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Assessing vehicle safety is a challenging, yet fundamental
task. In the early phase of development, car manufactur-
ers need to ensure the compliance with strict safety re-
quirements. An interesting task to automate these early-
stage operations is to harness information from already
developed products. Established designs are largely ac-
cessible, with abundant data; novel designs’ data are
scarce. While established and novel designs are (by def-
inition) different, it is expected nonetheless that there is
a degree of correlation between them. Thus, the estab-
lished design could be regarded as a low-fidelity model
of the novel design, in the sense that it may provide an
approximation of the behavior of the novel design. In
turn, the novel design could be regarded as a high-fidelity
model, as it represents the true product being designed.
This bi-fidelity character of the problem stands at the ba-
sis of this paper. This work explores the application of
control variates to a crashworthiness analysis scenario.
Control variates is a variance reduction technique that
exploits the low-fidelity information to improve the accu-

racy of the response statistics of the high-fidelity model.
Such an approach could be most useful for industrial
applications. Therefore, we apply control variates to a
crash box example and compare its performance to its
plain Monte Carlo counterpart. The results of this pa-
per show the benefits of this bi-fidelity approach, result-
ing in control variates being a powerful technique to ex-
tract valuable information from limited data sets. Indeed,
control variates can serve as an innovative solution to
support car manufacturers in the early phase of vehicle
development and thus improve the performance in crash-
worthiness scenarios.

NOMENCLATURE
TL Transfer Learning.
CV Control Variates.
QoI Quantity of interest.
LF Low fidelity.
HF High fidelity.



n Number of HF samples.
m Number of LF samples.
MC Monte Carlo.
a Dimension of the crash box in x-direction.
b Dimension of the crash box in y-direction.
tn Nominal thickness of the crash box.
M Mass of the rigid wall.
Ω Overlap between the crash box and the rigid barrier.
α Bending angle of the rigid barrier.
Fmax Maximum value of the force-displacement curve.
IQR Interquartile range.

1 INTRODUCTION
The development of a vehicle is a complex task. Car

manufacturers need to satisfy strict safety requirements.
When assessing vehicle safety in an early stage of de-
velopment, they need to face the challenge of low data
availability.

In the early-stage of the vehicle development, in-
deed, the ultimate geometrical and material data of the
product are not entirely defined, and the prototype of
the vehicle is not yet available. In this context, it is of-
ten more economical for companies to make changes to
their existing products rather than creating new ones from
scratch. In industry, many new products can indeed be
seen as modifications or upgrades of existing ones [1].

A task worthy of pursuit is exploiting the data com-
ing from past development processes to infer knowledge
on future situations. This problem can be visualized as
a bi-fidelity one. The numerous pieces of information
(e.g. simulations, hardware tests) from the already de-
veloped products can be seen as the low-fidelity (LF)
data. These are inexpensive to access, as they are read-
ily available from the archives, having been accumulated
over years of development; the few data belonging to the
product under current development take the role of the
high-fidelity (HF) counterpart. These data are scarce and
costly to obtain. Each new round of testing, simulation,
or prototyping demands significant organizational, finan-
cial and computational resources. Moreover, the urgency
imposed by project timelines further escalates the value
of these fresh pieces of information.

The concept of learning from larger amounts of
available data that belong to a different domain with re-
spect to the one of interest is a topic that has been exten-
sively explored in various fields, e.g. structural health
monitoring, manufacturing process planning, etc. In
structural health monitoring, information from a popu-
lation of structures is transferred to the complete pop-
ulation [2]. In manufacturing, process parameters are
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Fig. 1: Representation of two bi-fidelity problems.

predicted using a combination of simulations and experi-
mental data [3]. To do this, transfer learning (TL) is used,
which is a deep learning algorithm that allows to relax the
need of having big amounts of HF data.

In the context of crashworthiness, the concept of
transfer of knowledge from the LF to the HF data is
still relatively unexplored. Our previous work [4] ad-
dresses this problem by applying TL, using past devel-
opment processes to enhance predictions for future de-
signs. A further notable example in the literature related
to crash analysis is the development of geodesic convolu-
tional neural networks [5] to optimize a crash box com-
ponent. However, in the current paper, we propose an
alternative approach based on control variates (CV). Dif-
ferently from the cited works, CV is not a deep learning
technique, but a statistical one.

CV is a framework that allows to estimate the statis-
tics of the response of a given system [6], particularly
useful for unimodal distributions. This is achieved by
considering an additional variable that is correlated with
the response of interest. In this way, CV reduces the vari-
ance of the estimates of the statistics, leading to more pre-
cise results. The key advantage of this method is that it al-
lows to aggregate estimates generated using the high- and
low-fidelity models to enhance the estimated statistics of
the response associated with the HF one [7]. The known-
to-the-literature CV applications make use of high- and
low-fidelity pieces of information belonging to the same
physical system [7, 8]. As an example, this situation may
occur in crash analysis when a system is, on the one hand,
cheaply — from a computational point of view — sim-
ulated in finite element (FE) analysis through a coarser
mesh, and, on the other hand, with a more dense one.
This situation is graphically represented in Fig. 1a: the
same system is evaluated in a cheap and an expensive FE
way.

