of prediction uncertainties at both x and x∗. As both

EI functions have closed-form expression and it is efficient to compute them, any evolutionary optimization

algorithm can be used for identifying its maximum, and still, the PSO algorithm is suggested.

For illustrating the two EI functions, we train a GPR model, and the two EI functions introduced in Eqs.

(11) and (13) are derived, with their heat maps shown in Figure 1, together with the true MPP as well as

the true failure surface and the failure surface specified with the posterior mean of the GPR model. It is seen

that, for this example, the two EI functions show very similar but not exactly the same feature. It seems

that difference only exists around the intersection point of the failure boundary identified by µg(x) = 0

and the true failure boundary g(x) = 0. The small difference is mainly caused by the small prediction

uncertainty at the reference point. Indeed, the most notable difference between the two EI functions is that

the second one does not allow specifying the reference point as the next training point, as the value of it

at the reference point equals to zero. It is seen that the maximum points of both EI functions are located

between the true design point and the reference design point specified by the posterior mean, indicating a

correct pointing toward the true design point.

The stopping condition is defined as that the normalized expected improvement at a specific step is less

than a small tolerance ∆EI, i.e.,

AEI
(
x+

)
< ∆EI (14)

, where x+ = argmaxx∈Rn AEI (x), and AEI (x) refers to the EI function defined by either Eqs. (11) or
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Figure 1: Pseudocolor plot of the acquisition function AEI (x) defined by Eq. (10) for a two-dimensional example, together
with the design point, and the failure surfaces defined by g(x) = 0 and µg(x) = 0.

(13).

With the above developments ready, the pseudo-code of the ConBayOpt algorithm for solving the design

point is then summarized in Algorithm 1. Three algorithm parameters, i.e., the initial training sample

size N0, the error tolerance ϵ used in the EI acquisition function and the stopping threshold ∆EI, needs to

be specified. Based on experience, N0 can be set to be a value higher than n + 1, and for low-dimensional

problems, at least 10 initial training points are required. Generally, different sampling schemes, such as Latin-

hypercube sampling, Sobol’ low-discrepancy sequence and the Halton sequence, can be used for producing

the initial training points. One notes that the feasible region does not necessarily need to be properly

covered by the initial training points, but initial training points with better space-filling is definitely helpful.

The value of ϵ is based on the variation of the response value. The smaller ϵ is, the closer is the resultant

design point to the true failure boundary, but it also results in non-smoothness of the acquisition function,

making it challenging to compute the next design point, and if applicable, requires higher number of LSF

calls for convergence. The value of the stopping threshold ∆EI should be determined based on the distance

of the design point to the origin, a larger distance requires a smaller value of ∆EI. For the same problem,

smaller value of ∆EI results in higher number of simulator calls, but also produces results with higher

accuracy. A trade-off between accuracy and efficiency should be made. Generally, it can be set to be a value
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between 10−5 ∼ 10−8. It is also noted that, during the early training stage when the number of training

points is small, the posterior variance of the GPR model may not be adequate for evaluating the prediction

uncertainty, and thus fake convergence may happen. To guarantee the robustness of the algorithm, a delayed

judging strategy can be utilized, which means to end the algorithm only when the stopping condition is

satisfied for twice in succession. This delayed judging strategy is found to be effective for avoiding the fake

convergence, benefiting from the fact the posterior features of the GPR model can be adjusted to a great

extent when a new (optimal) training point is added, especially at the early training stage where the GPR

model conveys large prediction uncertainty.

Algorithm 1 is recommended when the distance between the design point and the origin is not large

(typically less than 2.5), where design point must happen within the feasible region xi ∈ [−3, 3]. Thus, the

two optimization procedures in Algorithm 1 can be solved within this feasible region. For design point far

away from the origin, this algorithm is less effective especially when the LSF is highly nonlinear, making

it difficult for the GPR model to reach the true failure boundary. For this challenging case, a subset

optimization procedure will be devised in the following subsection.
Algorithm 1: Constrained Bayesian Optimization (ConBayOpt) for design point near origin

Input: N0, ϵ, ∆EI, g(x).

Output: xD, D, ĝD (x), Ncall

1 StopFlag = False;

2 Generate X of size N0 by e.g., Latin-hypercube sampling (LHS), and compute the corresponding

LSF values Y to produce the initial training data set D = (X ,Y), let Ncall = N0 and i = 0;

3 while StopFlag=False do

4 Let i = i+ 1, train a GPR model ĝD (x) based on D;

5 Compute the i-th reference point x∗(i) by solving Eq. (9) with e.g., the PSO algorithm;

6 Compute x+ by maximizing AEI(x);

7 if Eq. (14) holds then

8 Let xD = x∗(i), and StopFlag=True;

9 else

10 Compute y+ = g(x+), add this point to D, and let Ncall = Ncall + 1;

11 end

12 end

3.2. Constrained Bayesian Subset Optimization for distant design point

The basic rationale of the Constrained Bayesian Subset Optimization (ConBaySubOpt) procedure for

estimating the distant design point is schematically shown in Figure 2. The idea is borrowed from the

subset simulation originally developed for estimating small failure probability [64], but our method avoids
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sampling from the conditional density, which is commonly challenging and accomplished with Markov Chain

Monte Carlo (MCMC). Instead of directly searching the distant design point xD, a set of intermediate

failure boundaries are introduced with both the intermediate values bl and the corresponding intermediate

design points x
(l)
D actively learned. Denote the intermediate failure domains as Fl = {x : g (x) < bl}, where

l = 1, 2, · · · ,m and b1 > b2 > · · · > bm = 0, it is then concluded F1 ⊃ F2 ⊃ · · · ⊃ Fm.

