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A B S T R A C T

The concept of Bayesian active learning has recently been introduced from machine learning to structural
reliability analysis. Although several specific methods have been successfully developed, significant efforts are
still needed to fully exploit their potential and to address existing challenges. This work proposes a quasi-
Bayesian active learning method, called ‘Quasi-Bayesian Active Learning Cubature’, for structural reliability
analysis with extremely small failure probabilities. The method is established based on a cleaver use of the
Bayesian failure probability inference framework. To reduce the computational burden associated with the
exact posterior variance of the failure probability, we propose a quasi posterior variance instead. Then, two
critical elements for Bayesian active learning, namely the stopping criterion and the learning function, are
developed subsequently. The stopping criterion is defined based on the quasi posterior coefficient of variation
of the failure probability, whose numerical solution scheme is also tailored. The learning function is extracted
from the quasi posterior variance, with the introduction of an additional parameter that allows multi-point
selection and hence parallel distributed processing. By testing on four numerical examples, it is empirically
shown that the proposed method can assess extremely small failure probabilities with desired accuracy and
efficiency.
1. Introduction

Structural reliability analysis aims at quantifying the likelihood that
a structure will achieve certain undesired performance, taking into
account uncertainties in material properties, geometric dimensions and
applied loads, etc. If these uncertainties are modeled in a purely prob-
abilistic context, an essential task is to calculate the so-called failure
probability 𝑃𝑓 , which is mathematically defined as a multi-dimensional
integral:

𝑃𝑓 = ∫
𝐼(𝑔(𝒙))𝑓𝑿 (𝒙)d𝒙, (1)

where 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑 ]⊤ ∈  ⊆ R𝑑 is a vector of 𝑑 random
variables with known joint probability density function (PDF) 𝑓𝑿 (𝒙);
𝑔(⋅) ∶ R𝑑 → R denotes the performance function (also known as the
limit state function), which takes a negative value when a failure event
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occurs; 𝐼(⋅) ∶ R → {0, 1} represents the indicator function: 𝐼 = 1 if
𝑔(𝒙) < 0 and 𝐼 = 0 otherwise. In many practical applications, such a
task has the following common characteristics: (1) it is most unlikely
that the failure probability can be solved analytically, despite the
simplicity of its definition; (2) the failure probability of interest is very
small, close to zero; (3) each evaluation of the 𝑔-function can be quite
computationally demanding. The combination of these characteristics
makes probabilistic structural reliability analysis very challenging from
a numerical point of view.

To meet the computational challenge, a variety of numerical meth-
ods have been developed over the last few decades. They can be
roughly classified into five main groups: (1) stochastic simulation
methods (e.g., Monte Carlo simulation (MCS) and its variants [1]), (2)
asymptotic approximation methods (e.g., first-/second- order reliability
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method [2]), (3) moment based methods (e.g., fourth-order moment
method [3] fractional moment method [4]), (4) probability conser-
vation based methods (e.g., probability density evolution method [5]
and globally-evolving-based generalized density evolution equation
method [6]) and (5) surrogate-assisted methods (e.g., response surface
method [7], polynomial chaos expansion method [8] and Kriging-based
method [9]). It should be noted that these classifications are not strictly
mutually exclusive and may overlap and intersect. Among the existing
developments, surrogate-assisted methods have received increasing
attention in the structural reliability analysis community, especially
those that are empowered with an active learning paradigm. The credit
for introducing active learning from the field of machine learning to the
field of structural reliability analysis is generally attributed to Bichon
et al. [10] and Echard et al. [11], who developed the well-known
efficient global reliability method and active learning Kriging Monte
Carlo simulation (AK-MCS) method respectively. Since then, a large
number of active learning reliability methods have been proposed by
researchers and engineers from various fields. The interested reader is
referred to [12,13] for the recent advances of active learning methods
for structural reliability analysis.

Another active learning paradigm, called Bayesian active learning
(as a type of active learning that particularly emphasizes the use of
Bayesian principles), has also been recently introduced from machine
learning to structural reliability analysis. The first work was reported
in [14], where: (1) the problem of failure probability estimation is first
interpreted as a Bayesian inference problem; (2) the posterior mean and
an upper bound on the posterior variance of the failure probability are
derived, given that a Gaussian process (GP) prior is placed over the
performance function; (3) a numerical method, called ‘Active Learning
Probabilistic Integration’ (ALPI), is developed for failure probability
estimation, with a stopping criterion and a learning function being
directly derived from the known posterior statistics of the failure
probability. The ALPI method was further enhanced by the ‘Parallel
Adaptive Bayesian Quadrature’ (PABQ) method [15] to facilitate paral-
lel distributed processing and assessing small failure probabilities. A
principled ‘Bayesian Failure Probability Inference’ (BFPI) framework
was then developed in [16], where the exact posterior variance of
the failure probability is obtained. Although the BPFI provides a com-
plete Bayesian treatment of the failure probability integral in terms
of second-order posterior statistics, it is still challenging to perform
Bayesian active learning of the failure probability using its known
posterior statistics, largely due to the computational burden associated
with the exact posterior variance.