Although CV is generally used in situations as the
one just described, in this paper, we attempt to utilize it
under different circumstances. We plan to apply it to a bi-
fidelity industrial problem similar to the one of Fig. 1b.



High quantities of data coming from old versions of a
crash box will be exploited to gain knowledge on a new
one, characterized by low data availability. The innova-
tive contribution of this work with respect to the litera-
ture consists in applying CV in a past-to-future config-
uration, where the past data are the LF and the current
ones are the HF counterpart. In doing so, it is assumed
that both the old and new configurations depend on the
same set of input variables. This implies that, for ex-
ample, if the behavior of the old configuration depends
on two thicknesses, the behavior of the new configura-
tion also depends on the same two thickness. However,
the range of values associated with the input variables re-
lated to the old and new configurations can be different,
so as to reflect the typical situation of an updated crash-
worthiness design.

The goal of this paper is to explore the benefits of CV
to harness information from already developed products,
thus enhancing the prediction on a new product version.
Section 2 describes the investigated crash case scenario,
Section 3 provides a theoretic overview on CV, and Sec-
tion 4 explains the application of CV to the crash box ex-
planatory example. Finally, Section 5 provides the con-
clusions of the work, with a practical outlook on possible
future utilization of CV for crashworthiness analysis.

2 THE CASE STUDY: CRASH BOX DROP-
TOWER TEST
The mechanical problem selected for this paper is a

simplified version of the crash box drop tower test [9]. In
the automotive industry, these experimental impact stud-
ies are commonly carried out, and are crucial to study the
influence of variations in geometric shapes or materials
on the crashworthiness [10]. Crash boxes indeed cover
two main engineering objectives in automotive industry:
lightweight design and energy absorption. For this rea-
son, the crash box drop tower test offers an excellent ex-
ample here.

A crash box is an integral component placed at the
front-most portion of the body-in-white of a car. It en-
sures the structural performance of a car by serving as
an energy-absorbing member, together with the bumper
beam in case of frontal collisions during car accidents
[11], thereby protecting the subsequent structures from
higher repair costs. The drop tower test is a type of exper-
iment that is commonly used in mechanical engineering
and material science to study the behavior of a structure
or material when subjected to impact. The test involves
suspending a weight or a rigid barrier at the top of a crash
box, and then releasing it.

In the field of crashworthiness, the crash box drop

tower test is an essential tool. These experiments are of-
ten replicated through the use of FE simulations [12].
Crash FE simulations have become essential in recent
years for automotive Research and Development (R&D).
As they are faster, sufficiently repeatable, and more cost-
efficient than hardware tests, FE simulations currently
support the design process. By enabling the exploration
of new concepts and unconventional designs without the
need for physical prototypes, simulations drive the inno-
vation in the field of crash safety [13].

When it comes to crash analysis and dynamic events,
explicit simulations are generally preferred to implicit
ones. Crashes typically involve large deformations, ma-
terial nonlinearity, multiple interacting bodies with com-
plex contact conditions, and possibly failure. Explicit
methods handle these nonlinearities well because they
do not require the solution of large sets of simultaneous
equations at each time step [14].

In summary, data coming from FE simulations of-
fer a solid foundation to conduct studies due to the in-
creased accessibility and repeatability compared to hard-
ware tests. In this section, we describe the FE model at
the basis of our study; later, we introduce the selected
crash box variants.

2.1 FE Model
Fig. 3 schematically represents the FE model of a

crash box subjected to a drop tower test. The crash box
is fully constrained at the rear end and a rigid barrier
moves towards it along the z-axis with an initial veloc-
ity of −56 km/h. The FE model is realized meshing the
crash box with Belytschko-Tsay shell elements and mesh
size of 4 mm, while the rigid barrier is meshed with fully-
integrated shell elements.

The rigid barrier is considered as a rigid body using
the MAT RIGID LS-DYNA material model. The mate-
rial of the crash boxes is instead a steel modeled through
an LS-DYNA MAT24 model with elasto-plastic behav-
ior. The mass of the rigid barrier is set according to the
crash box geometry in order to obtain four folds in the
fully deformed configuration, resulting in a nicely ob-
servable outcome. In the context of crashworthiness, the
term folds refers to the deformations that occur as result
of the buckling process in the crash box during the crash
event. To provide a visual understanding, Fig. 2 illus-
trates the undeformed and deformed configuration of a
crash box with the four folds highlighted.