The method starts with actively learning the value b1 and the corresponding design point x(1)
D within the

first feasible region centered at the origin (denoted as x
(0)
D ) and bounded with a hyper-rectangle of length

2ξ, where b1 is actively specified based on the principle that the distance β1 of x(1)
D to x

(0)
D is smaller than a

pre-specified value. With the above setting, the design point of the first failure boundary must be located

within the first feasible region, and thus can be learned with Algorithm 1. After the first design point x
(1)
D

is readily learned with pre-specified error tolerance, the second feasible region is built by moving the center

of the first feasible region to x
(1)
D . The value of b2 and the design point x

(2)
D are then adaptively learned

within the second feasible boundary. As F2 ⊂ F1 and b2 is specified such that the distance β12 of x(2)
D to x

(1)
D

does not exceed ξ, the second design point should exist within the second feasible region, and can also be

actively learned with Algorithm 1. The above process is repeated until that for one intermediate boundary,

say the third one as shown in Figure 2, the value of bm is smaller than zero, and is set to be zero. Within

the corresponding feasible region centered at x
(m−1)
D , the true design point x

(m)
D is actively learned with

Algorithm 1, and its distance to the origin is computed as β, as shown in Figure 2.

Compared with Algorithm 1, two issues need to be specifically treated for ConBaySubOpt, i.e., the

specification of the failure threshold value bl and the acquisition function for each intermediate failure

boundary. The value of bl is specified with MCS. To specify the value of bl, a set of N samples of x need

to be generated following the independent Gaussian distribution with unit variance and centered at x
(l−1)
D .

The posterior mean predictions at these N points are then computed, and the resultant values are then

sorted in descending order. The value of bl is then specified as the ⌈p0N⌉-th prediction value to ensure that

100(1 − p0) percent samples belong to the failure domain defined by µg (x) ⩽ bl. The value of bl is also

actively updated following the update of the GPR model, and as long as it is specified as a value smaller

than zero, it is set as zero.

For learning the l-th design point x
(l)
D , the EI acquisition function defined by Eq. (10) and Eq. (12)

can still be used by modifying the failure threshold from 0 as bl. Then the x
(l)
D is searched within the l-th

feasible region. However, an important information, i.e., x(l)
D ∈ Fl−1, has been omitted. Incorporating this

constraints in the acquisition function is expected to further improve the robustness and reduce the required

number of LSF calls. Motivated by the above fact, the following stochastic process model is introduced:

ĥ
(l)
D (x) =

1

∥x∥
I [|ĝD (x)− bl| ⩽ ϵ ∩ ĝD (x) ⩽ ασg (x) + bl−1] (15)
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Figure 2: Schematic illustration of the ConBaySubOpt for inferring the distant design point.

, where the term ασg(x) is introduced as a soft bound making the constraint x ∈ Fl−1 soft. This additional

term provides the acquisition function with sufficient flexibility for balancing exploration and exploitation.

Specifically, higher value of α refers to more inclination to exploration, which helps to exploring new regions.

However, overemphasizing exploration performance will slow down the convergence rate once the globally

optimal region has been identified. Thus, a trade-off needs to be made between exploration and exploitation

by specifying the value of α. Based on experience, α can be set as a value between 0.5 and 1. The posterior

mean of the ĥ
(l)
D (x) is then derived as:

µ
(l)
h (x) =

1

∥x∥
pl (x) (16)

, where the probability bound function pl (x) is formulated as:

pl (x) = Φ

(
min (ϵ+ bl, ασg (x) + bl−1)− µg (x)

σg (x)

)
− Φ

(
bl − ϵ− µg (x)

σg (x)

)
. (17)

In Eq. (17), for l = 1, b0 is set to be a large value approaching infinity, such that for the design point x
(1)
D

on the first failure boundary, the stochastic process ĥ
(l)
D (x) tends to ĥD (x) used for defining AEI (x) in Eq.

(10).

The reference point x∗
l is computed as the global maximum point of µ

(l)
h (x) within the l-th feasible

region using, e.g., the PSO algorithm. Then, the acquisition function adapted from Eq. (10) for inferring

12



the design point of the l-th failure boundary is defined as:

AEI1
l (x) = ED

[
max

(
ĥ
(l)
D (x)− µ

(l)
h (x∗

l ) , 0
)]

. (18)

Similarly, AEI1
l (x) measures the expected improvement of the objective function at x compared to its

expected value at x∗
l , and thus the next training point can be specified as the global maximum point of

AEI1
l (x). The closed-form expression of AEI1

l (x) is derived as:

AEI1
l (x) = max

(
1

∥x∥
− 1

∥x∗
l ∥

pl (x
∗
l ) , 0

)
pl (x) . (19)

One can also easily devise the EI function AEI2
l (x) for the l-th intermediate failure boundary by modifying

Eq. (12) following the similar scheme, and we don’t repeat the details. The next point for enriching the

GPR model is determined by maximizing the cheap-to-evaluate EI function in Eq. (19) within the l-th

hyper-rectangular feasible region
[
x
(l−1)
MPP − ξ,x

(l−1)
MPP + ξ

]
.

Based on the above developments in this subsection, the pseudocode of the ConBaySubOpt method is

summarized in Algorithm 2. Except for the parameters N0, ϵ and ∆EI, as required for Algorithm 1, there

are three more parameters, i.e., p0, N and ξ. The values of N0, ϵ and ∆EI can be set to be the same as

those in Algorithm 1. The probability p0 is used for setting the distance of the design point x
(l)
D on the l-th

level to x
(l−1)
D of the (l − 1)-th level, and it should be specified jointly with ξ, which determines the size

of each feasible region. According to numerical validations, Algorithm 1 is applicable for the case that the

distance of the design point to the origin is less than 2.5. Thus, ξ is suggested to be 2 ∼ 4. Accordingly, p0
is suggested to be a value between 0.01 ∼ 0.05 such that the design point x

(l)
D is located within the feasible

region with x
(l−1)
D as center. The smaller p0 is, the less intermediate failure surfaces will be introduced,

results in higher rate of convergence, but if it is smaller than 10−2, the algorithm may be unsteady for highly

nonlinear problems due to the difficulty of approaching x
(l)
D from x

(l−1)
D . The sample size N for each feasible

region is introduced for numerically specifying the failure threshold value bl using MCS estimator, and it

is recommended to be 100/p0. There are two stopping conditions for Algorithm 2, where the first one is

responsible for the determining whether estimating each x
(l)
D has been converged, and the one given by Eq.

(14) is utilized, as the same in Algorithm 1, and the second one is used for judging if the true design point

on the failure boundary g(x) = 0 has been correctly identified, and it is implied by bl = 0.

13



Algorithm 2: Constrained Bayesian Subset Optimization (ConBaySubOpt) for distant design point
Input: N0, ϵ, α, ∆EI, g (x), p0, N , ξ

Output: b1 ∼ bm, x(1)
D ∼ x

(m)
D ,Ncall, D, ĝD (x)

1 Initialize l = 1, x(0)
D = 0, StopFlag1=False and b0 as a large value approaching infinity;

2 Generate the initial training data D = (X ,Y) of size N0 with X produced by LHS and Y = g(X )

generated by calling the LSF, let Ncall = N0;

3 while StopFlag1=False do

4 Initilize StopFlag2=False and i = 0;

5 Produce N samples x(k) (k = 1, 2, · · · , N) by sampling from Gaussian distribution with mean

x
(l−1)
MPP and identity covariance matrix using, e.g., LHS;

6 while StopFlag2=False do

7 Let i = i+ 1 and train the GPR model ĝD(x);

8 Compute the posterior mean prediction for each x(k), sort these values in ascending order,

and update bl as the ⌊p0N⌋-th value;

9 if bl < 0 then Let bl = 0;

10 Compute the reference point x∗(i) by maiximizing the posterior mean of ĥ(l)
D (x) with PSO in

the feasible region
[
x
(l−1)
D − ξ,x

(l−1)
D + ξ

]
;

11 Calculate x+ by maximizing AEI
l (x) within the support

[
x
(l−1)
D − ξ,x

(l−1)
D + ξ

]
;

12 if AEI
l (x+) < ∆EI then

13 Let x
(l)
D = x∗(i), and StopFlag2=True

14 else

15 Calculate y+ = g(x+), add this point to D, and let Ncall = Ncall + 1

16 end

17 end

18 if bl = 0 then

19 Let m = l, and StopFlag2=True

20 else

21 Let l = l + 1

22 end

23 end

4. Benchmark studies

In this section, we introduce two test examples and three engineering systems, with input dimensions

varying from two to seventeen, and reliability index varying from about 0.4 to 4.3, for demonstrating the

14



effectiveness of the proposed methods. The “particleswarm” function in Matlab with default parameter

setting is utilized for computing the global maximum point of the EI acquisition function in each iteration.

One notes that, as the EI functions have closed-form expressions, searching its maximum point with the

PSO algorithm does not need to call the LSFs, and thus is computationally cheap.

4.1. A Two-dimensional Numerical Example

We first introduce a two-dimensional numerical example, which is highly nonlinear and has many local

optima, for explaining the training details and demonstrating the performance of both algorithms. The LSF

is formulated as:

g (x1, x2) = (x1 − 1)
3
+ (x2 − 2)

2
+ x1 sin (2πx2) cos (2πx1) + a (20)

, where x1 and x2 are random input variables, and a is a deterministic parameter determining the magnitude

of the reliability index β. We consider three cases. For case 1, a is set to be 0 and 20 to demonstrate

Algorithm 1 (ConBayOpt) for estimating design point with small β, and for case 2, a is set to be 80 and 150

to prove the effectiveness of Algorithm 2 (ConBaySubOpt) for estimating distant design point. For both

case 1 and case 2, x1 and x2 are assumed to be independent and standard normal variables. The aim of

case 3 is to prove the suitability of the proposed methods to problems with non-Gaussian and correlated

variables. Thus, for case 3, x1 and x2 are assumed to be correlated variables uniformly distributed in the

circle bounded by x2
1 + x2

2 = 9, and a is set to be 60.

For implementing ConBayOpt for case 1, the algorithm parameters are set to be ϵ = 0.1, ∆EI = 10−6

and N0 = 12. The 12 initial training points are generated with LHS within the support of [−2, 2] for

each input. For improving the robustness, the algorithm ends when the stopping condition in Eq. (14) is

satisfied for two consecutive times. The training details for a = 0, including the initial training points, the

actively designed training points, the failure boundary µg(x) = 0 identified with the final GPR model, and

the identified design point, are schematically shown in Figure 3, together with the true failure boundary

g(x) = 0 and the density contour for illustrating the accuracy of results. As can be seen, the true failure

boundary shows multi-modal behavior, and this can be a challenge for using a gradient-based method. It

is shown that, the ConBayOpt algorithm actively produces 6 more points when the stopping condition is

satisfied. Thus the total number of LSF calls is 18. As the true design point is defined as the point, on the

failure boundary, having the highest density value, it can be concluded by checking the density contour and

the failure boundaries in Figure 3 that, the estimated design point is of high accuracy, and the resultant

GPR model approximates the LSF with high accuracy around the design point.
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Figure 3: Training details and result of the design point generated for the two-dimensional numerical example with a = 0.