The results of this simulation are extracted in terms
of forces and displacements: the force is measured on a
cross-section 10 mm distant from the constrained end of
the crash box; the displacement is instead obtained av-



Fig. 2: Undeformed and deformed configuration of a
crash box, with four folds highlighted.

eraging the displacements of eight equally-distant nodes
on the unconstrained end of the crash box. We arbitrarily
choose eight measurement points on the external perime-
ter of the crash box to ensure that the displacement of
all sides is equally considered. In cases where the crash
box has internal ribs, these ribs are typically welded to
the external perimeter. Therefore, our choice would still
provide a representative average displacement of the up-
per part of the crash box. Both the cross-section and the
eight nodes are represented in Fig. 3.

Fig. 3: Representation of a FE model of a crash box sub-
jected to drop tower test.

During the impact phase, the force measured on the
rigid barrier increases rapidly, reaching a peak, and then
decreases. The first peak represents the initial contact be-
tween the barrier and the crash box. The peak force for
the first fold is higher than the forces occurring later be-
cause of higher energy and because of pre-deformations:
one fold triggers the generation of the next fold [15].

Hence, the initial peak force can be considered as one of
the main parameters influencing both, the energy absorp-
tion and the load transmission to the main body of the
vehicle. The secondary peaks, which are related to the
subsequent foldings, help to enhance the energy absorp-
tion [16]. This continuous folding mechanism is desired
during the entire crash phenomenon. The reader can re-
fer to [17] for representations of the force-displacement
behaviour of crash box structures.

2.2 Model variants
Six crash boxes are selected for the study. For the

sake of simplicity, we refer to these crash boxes as de-
signs A, B, C, D, E, and F. The length c along z-direction,
see Fig. 3, is the same for all the crash boxes, and equal
to 348 mm. An artificial trigger has been introduced to
ensure that when the load is applied, a progressive defor-
mation takes place in the axial direction. The trigger is
placed in the first row of nodes by shrinking the perimeter
length by 1%.

Looking at their cross-sections, crash boxes A, B,
and C are single-cell geometries, while crash box D, E,
and F are three-cells ones. In Fig. 3, the dotted lines show
a three-cells crash box design. The crash box geome-
tries differ from each other in terms of their dimensions
in x- and y- direction, i.e. a and b of Fig. 3, and nominal
thickness tn. Table 1 summarizes the geometrical fea-
tures of the selected crash boxes. The last column reports
the mass of the rigid wall set for each specific crash box
design.

Design a b tn # cells M
[mm] [mm] [mm] [-] [kg]

A 122.3 62.6 2.4 1 226.1
B 39.5 54.7 2.5 1 182.7
C 44.0 38.0 2.1 1 92.2
D 120.0 63.3 2.2 3 396.0
E 101.0 62.1 2.3 3 408.4
F 120.6 69.2 2.0 3 408.4

Table 1: FE model parameters, with M being the mass of
the rigid wall impacting against the specific crash box.

3 CONTROL VARIATES
In this paper, we propose a method to apply the bi-

fidelity CV to different physical domains. In the liter-
ature, the term bi-fidelity typically refers to the use of



models with different levels of accuracy, e.g. [18]. The
fidelity level usually indicates the degree to which the
model captures the complexity of the real-world system it
represents. In the context of passive safety development,
the use of bi-fidelity approaches traditionally implies in-
tegrating results from both high- and low-fidelity simu-
lations, e.g. detailed FE models and simpler analytical
models, to predict the performance of a safety compo-
nent. However, in this paper, the term LF is being re-
purposed as described in Section 1: we use it to describe
data from previous versions of a component (Fig. 1b), not
a less accurate modeling method (Fig. 1a).

In the following, we first explain the basic theory of
CV, and then propose a methodology for the use of CV
in those cases where the cheap and expensive data belong
to different physical systems. Finally, we summarize an
overview of the whole method.

3.1 Classic Control Variates
CV is a technique that can be used to estimate the

first and second order statistics, i.e. mean and vari-
ance, respectively, of a quantity of interest (QoI), see e.g.
[6, 19]. This technique is of aid when one has a large
amount of cheap-to-evaluate data from a LF model , and
a few data points from a HF model, which are typically
more computationally expensive to obtain. The basic
idea behind CV is to aggregate the LF and HF data to esti-
mate the first and second order statistics of the QoI. These
statistics are particularly useful for describing unimodal
statistical distributions, providing valuable insights into
the central tendency and spread of the response. In the
following, the focus is on presenting CV for estimating
the mean of the response. However, the framework dis-
cussed here can be extended towards estimation of the
variance of the response, see e.g. [20].

To introduce CV, consider that the responses of the
low- and high-fidelity models are denoted as rLF and rHF,
respectively. Both responses depend on a set of input pa-
rameters, θ, which are regarded as uncertain. The uncer-
tainty associated with these input parameters is described
in terms of a joint probability distribution pΘ(θ). It is
assumed that for estimating the mean response of the HF
model, there are n sample evaluations available. That is,
the values rHF

(
θ
(i)
n

)
, i = 1, . . . , n are known, where

θ
(i)
n denotes the i-th sample of θ distributed according to

pΘ(θ). Thus, the estimate for the mean of the response
µ̂1

(
rHF,Θn

)
considering these samples is:

µ̂1

(
rHF,Θn

)
=

1

n

n∑
i=1

rHF
(
θ(i)
n

)
, (1)

where Θn is the set grouping all samples θ
(i)
n , i =

1, . . . , n. The above equation corresponds to the classical
Monte Carlo estimator for the mean.