For case with a = 20, all the algorithm parameters are set to be the same as those for a = 0, and

the training details are visually shown in Figure 4. As can be seen,this design point is farther away from

the origin than that of the case with a = 0, but the reliability index β is still smaller than 2.5, thus the

ConBayOpt algorithm still applies. Still, there are many local optima on the failure boundary, making the

estimation of the design point challenging. Initialized with 12 training points, 10 more training points are

produced with the EI acquisition function before touching the stopping condition for two successive times.

Comparing the density contour and the failure boundaries, it can be found in Figure 4 that the design point

is correctly identified. The total number of LSF calls is 12 + 10 = 22, which is larger than that for the case

with a = 0, but is still acceptable for engineering application.
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Figure 4: Training details and result of the MPP generated for the two-dimensional numerical example with a = 20.

For case 2 with a = 80 and a = 150, the distances of design points to the origin are both higher than

2, thus the ConBayOpt algorithm is not applicable, and the ConBaySubOpt Algorithm is implemented for

this case. The parameters ϵ, ∆EI and N0 are set to be the same as for the above two cases, and the extra

parameters are set as p0 = 0.02, α = 1, ξ = 2 and N = 104. Initialized with the 12 training points, the

ConBaySubOpt algorithm automatically produced one intermediate failure boundary with b = 58.44 for

approaching the true failure surface where the design point is located. The algorithm produces 11 more

training points for identifying the intermediate failure surface and estimating the corresponding design point

x
(1)
D with acceptable accuracy, as shown in Figure 5. It is then, with x

(1)
D as center of the second feasible

region, 9 more training points are actively produced for learning the true failure design point x
(2)
D with

pre-specified error tolerance. Checking the density contour and the true failure surface in Figure 5, it can be

found that design point x(2)
D on the true failure surface is correctly identified. The total number of LSF calls

is then 12 + 11 + 9 = 32, indicating that the ConBaySubOpt is highly efficient for estimating this distant

design point.
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Figure 5: Training details of Algorithm 2 (ConBaySubOpt) for the two-dimensional numerical example with a = 80.

To further explore the potential of the ConBaySubOpt algorithm for estimating distant design point,

we consider a more challenging case with a = 150. All the parameters are set to be the same as those for

a = 80. The training details are schematically displayed in Figure 6. As can be seen, two intermediate

failure surfaces are adaptively produced with the corresponding design points x
(1)
D and x

(2)
D being correctly

identified with acceptable accuracy. With the second design point x
(2)
D as center of the feasible region, the

design point on the true failure surface g(x) = 0 has also been correctly identified with high accuracy. The

numbers of actively added points for learning the three design points x(1)
D ∼ x

(3)
D are 8, 10 and 5 respectively,

thus the total number of LSF calls is 12 + 8 + 10 + 5 = 35, which is slightly larger than that for the case

with a = 80, although one more intermediate failure surface has been produced.

Comparing Figure 3 with Figure 6, it is seen that, for the case with small reliability index β, the

initial training points are distributed around the true design point, and thus the true failure boundary

can be easily reached by active learning GPR model initialized with the initial training points; however,

for the case with distant design point, the failure boundary is far from the origin, and despite equipped

with the EI acquisition functions, the ConBayOpt algorithm finds difficulty in approaching the true design

point especially when the LSF shows high non-linearity. Fortunately, with the adaptive and automatic

18



introduction of the intermediate failure surfaces and the corresponding feasible regions, it is then practical

to identify the design point even it is very far from the origin. Besides, it is obvious that, for the case with

design point near to the origin, ConBaySubOpt degrades into ConBayOpt, thus the users do not need to

know the magnitude of the reliability index in advance. If the users know exactly the reliability index β is

smaller than 2.5, then ConBayOpt can be utilized; otherwise, ConBaySubOpt should be utilized.
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Figure 6: Training details of Algorithm 2 (ConBaySuOpt) for the two-dimensional numerical example with a = 150.

We then implement ConBaySubOpt algorithm for case 3 where the input variables are correlated and

uniformly distributed in the circle with radius being 3. For this case, we need to transform the input

variables from the original uniform space (denoted as X-space) into the standard normal space (referred to

as U-space) using the Rosenblatt transformation [51]. The transformation is formulated in closed form as:


u1 = Φ−1

(
x1+3

6

)
u2 = Φ−1

(
x2+

√
9−x2

1

2
√

9−x2
1

) (21)

, or inversely x1 = 6Φ (u1)− 3

x2 = 2Φ (u2)

√
9− (6Φ (u1)− 3)

2 −
√
9− (6Φ (u1)− 3)

2
. (22)
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The two variables u1 and u2 generated with the above transformation follow independent standard normal

distribution. Substituting Eq. (22) into the g-function, we can reformulate the g-function in the U-space,

and then the ConBaySubOpt algorithm is implemented with the same setting for parameters as case 2.

The training details and the results are schematically shown in Figure 7. One notes that the algorithm

is implemented in the U-space, and then the results are mapped to the X-space. As can be seen, both

intermediate and true failure surfaces show distinct behavior in the U-space and X-space, and this is mainly

caused by the nonlinear Rosenblatt transformation. Despite this difference, by introducing an intermediate

failure surface, the design point is correctly identified by the algorithm with a total number of 34 g-function

calls. This indicates that the proposed method is applied to problems with correlated and non-Gaussian

random input variables.
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Figure 7: Training details of Algorithm 2 (ConBaySubOpt) for case 3 of the two-dimensional numerical example, where the

left panel shows the training details in U-space, and the right one shows those in X-space. One notes that the legends in the

figure apply to both sub-figures.

The HLRF method (see Refs. [34, 35]) has also been tested for this example, and results show that

only for the first case with a = 0, the HLRF method produces the correct estimation of design point, but

with many more LSF calls, and for the other cases, HLRF converges to local optima. Thus, the results of

HLRF are not presented. Besides, all the above results shown above are generated with the first EI function

AEI1 (x). As the second one produces similar results, they are not presented for brevity.
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4.2. A Non-Gaussian Numerical Example

Consider a five-dimensional example with the LSF formulated as:

g (x) = 0.125x1 + 0.125x1x
2
2 + 0.25x3 sin (x4) + 0.5x3

5 cos (x4) + a (23)

, where a is a constant determining the magnitude of β, and all the input variables are assumed to be

independent and follow lognormal distribution with zero mean and STD being 0.5. In this study, a is set as

2 for illustrating ConBayOpt, and as 50 for demonstrating ConBaySubOpt, with specific interest on their

suitability to problems with multi-dimensional non-Gaussian inputs and highly-nonlinear LSF.

For this problem with more than two input variables, it is not possible to visually show the training

details in the input space, and thus we use the reliability index β, which is defined as the distance of the

design point to the origin in the standard normal space, for illustration. As HLRF does not converge for

this problem, we use MCMC to generate the reference results for design point following the idea of Ref.

[65]. In detail, a set of Ncall = 5× 106 conditional samples are generated following the optimal importance

sampling density ϕopt (x) = IF (x)ϕ (x)/pf using MCMC, and the one with the highest density value is

specified as the reference design point. As a comparison, the Matlab function “fmincon” is also implemented

for computing the design point.

To implement ConBayOpt for case a = 2, the parameters are set to be N0 = 12, ϵ = 0.05, and

∆EI = 10−6. The ConBayOpt algorithm is then implemented three times independently, with each of the

EI functions AEI1(x) and AEI2(x), and the results generated in the lognormal space are then reported in

Figure 8, where “IMP” refers to “implementation”. As can be seen, both EI functions produce design point

results in good agreement with the reference solutions, and it is hard to say which EI function is better.

It is also shown that the numbers of LSF calls consumed by the two EI functions are also quite similar.

Thus, the two EI functions are close in terms of both efficiency and accuracy. For showing the training

details of ConBayOpt, the evolution of the reliability index β for one implementation of each EI function is

schematically shown in Figure 9 (a). The distinct behavior of β produced by the two acquisition functions at

the first few steps are partly caused by the fact that different initial training points are utilized, and partly

caused by the large prediction uncertainty at the reference uncertainties at the first few steps. The reference

value of the reliability index β computed by MCMC and “fmincon” is 2.1222 and 2.1158 respectively, and

thus both EI functions result in convergence of the reliability index. As the two EI functions show similar

performance towards convergence, below we don’t mention which one is utilized. It is also noted that all the

three implementations of the ConBayOpt algorithm consume less LSF calls than the “fmincon” function,

indicating the high efficiency of the proposed method.
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Figure 8: Results of design point in the lognormal space for case a = 2 of the non-Gaussian numerical example, generated by

implementing the ConBayOpt algorithm for three times with two EI functions. The reference solutions generated with MCMC

and “fmincon” are also provided for comparison.
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Figure 9: Evolution of the reliability index of the non-Gaussian numerical example. One notes that abrupt jump of of β on

the right-hand plot is due to the movement to the second stage.

We then implement ConBaySubOpt for case a = 50 by setting p0 = 0.01, ξ = 4 and all the other
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parameters, except ∆EI, the same as the implementations of ConBayOpt. The stopping threshold ∆EI

is set to be 10−5 for the first intermediate failure boundary, and then reduced by 90 percent successively

for the subsequent (intermediate) failure boundaries. Similarly, we perform three independent runs of

ConBaySubOpt for demonstrating the robustness of the algorithm. Each implementation produces one

intermediate failure boundary with slightly different failure threshold value b1, and the coordinate values

of the design point for both the intermediate and the true failure boundaries are shown in Figure 10. The

reference solutions are not provided for the intermediate failure boundary as the b1 value is actively specified

to be slightly different. Comparing Figure 10(a) and 10(b), it is found that the generated design points on

the intermediate failure surface show slightly larger variation than those on the true failure surface across

the three implementations, and this is mainly caused by the variation of the b1 values across the three

implementations. Whatever, this will not affect the quality of the results of the design point on the true

value surface, as demonstrated by the comparison in Figure 10(b). As the results of all the three independent

runs are in good agreement with the reference solutions produced MCMC and “’fmincon’, it is concluded

the ConBaySubOpt algorithm is of high accuracy and numerical robustness for this example. The total

numbers of LSF calls consumed by the three independent runs are 89, 81 and 84, which are all smaller

than that consumed by “fmincon”, indicating the numerical efficiency of the algorithm. The evolution of

the reliability index β against the iteration steps is visually shown in Figure 9(b). It is seen that algorithm

automatically proceeds to the training for the second stage after that for the reliability index of the first

stage being converged. The values of β produced by the three implementations are 3.7236, 3.7831 and

3.7072, and the reference values generated by MCMC and “fmincon” are 3.7078 and 3.7069. This further

demonstrates the robustness and accuracy of the ConBaySubOpt algorithm. It is shown in Figure 10

that the proposed ConBaySubOpt algorithm requires much less LSF calls than “fmincon” for all the three

independent implementations, indicating the high efficiency of the proposed method.
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Figure 10: Results of design point in the lognormal space for case a = 50 of the non-Gaussian numerical example generated by

implementing the ConBaySubOpt algorithm three times.