As evaluating the HF model is expensive from a nu-
merical viewpoint, it is assumed that n is a small number
and therefore, the estimate of the mean generated with
eq. (1) may lack precision. This is illustrated in Fig. (4),
where the probability density function associated with
the estimator in eq. (1) is represented by the red curve.
We observe that this probability density possesses a large
variance.
A possibility to improve the estimate in eq. (1) is to resort
to CV [6, 19], which implies to include the information
from the LF model in the estimator. Under the assump-
tion that the set of uncertain input parameters is the same
for both, the LF and the HF system, the CV estimator for
the mean is denoted as µ̂CV

1 and given by:

µ̂CV
1 = γµ̂1

(
rLF,Θm

)
+(

µ̂1

(
rHF,Θn

)
− γµ̂1

(
rLF,Θn

))
.

(2)

Here, Θm is a set of m samples of the uncertain in-
put parameters, γ is a real number termed as the control
parameter to be discussed later, and µ̂1

(
rLF,Θn

)
and

µ̂1

(
rLF,Θm

)
are estimates of the mean of the response

associated with the LF model considering n and m sam-
ples, respectively. From eq. (2), one can observe how the
LF and HF data are aggregated by means of CV. We as-
sume to have significantly more samples in Θm than Θn,
that is, m ≫ n.

We understand the CV estimator in eq. (2) as the
summation of the following two terms. The first term
γµ̂1

(
rLF,Θm

)
represents the mean response of the LF

model amplified by the control parameter γ. As the num-
ber of samples m is large, this estimator is precise. This
is represented schematically in Fig. 4, where the proba-
bility density associated with this estimator corresponds
to the blue curve that possesses a small variance.

The second term
(
µ̂1

(
rHF,Θn

)
− γµ̂1

(
rLF,Θn

))
in eq. (2) represents a correction over the previous es-
timate that forces the overall estimate to converge to the
sought mean value. A characteristic of the latter term
is that both, the low- and high-fidelity models are eval-
uated considering the same set of samples Θn and thus,
the estimator associated with this second term will usu-
ally possess small variance, provided that there is suffi-
cient correlation between the low- and high-fidelity mod-
els. Therefore, the CV estimator in eq. (2) possesses a
reduced variance when compared to its counterpart in
eq. (1), as represented schematically in Fig. 4 by the
probability distribution in green color.



estimator
γµ1

(
rLF

)
µ1

(
rHF

)
µ̂1

(
rHF,Θn

)
γµ̂1

(
rLF,Θm

)
probability
density of
estimator

µ̂1

(
rHF,Θn

)
−γµ̂1

(
rLF,Θn

)
+

γµ̂1

(
rLF,Θm

)

Fig. 4: Schematic representation of Control Variates esti-
mate.

The variance of the estimator in eq. (2) is given by
(see, e.g. [19]):

V̂
[
µ̂CV
1

]
= γ2 µ̂2

(
rLF,Θm

)
m

+

(
µ̂2

(
rHF,Θn

)
n

−2γ
µ̂1,1

(
rHF, rLF,Θn

)
n

+ γ2 µ̂2

(
rLF,Θn

)
n

) (3)

where µ̂2 is the estimate of the variance of the response
(considering either rLF or rHF) and µ̂1,1 is the covariance
between rLF and rHF. Appendix A lists the expressions
for calculating both µ̂2 and µ̂1,1. As noted from eq. (3),
the variance of the estimator for the mean is a quadratic
function with respect to the control parameter γ. Thus,
the control parameter is selected such that this variance
is minimized, leading to:

γ∗ =

µ̂1,1

(
rHF,rLF,Θn

)
n

µ̂2(rLF,Θn)
n +

µ̂2(rLF,Θm)
m

, (4)

where γ∗ denotes the value of the control parameter that
minimizes the variance in eq. (3) and that should be used
when estimating the mean of the response when apply-
ing CV as in eq. (2). Eq. (4) shows that the computa-
tion of the control parameter γ∗ is done automatically on
the base of the LF and HF samples. It is interesting to
note that the control parameter depends directly on the
covariance µ̂1,1, which is calculated based on the sam-
ples. From this observation, it is possible to derive two
extreme cases. Whenever this covariance is equal to zero,
the control parameter becomes zero and thus, the estima-
tors of the mean and variance in eqs. (2) and (3) rely
solely on the simulations available of the HF model. In
other words, given the null covariance, the estimators ig-
nore all information associated with the LF model, as this
is not useful at all. On the contrary, when the LF model
mimics perfectly well the HF model, the control param-
eter tends to one, implying that the information provided

by the LF model is deemed as good as the HF model.
In summary, the optimal control parameter can be inter-
preted as a means for aggregating the information of the
LF and HF models in an automatic way, giving proper
weight to the information provided by each of them.