4.3. A Ten-bar Frame Structure

Let’s consider a ten-bar frame structure shown in Figure 11(a), with the FEM model built in ANSYS

and shown in Figure 11 (b). This problem is adapted from Ref. [66], and where it was found that the

HLRF algorithm cannot correctly estimate the MPP. A total number of fifteen random input variables

are involved in this example, and they are the length L of horizontal and vertical bars, the section areas

Ai (i = 1, · · · , 10) of the ten bars, the Young’s modulus E of material, and the three point loads P1, P2 and

P3, as shown in Figure 11(a). All these fifteen variables are assumed to follow Gaussian distribution with

mean values 1m, 0.001m2, 100GPa, 80kN, 10kN and 10kN, respectively, and the coefficients of variation of

all variables are assumed to be 2%. The limit state function is formulated as g = 0.0033 − ∆y with ∆y

indicating the vertical displacement of node 3.
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Figure 11: A ten-bar frame structure with (a) indicating the number of bars and loads, and (b) being the FE model.

The reliability index of this example is higher than 3, thus we implement ConBaySuOpt to compute the

design point. The algorithm parameters are set to be N0 = 15, ϵ = 10−6, α = 1, ∆EI = 10−4 for the first

intermediate failure boundary and then reduced by 90 percent for successive intermediate failure surface,

p0 = 10−2 and N = 104. The results of three independent runs are shown in Figure 12, together with the

reference solution computed by MCMC with 106 LSF calls. All the three independent runs automatically

produce one intermediate failure boundary with the design points shown in Figure 12. As can be seen, the

intermediate failure threshold values produced by the three independent runs are very close, resulting in

close positions of design points. The results of the design points in standard normal space on the true failure

boundary are shown in Figure 12. It is seen that the results of all the three independent runs are generally in

good agreement with the reference solutions, indicating the robustness and accuracy of the ConBaySubOpt

algorithm for this example. The values of the reliability index β estimated by the three implementations

are 3.6305, 3.6392 and 3.6304, which are all slightly smaller than the reference result β = 3.8735. The small

difference between the results of ConBaySubOpt and MCMC is caused by the constraint |g (x)| ⩽ ϵ as the

final results are almost located on the boundary g (x) = ϵ, instead of g (x) = 0. Reducing the value of ϵ can

make the results closer to the reference solution, but it may also results in unsteadiness or at least more LSF

calls for convergence as the EI functions can be more exploitative. The total number of LSF calls consumed

by the three independent runs are 34, 40 and 47, respectively, as shown in Figure 12, demonstrating the

high efficiency of the ConBaySuOpt algorithm.
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Figure 12: Positions of design points in standard Gaussian space for the ten-bar structure.

4.4. Hydrodynamic lubrication reliability of a journal bearing

The failure of an aero-engine pump is mostly due to the wear of its several friction pairs, where the

journal sliding bearing pair commonly is one of the most critical parts. For the journal bearing working

with high speed, the hydrodynamic lubrication provides support to the shaft by producing oil film with

pressure. However, as the pressure of the film exceed a threshold related to the material of the shaft, failure

may occur. Therefore, we develop a computational model for simulating the hydrodynamic lubrication, and

for predicting the thickness and pressure of the film by solving a set of PDEs consisting of Reynolds equation,

elastic deformation equation, energy equation and temperature-viscosity equation. For simplicity, we don’t

give details of these equations and the numerical solver. The predicted pressure distribution along the shaft

and circumferential directions predicted at nominal point are shown in Figure 13, where pmax refers to the

peak of the film pressure, which depends on six random input parameters, i.e., the width B of bearing, the

radius R of the bearing, the radial gap C, the rotation speed ω, the oil viscosity η, and the eccentricity ratio

r. Thus, the LSF of this problem is formulated as:

g = pm − pmax (B,R,C, ω, η, r) (24)
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, where pm refers to the maximal allowable threshold pressure, which is determined by the material property,

and assumed to be 0.75 MPa. The six input variables are assumed to be independent and follow truncated

normal distribution with distribution parameters shown in Table 1.

Table 1: Distribution parameters of the journal bearing
Variables Distribution type Means C.O.Vs
Width B (mm) Normal 25 0.005
Radius R (mm) Normal 12.5 0.005
Radial gap C (mm) Normal 0.02 0.005
Rotate speed ω

(
r ·min−1

)
Normal 8000 0.03

Viscosity η (Pa · s) Normal 9.66e-4 0.3
Eccentricity ratio r Normal 0.8 0.03

Figure 13: Distribution of film pressure against the shaft and circumferential positions for the journal bearing.

As the reliability index β of this example is higher than 2.5, the ConBaySubOpt algorithm is implemented.

The algorithm parameters are set as follows: N0 = 12, ϵ = 5 × 10−4, α = 1, p0 = 10−2, N = 104, ξ = 4

and ∆EI = 10−4 for the first layer and then reduced by 90 percent for each successive layer. FORM can

provide reliable results for this example, thus is served as reference method. The ConBaySubOpt algorithm is

implemented with three independent runs, and each of which automatically produce one intermediate failure

surface, and the results of design points for the two failure surfaces are reported in Figure 14, together with

the reference solutions for comparison. As can be seen, the design points on the first failure boundary are in

good accordance across the three implementations as the resultant values of b1 are very close. From Figure

14(b), it is seen that the design points on the true failure surface are very close, and also match well with the

reference solutions produced with HLRF. The evolution of the reliability index β produced by the third run

is shown in Figure 15, and from which the convergence of the implementation can be convincingly confirmed.