An examination of eqs. (2), (3), and (4) reveals that
for the application of the CV framework, all what is re-
quired is the set of samples of the response of the low-
and the high-fidelity model, that is, rLF

(
θ
(i)
n

)
, i =

1, . . . , n, rLF
(
θ
(j)
m

)
, j = 1, . . . ,m and rHF

(
θ
(i)
n

)
, i =

1, . . . , n, respectively. However, if the samples of the re-
sponse associated with the low- and high-fidelity models
are used to compute both, the optimal control parameter
in eq. (4) as well as the mean in eq. (2), the estimator
for the mean becomes biased, as documented in e.g., [6].
Fortunately, this issue can be solved by applying a Split-
ting scheme, as proposed in [21]. The Splitting scheme
consists, in a nutshell, of estimating both the optimal con-
trol parameter and the mean of the response consider-
ing subsets of the samples already available. To explain
this strategy in detail, consider that each of the sets of
samples Θm and Θn are split into three subsets, that is,
Θm∗,k and Θn∗,k, where k = 1, 2, 3 and m∗ = m/3 and
n∗ = n/3. In addition, for each subset k, one defines a
so-called subset controller τ(k), which is an integer de-
fined according to Table 2.

Subset k Subset controller τ(k)

1 2
2 3
3 1

Table 2: Subsets and subset controllers for implementing
Splitting scheme.

Considering the above definitions, the expressions
for estimating the mean response and the optimal control
parameters by means of CV and Splitting are the follow-
ing.

µ̂CVS
1 =

1

3

3∑
k=1

(
γ∗
τ(k)µ̂1

(
rLF,Θm∗,k

)
+(

µ̂1

(
rHF,Θn∗,k

)
− γ∗

τ(k)µ̂1

(
rLF,Θn∗,k

)))
,

(5)



γ∗
τ(k) =

µ̂1,1

(
rHF,rLF,Θn∗,τ(k)

)
n

µ̂2(rLF,Θn∗,τ(k))
n∗ +

µ̂2(rLF,Θm∗,τ(k))
m∗

,

k = 1, 2, 3,

(6)

In the above equations, µ̂CVS
1 denotes the estimator of the

mean considering CV and Splitting while γ∗
τ(k) denotes

the optimal control parameter associated with the subset
of samples τ(k).

It is noted from eq. (5) that when considering the k-
th subset of samples for calculating the mean responses
of the low- and high-fidelity models, the control parame-
ter is calculated with respect to the samples contained in
the subset τ(k). In other words, when the mean is calcu-
lated with a certain subset of samples, there is a different
subset of samples involved in the calculation of the op-
timal control parameter. Such a strategy ensures that the
estimate µ̂CVS

1 is unbiased, as discussed in detail in [21].

3.2 Control Variates for Different Domains
The previous section assumes that both the low- and

high-fidelity models possess the same input θ. However,
this may not be necessarily the case when considering an
already developed product versus one which is being cur-
rently developed. For example, consider the thickness of
a crash box as described in Section 2. The assumption
of uncertainty associated with this parameter is plausible
due to unavoidable manufacturing variability. However,
the thicknesses associated with an existing crash box and
one under development may possess completely different
ranges of variability. For this reason, we propose in this
section an approach to handle LF and HF systems that
have different nominal values of design parameters and,
consequently, different design spaces. This might influ-
ence the computation of the correlation between the LF
and HF data, as well as the CV implementation itself.

To overcome this challenge, we propose to gener-
ate samples within the parameter space of each system
and then compare these samples in a sequential manner.
Generally, the LF data are assumed to be available from
past studies. However, if the computational resources for
the collection of the LF data are not limited as for the HF
ones, one could also think to generate the LF dataset from
scratch. The method that we propose would still hold.

For representational purposes, let us consider the
simple situation of Fig. 5, with two design variables
dim1 and dim2 and different design spaces for the low-
and high-fidelity systems. Here, low discrepancy sam-
pling sequence was used to reduce variance on estima-
tors. We used Sobol sampling [22] because proven to be
effective in low-to-moderate dimensional spaces. How-

ever, the choice of the sampling technique does not in-
fluence the success of the proposed method. The mini-
mum and maximum values for both, the LF and HF de-
sign variables are supposed to be known, see eq. (7).

dimj,LF ∈ [minj,LF ; maxj,LF ], (7a)
dimj,HF ∈ [minj,HF ; maxj,HF ], (7b)

where j represents the number of design variables in-
volved in the study, j ∈ 1, 2. We propose to compute the
corresponding points for the HF system with respect to
the available LF ones following the formula in eq. (8). In
particular, with val1,HF referring to the HF dashed-blue
value in Fig. 5 and val1,LF the LF counterpart squared
in a blue solid line, the formula allows to compute the
first with respect to the second. Eq. (8) ensures that the
HF value corresponding to the LF one is appropriately
adjusted to its specific range.

valj,HF = maxj,HF +

(valj,LF −minj,LF )(maxj,HF −minj,HF )

(maxj,LF −minj,LF )
.

(8)

After the collection of the data for the HF system,
we propose using an ordinal criterion. We exploit the se-
quential nature of the collected data to compute the cor-
relation between the LF and HF data. This means that the
first data point of the LF model has to be associated with
the first HF one and so on. This approach can be extended
to cases with multi-dimensional inputs and can help to
overcome the challenge of comparing models with dif-
ferent ranges of design variables.

We take the sample from the first row of the LF
model and compare it with the first sample from the HF
model, regardless the respective design spaces; then, we
take the second sample from each and compare those,
and so on. This comparison would be straight forward in
the commonly known bi-fidelity case, as the LF and HF
samples would be direct equivalents of each other. One
has to remember, however, that in the case under inves-
tigation, the assumption of knowing the design variables
ranges covers a role of great importance.

The challenge that this sequential approach tries to
tackle is ensuring that the comparison between LF and
HF is meaningful although the systems have different de-
sign spaces. As a further note, to make a proper com-
parison, it is also needed to map the output values from



Fig. 5: Design space with three samples for a bi-
dimensional case with variables dim1 and dim2. This
situation refers to Fig. 1b, where the design space of the
variables dim1 and dim2 change as the HF system is dif-
ferent from the LF one.

each system on a common scale, i.e. scaling the HF data
onto the LF scale. In particular, first we scale the LF out-
put data to have zero mean and a unit standard deviation.
Namely:

y′LF =
yLF − avgLF

stdLF
, (9)

where yLF is the original output vector, avgLF is the
mean of that output vector, and stdLF is its standard de-
viation. Consequently, we scale the HF output data using
the scale of the LF. Scaling the HF data with respect to
the LF ones reflects the assumption that the entire range
of the HF data is unknown at the beginning of the study,
as these data belong to a domain for which only a lim-
ited amount of information is available. The formula,
with yHF being the original output HF vector, clarifies
the technique:

y′HF =
yHF − avgLF

stdLF
. (10)

Once the paired samples are set, and the output data are
scaled, we can implement the CV technique described in
Section 3.1.

3.3 Overview of the Method
Our proposed method can be summarized in six

steps: (i) defining the LF and HF systems; (ii) collecting

the data from both systems, assuming that it is cheaper to
obtain the information for the LF system than for the HF
one; and (iii) scaling the data. Finally, (iv) applying CV
to reduce the variance in the estimation for the selected
metric, and (v) evaluating the results, comparing them to
those obtained from plain Monte Carlo (MC).

When evaluating the CV results, one can focus on
various aspects depending on the specific assumptions of
the problem at hand. In our study, we are interested in
investigating the impact of the number of HF samples n
on the quality of the prediction. Given the challenges
associated with collecting the HF data, i.e. data from
the component under current development, we aim to ob-
serve how the prediction changes when the availability of
HF samples is limited, while a large number of LF sam-
ples m is readily available. To achieve this, the results
are plotted by keeping m fixed and high, while varying n
in a specified vector.

For each value of n, the mean and variance of the
selected QoI are calculated using CV and MC. While CV
exploits both, the low- and high-fidelity data, eq. (6), MC
only relies on the n HF samples, eq. (1). These n HF
samples are randomly selected each time from the orig-
inal pool of simulation data. To eliminate the effect of
random sampling, the results are averaged over 10 inde-
pendent runs.

4 APPLICATION
With the application of CV to a crash box drop tower

test, we achieve two goals. Firstly, we use CV on data
coming from different mechanical systems with distinct
design spaces. This implies employing the approach pro-
posed in Section 3.2; secondly, we explore the effective-
ness of CV in the industrial context of crashworthiness.

Although the original use of CV provides the oppor-
tunity to incorporate data of different fidelities, in this pa-
per we uniquely refer to data generated through FE simu-
lations. With the mechanical system under investigation
in place as described in Section 2, we run the simulations
using the R9.3.0 version of the LS-DYNA solver. To this
aim, we select the inputs and output of the study. We are
interested in predicting the maximum value Fmax of the
force-displacement curve measured during the test. The
input variables chosen for the study are: the thickness t
of the crash box, the overlap in x-direction Ω between the
crash box and the rigid barrier, and the bending angle α
of the rigid barrier, see Fig. 6. For proper nomenclature,
t is a design variable, Ω and α are load case parameters.