The total numbers of LSF calls consumed by these three implementation are 25, 30 and 26 respectively,
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which are smaller than that of HLRF, indicating the high efficiency of ConBaySubOpt.
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Figure 14: Results of design points in the standard Gaussian space for the journal bearing example.
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Figure 15: Evolution of reliability index β by ConBaySubOpt for the journal bearing example.
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4.5. Water distribution network

Let us consider the reliability analysis of a water distribution network adapted from Ref. [67]. The layout

of this network is shown in Figure 16. There are seventeen nodes with the first node having a prescribed

head of 15 m, and all the other nodes have a demand of 0.005m3/s. The length of the pipe between Node 8

and Node 16 is 100 m, and that of all the other pipes is assumed to be 50 m. Further, the diameters of all

pipes are assumed to be 0.11 m, and the material relative roughness is assumed to be 0.046 mm. The water

temperature is 15oC. We consider the prescribed head at Node 1 and the demands of all the other sixteen

nodes as random input variables following lognormal distribution. The mean values for the prescribed head

at Node 1 and the demands of all the other sixteen nodes are assumed to be 15 m and 0.005m3/s respectively,

and the coefficients of variation of all the seventeen input variables are assumed to be 10%. The minimum

allowable head is assumed to be 4 m, and the failure occurs when it is lower than this threshold. We use the

water distribution system hydraulic and water quality analysis toolkit “EPANET” to implement this model.

 

Figure 16: A water distribution network.

The ConBaySubOpt algorithm is initialized with the following parameter setting: N0 = 20, ϵ = 0.02,

α = 1, p0 = 10−2, ζ = 4, and ∆EI = 10−4 for the first layer and then reduced by 90% for each successive

layer. With the above setting, the ConBaySubOpt algorithm is implemented for three times, and the

corresponding results are reported in Table 2. For comparison, the reliability index computed by MCS with

105 samples is also reported for comparison. As for MCS, the coefficient of variation for the estimate of

the failure probability is 2.1%. Thus, it is believed that the estimate of β computed by MCS is of high

accuracy. For each of the three implementations of ConBaySubOpt, one intermediate failure surface was

automatically produced, and the corresponding values of b1 being 0.7160, 0.6937 and 0.7025 respectively.
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The HLRF algorithm fails to find the design point for this example. From Table 2, it can be concluded that

the results generated by the three implementations of the ConBaySubOpt algorithm are consistent, and the

results of β computed by these three implementations are also in good agreement with the reference solution

by MCS, indicating the high accuracy and robustness of the proposed ConBaySubOpt algorithm for this

example. The total numbers of LSF calls of these three implementations are 37, 36, and 53, indicating the

high efficiency of the proposed method.

Table 2: Results of design points for the water distribution network

Node 1st IMP 2nd IMP 3rd IMP MCS

1 -2.7542 -2.7722 -2.7679 -

2 0.0628 0.0618 0.0662 -

3 0.0953 0.0725 0.0959 -

4 0.1778 0.1976 0.1644 -

5 0.0793 0.1210 0.1294 -

6 0.1424 0.1039 0.0969 -

7 0.2258 0.1616 0.1906 -

8 0.2767 0.2476 0.2349 -

9 0.2117 0.1781 0.1999 -

10 0.2152 0.2157 0.2417 -

11 0.1871 0.2465 0.2033 -

12 0.2080 0.1670 0.2321 -

13 0.2435 0.2486 0.2698 -

14 0.3592 0.2875 0.3096 -

15 0.2638 0.2900 0.2574 -

16 0.2490 0.2774 0.2738 -

17 0.4407 0.3895 0.3636 -

β 2.9100 2.9104 2.9078 2.8618

Ncall 37 36 53 106

4.6. Final remarks

With all the five numerical and engineering examples examined in this section, it is now clear that the

proposed methods are effective for searching the design point no matter it is far or near to the origin.

However, there are still some specific aspects to be discussed. The first is on the global convergence of

the proposed methods to LSFs with multi-modal behaviors. The Bayesian optimization algorithms, also
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called Efficient Global Optimization (EGO) algorithms [54], as revealed by their name, are widely accepted

as a set of optimization algorithms with global convergence for non-constrained optimization problem, and

specifically, the global convergence of the EI function has been theoretically proved (see Ref. [68, 69]). It

was concluded that, for a non-constrained optimization aiming at minimizing g(x), if g(x) is approximated

with a GPR model with kernel κ(x,x′), the EI function is known to converge to the minimum of g(x) if it

is in the reproducing kernel Hilbert space (RKHS) defined by κ(x,x′). Thus, if g(x) is a smooth function,

the algorithm must converge to its minimum if the squared exponential kernel is utilized. The EI functions

defined in this work are modified from the classical EI function to formulate the constrained optimization

problem as a non-constrained one. Although it is not rigorously proved, it is believed that, as the LSF is in

the RKHS equipped with the kernel κ(x,x′), the proposed methods should converge to the global optimum.

A theoretical proof to this conclusion is beyond the scope of this work, thus we do not suggest absolutely

positive arguments, and leave the theoretical proof to future work as a technical note.