Aiming to generate a good space filling, we arbitrar-
ily chose to use the Sobol sequences as sampling tech-
nique to apply variations to the parameters. As explained



in the previous section, the accuracy of the results is not
influenced by the choice of the sampling technique. The
ranges defined in the scheme of Table 3 were also arbi-
trarily chosen to purely illustrate the applicability of our
methodology. An increased t is expected to increase the
Fmax; with values of Ω closer to 0, Fmax increases; with
higher α, Fmax decreases. In total, we perform 500 FE
simulations for each crash box of Table 1, varying the
values of t, Ω, and α within their defined ranges. The
results of these simulations form a comprehensive pool
of data, serving as the repository from which the data are
drawn for the application of CV.

Fig. 6: Schematic representation of the input variables:
the design variable thickness t, and the load case param-
eters overlap Ω and angle α.

Parameter Distribution

t [mm] N [tn − 0.05tn ; tn + 0.05tn]
Ω [mm] U [−(3/10)a ; +(3/10)a ]
α [deg] U [0 ; 5 ]

Table 3: Design space settings. The thickness t varies
with a (truncated) Gaussian N distribution with mean
µ = tn and standard deviation σ = 0.074tn; the over-
lap Ω and the angle α vary with a uniform U distribution.
The distributions are defined with a minimum-maximum
range.

To apply CV to the six crash box designs that we
have selected, i.e. A to F of Table 1, we create pairs of

crash box designs to compare each one against all the
others. So, we pair A with B, then A with C, and so
on until A with F. After that, we pair B with A, then B
with C, up to B with F. We continue this process for all
designs, creating 30 different pairing combinations. Each
time, one design acts as the LF and the other as the HF
version. The LF output data are scaled to have zero mean
and a unit standard deviation following the eq. (9), and
the HF output data are scaled with respect to the LF range
by means of eq. (10).

For each of the 30 combinations investigated, we
compute the Pearson’s correlation coefficient between
the LF and the HF crash box following the sequential
method of Section 3.2. Table 4 contains the correlation
coefficients computed for each LF/HF case. The symme-
try of Table 4 indicates that the correlation coefficients
remain consistent regardless of whether the same crash
box combination is considered as LF/HF or HF/LF.

A B C D E F

A 1.00 0.79 0.83 0.89 0.88 0.89

B 0.79 1.00 0.92 0.75 0.76 0.68

C 0.83 0.92 1.00 0.81 0.78 0.76

D 0.89 0.75 0.81 1.00 0.88 0.90

E 0.88 0.76 0.78 0.88 1.00 0.89

F 0.89 0.68 0.76 0.90 0.89 1.00

Table 4: Correlation matrix that contains the Pearson’s
correlation coefficients for each specific LF/HF crash box
analyzed combination. The element at location i, j in the
matrix represents the correlation between the LF crash
box i and the HF crash box j.

CV is applied for each LF/HF crash box
combination. The amount of HF samples
n assumes the values contained in the set
n ∈ {9, 12, 15, 18, 21, 24, 27, 30, 33, 36}, while the
LF samples m are fixed at 200. For each n value and
each LF/HF combination, the computation is repeated
for 10 times. Each time, for a given HF crash box design,
a new randomly selected set of n HF samples is chosen
from the original pool of 500 FE simulations. This
is meant to minimize the impact of sampling-related
chance effects. The computation provides the predicted
values of mean and variance of Fmax with CV and
MC. The results from the 10 repetitions are collected
in boxplots. Within the boxplot, the median and the
interquartile range (IQR) are the two parameters that we



use to draw the conclusions of this study. In addition,
we use the CV and MC methods to compute the mean
value of the QoI for each LF/HF combination utilizing a
high amount of HF samples, i.e. n = 200. This allows
us to assess the convergence of the methods in the long
horizon.

The median value of the boxplots represents the cen-
tral tendency of the data. The boxplots’ IQR spans from
the 25th percentile to the 75th percentile of the results and
provides valuable information about the dispersion of the
results across the 10 repetitions. As similar results hold
for all the 30 LF/HF crash box combinations, we decide
to show only some representative results. Specifically,
those referred to C/B and F/B. Fig. 7 and 8 represent the
variation of the median and of the IQR of the mean value
of Fmax along the different n values.

Fig. 7: Median of the predicted mean of Fmax over 10
random repetitions for different methodologies, i.e. CV
and MC, and for different values of HF dataset size n.
The exact values for the C/B and F/B LF/HF combina-
tions are 4.892 and -1.464 respectively.

Fig. 8: IQR of the predicted mean of Fmax over 10 ran-
dom repetitions for different methodologies, i.e. CV and
MC, and for different values of HF dataset size n.

In the context of our study, the median value of
the boxplots represents the average value of the pre-
dicted mean of Fmax. The IQR indicates how the re-
sults are spread out, suggesting a higher level of consis-
tency among the repetitions with a smaller IQR. Fig. 7
shows how fast the methods, i.e. CV and MC, reach con-
vergence with increasing n. Moreover, with n = 200
HF samples, the mean of Fmax computed respectively
with CV and MC is 4.885 and 4.907 for the C/B LF/HF
combination, and -1.466 and -1.462 for the F/B LF/HF
combination. This confirms that with high n, both meth-
ods converge to the exact mean value. Fig. 8 indicates
the consistency of the methods among the random repe-
titions.

For each LF/HF crash box combination, the HF data
have always been scaled with respect to the LF data. This
explains the different scales of the subplots of Fig. 7 and
8, and suggests to read them separately. Focus has to be
given to the individual comparison between the CV and
MC lines, not to the one between their absolute values
in the different subplots. When comparing the CV and
MC median value of the Fmax mean value predictions,
Fig. 7 shows that CV outperforms MC. The CV predic-
tion, shown with blue circles, reaches convergence faster
than MC, in red squares. In other words, for lower n
values, the CV median is closer to the exact Fmax mean
value than the MC one. In the figure, one can observe that
this result holds for the two different crash box LF/HF
combinations.

Fig. 8 shows that CV not only better predicts the first
order statistics with respect to MC; it is also more repeat-
able for limited HF datasets. The IQR for CV reaches
zero faster than for MC. This means that, for lower n, i.e.
for fewer HF samples, CV gives less spread predictions
of the first order statistics of Fmax over multiple random
repetitions. As with the previous finding, this is again
true for both the crash boxes combinations considered in
the figures. As a further note to the reader, the results
obtained for the predicted variance of Fmax in terms of
the boxplots’ median and IQR are consistent with those
of the mean, and are therefore not reported here.

The results also confirm the state-of-the-art knowl-
edge about CV. Specifically, CV is shown to reach bet-
ter results than MC where the correlation between the
LF and the HF data is higher. To prove this concept,
we focus on the fact that the two situations represented
in Fig. 8 correspond to the highest and lowest Pearson’s
correlation coefficients computed over all the crash box
combinations: C/B has a correlation of 0.92, while F/B
has 0.68, see Table 4. The left subplot of Fig. 8 shows
a stronger prevail of CV over MC than the one visible in
the right one. The vertical distance between the CV and



the MC lines in the left subplot is larger than the one in
the right since the data from crash box C are more corre-
lated to those of crash box B than the ones of crash box F.
For this reason, using CV is more efficient in the first case
than in the second. Overall, the results demonstrate that
the estimation of the control parameter remains reliable
even with a very low amount of HF points.

5 CONCLUSIONS
This paper has presented the application of CV to

crash analysis. In the automotive industry, when assess-
ing the crash safety early on in the development, the fi-
nal characteristics of a product are not yet entirely de-
fined. However, it frequently happens that plenty of past
data are stored from previous products, and remain un-
exploited. This paper has shown that CV can be of aid
to improve the prediction of the first and second order
statistics of a crash performance parameter, exploiting
data from past systems’ designs.

Through a methodical approach that generates sam-
ples within each system’s parameter space and compares
them in a sequential manner, we have illustrated the use
of CV in an industrial scenario. Here, the LF and HF
data belong to different physical system, i.e. old and new
ones. The addressed study case focuses on a crash box
subjected to drop tower test.

The results of the study suggest that CV outperforms
plain MC in the prediction of the mean of the maximum
crashing force for a limited amount of HF data. Wherever
a high correlation is observed between the LF and HF
data, CV is shown to more effectively converge to the
exact mean value of the quantity of interest. CV also
produces more stable solutions with respect to MC over
a set of random repetitions.

Despite the promising results of the proposed
method, some limitations should be acknowledged. Our
method is useful for unimodal distribution, as it estimates
the first and second order statistics. It does not suffice for
multimodal distributions. In addition, our method is lim-
ited to LF and HF systems with the same set of input
variables. In more complex cases, however, new versions
of the same product may introduce uncertain parameters
that were not present in the older versions. To overcome
these limitations, alternative approaches need to be con-
sidered, e.g. deep learning techniques. Overall, the pro-
posed method is promising but is still in its early stages.
In terms of practical application, the translation of our
method into industry requires further validations with di-
verse datasets and the development of integration proto-
cols. Challenges to this aim include ensuring robustness
across varied scenarios, and properly training the engi-

neers.
The application of CV in crashworthiness analysis

provides the opportunity to combine data from different
design stages of a component, thereby enhancing the ef-
ficiency of crash simulations. Moreover, with CV, it be-
comes possible in the future to incorporate data from dif-
ferent sources, including FE simulations and hardware
tests. This approach allows for a more comprehensive
understanding of the crash behavior of structures in the
very early-phase of the development, leading to improved
vehicle safety and occupant protection.
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A CALCULATION OF VARIANCE AND CO-
VARIANCE
An unbiased estimator for the variance of the re-

sponse µ̂2 is given by (see, e.g. [23]):

µ̂2 (r,Θl) =
1

l (l − 1)
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(11)

where r is either the LF response rLF or the HF response
rHF; and Θl is a sample set that represents either Θm or
Θn. The covariance µ̂1,1 of the response between the LF
and HF models is given by (see, e.g. [23]):
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