One notes that, following the theory of the GPR model, although a Gaussian process assumption is

made for approximating the LSF, it does not mean that the method only applies to the problems with x

following normal or lognormal distribution. Indeed, the Gaussian process assumption is not imposed on the

input variables, but on the deterministic-but-unknown value of the LSF at each location, and it does not

restrict the distribution type of x. One can refer to, e.g., Ref. [70], for example of GPR model applied to

e.g., uniformly distributed input variables. For some active learning algorithms, such as those based on the

knowledge-gradient acquisition function and the entropy search acquisition function [45], searching the global

maximum/minimum of the acquisition functions may itself be more time-consuming than a FEM analysis.

This is mainly due to the fact that these acquisition functions do not have closed-form expressions, and each

call of them requires expensive numerical computation. However, the EI acquisition functions devised in

this work all have closed-form expressions, and searching their global maximums is computationally cheap.

For example, using a personal laptop with core i7 CPU, for the first numerical example, searching the global

maximum of the EI function takes about 0.4 ∼ 2 seconds, and for the journal bearing example, each search

consumes about 0.7 ∼ 3 seconds. This is also why we devised the acquisition functions based on EI function,

instead of the knowledge-gradient function or the entropy search function [45], although they were stated to

provide better trade-off between exploitation and exploration.

As revealed by the results of benchmark studies, two parameters, i.e, the error tolerance ϵ and the

stopping threshold ∆EI, differ obviously for different examples. As has been explained in subsection 3.1, the

value of ϵ determines the smoothness of the acquisition function and also the distance of the resultant design

point to the failure surface. Based on the experience of solving all the five test examples, it can be specified

as a value between 0.5% and 3% of the STD of y, where the STD of y can be roughly estimated based on

the N0 training points before initializing the algorithms. This is also the reason why ϵ is set to be quite

different values for different examples. The stopping threshold ∆EI provides a balance between accuracy
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and efficiency. A large value of ∆EI may result in non-convergence of the result, and a very small value may

consumes more LSF calls than expected. Based on the experience of investigating the five examples, it is

found that setting ∆EI as a value between 10−5 and 10−8 usually provides good balance between accuracy

and efficiency. From the training process of the ConBaySubOpt algorithm for these examples, it is also

found that, if multiple intermediate failure surfaces are required for approaching the distance design point,

setting ∆EI as 10−4 for the first intermediate failure surface and then reducing it by, e.g., 90 percents, for

each subsequent intermediate (or true) failure surface, can provide a better trade-off in most cases. The

initial training sample size N0 can be set as max (12, n+ 1), and ξ is suggested to be 4. The values of p0 and

α are set to be 10−2 and 1 respectively for all examples. All the results of the five examples are generated

following the above principles for parameter setting.

One should also note that, although the idea of subset simulation is utilized in the ConBaySubOpt

algorithm for actively producing feasible regions, it does not inherit the local convergence phenomenon of

the subset simulation, as the feasible region for searching the design point consists of both regions within

and outside of the intermediate failure domain, and the term ασg (x) introduced in Eq. (15) puts more

emphasis on global exploration. However, the proposed methods do have some limitations. First, for a rare

extreme case where the true design point is in the opposite directions of the intermediate design points,

the ConBaySubOpt algorithm may fail to find the global optimum, but this can be fixed by reformulating

the method under the polar coordinate, and will be treated in future work. Second, it is not recommended

to use the method for high-dimensional problems (typically, n > 30). This is caused by the limitation of

the GPR model in high dimension. As Euclidean distance is utilized for defining the kernel function, the

covariance with the same length of Euclidean distance may get less information for higher dimension, making

the prediction performance of the GPR model poorer in high dimension. This can be alleviated by, e.g.,

introducing a built-in dimension reduction scheme for the GPR model [71], but this will make the training

process time-consuming. Another limitation of the proposed methods is that they are not applicable for

searching multiple design points. Indeed, the EI functions defined by both Eqs. (10) and (12) can only

inform the global design point with the highest density value. However, this limitation can be eliminated

by devising more informative acquisition functions and introducing multi-modal optimization algorithms for

searching multiple optima of the new acquisition functions.

5. Conclusions and prospects

This work has developed two Bayesian optimization algorithms, i.e., ConBayOpt and ConBaySubOpt,

to efficiently estimate the design points for scenarios where classical methods, such as HLFR, may not

be applicable, due to the multi-modal property and the unavailability of gradient information of the LSF.

The core development is the EI acquisition functions developed for constrained optimization, which allows
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searching the design point in an active learning scheme. The ConBayOpt algorithm is applicable for the

cases where the reliability index is small (typically less than 2.5) and the LSF is of high nonlinearity, while

the ConBaySubOpt algorithm is devised, based on the idea of introducing intermediate failure boundaries,

for estimating distant design point where the reliability index is large. Although ConBaySubOpt borrows

idea from the subset simulation, it does not require the MCMC for creating conditional samples associated

with the intermediate failure thresholds bl (l = 1, · · · ,m− 1). Both algorithms are gradient-free, and appli-

cable to problems, presented in this work, with multi-modal and highly nonlinear LSFs, thus provide great

potential for improving all the design point based reliability analysis methods and, eventually, reliability-

based optimization methods. For real-world applications, the users do not need to know the magnitude of

the reliability index in advance, as the ConBaySubOpt algorithm automatically degrades into ConBayOpt

if the reliability index is small.

The above superiority of the developed algorithms has been demonstrated by the results of the benchmark

studies, but there are still space for improving. For example, dimension reduction techniques need to be

embedded to the algorithms for addressing high-dimensional problems; extension of the developed algorithms

to solve multiple design points (if exist) at once is also a promising direction, etc.
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