To overcome this obstacle, several efforts have been made to de-
velop Bayesian active learning reliability analysis methods without
using the posterior variance of the failure probability. In the work [17],
the authors introduced three partially Bayesian active learning methods
under the name of ‘Partially Bayesian Active Learning Cubature’. These
methods use only the posterior mean of the failure probability to
design the two critical components for Bayesian active learning, namely
the stopping criterion and the learning function. In a similar spirit,
a method called ‘Semi-Bayesian Active Learning Quadrature’ (SBALQ)
was developed in [18], which allows multi-point selection and thus
parallel distributed processing. In addition, another method called ‘Par-
allel Bayesian Probabilistic Integration’ (PBPI) [19] was also proposed,
based on the development of a pseudo posterior variance for the failure
probability. As a side remark, the Bayesian active learning idea has
also been successfully perused in the context of line sampling for
structural reliability analysis, see for example [20–22]. Although many
efforts have been made to advance the development of Bayesian active
learning reliability methods, there is still much room for progress to
fully exploit their potential and effectively address existing challenges.

The objective of this work is to present another Bayesian active
learning method, called ‘Quasi-Bayesian Active Learning Cubature’
(QBALC), for structural reliability analysis based on the BFPI frame-
2

work. This method is expected to be capable of evaluating extremely
small failure probabilities, which is one of the main challenges in the
realm of structural reliability analysis. The main contributions can be
summarized as follows. First, we develop a quasi posterior variance for
the failure probability by simplifying the exact one. It may therefore
be more conservative than the upper bound given in [14,15], less com-
putationally expensive than the exact posterior variance given in [16],
and less empirical than the pseudo posterior variance [19]. Second, a
stopping criterion is proposed, which is based on the quasi posterior
coefficient of variation (COV) of the failure probability, in contrast to
existing stopping criteria [14,15,17,19]. Third, a numerical integration
technique is introduced to approximate the two analytical intractable
integrals involved in the stopping criterion, similar to [17,19]. Fourth,
a learning function derived from the quasi posterior variance is pro-
posed, which itself allows for multi-point selection, and hence parallel
computing. The multi-point section strategy is significantly different
our previous studies [15,18,19].

The rest of this paper is structured as follows. Section 2 briefly
reviews the BFPI framework. The proposed QBALC method is presented
in Section 3. Four numerical examples are studied in Section 4 to
validate the proposed method. Section 5 concludes the present study.

2. Bayesian failure probability inference

In this section, we give a general overview of the BFPI framework
originally developed in [16]. It should be noted that the framework
in [16] is set up in the physical space (i.e., ). Here it is presented
in standard normal space (i.e.,  ) instead. To do so, we first in-
troduce a transformation 𝑇 that can transform the physical random
ariables into standard normal variables, i.e., 𝑼 = 𝑇 (𝑿), where 𝑼 =

[𝑈1, 𝑈2,… , 𝑈𝑑 ]⊤ ∈  ⊆ R𝑑 represents a vector of 𝑑 standard normal
variables. This can be achieved by using some widely-used transfor-
mations, such as Rosenblatt transformation and Nataf transformation.
A transformed performance function can be defined such that (𝑼 ) =
𝑔(𝑇 −1(𝑼 )), where 𝑇 −1 denotes the inverse transformation. The indicator
function corresponding to the transformed performance function  is
denoted as , which is equal to 1 if (𝒖) < 0 and 0 otherwise. The
failure probability can be rewritten as 𝑓 = ∫ ((𝒖))𝜙𝑼 (𝒖)d𝒖, where
𝑼 (𝒖) denotes the joint PDF of 𝑼 . For a schematic diagram of the BFPI

ramework in standard normal space, see Fig. 1.

.1. Prior distribution

The BFPI framework begins by placing a GP prior over the trans-
ormed performance function (𝒖) such that:

0(𝒖) ∼ (𝑚0 (𝒖), 𝑘0 (𝒖, 𝒖
′)), (2)

here 0 denotes the prior distribution of ; 𝑚0 (𝒖) and 𝑘0 (𝒖, 𝒖
′) are

he prior mean and covariance functions of the GP respectively. It is
urther assumed that the prior mean function takes a constant value
nd the prior covariance function takes a squared exponential kernel
espectively:

0 (𝒖) = 𝛽, (3)

0 (𝒖, 𝒖
′) = 𝜎20 exp

(

−1
2
(𝒖 − 𝒖′)⊤𝜮−1(𝒖 − 𝒖′)

)

, (4)

where 𝛽 ∈ R; 𝜎0 > 0 denotes the process standard deviation; 𝜮 =
diag

(

𝑙21 , 𝑙
2
2 ,… , 𝑙2𝑑

)

with 𝑙𝑖 > 0 being the length scale in the 𝑖th dimen-
sion. The prior mean and covariance functions are parameterized by
𝑑 + 2 hyperparameters, denoted by 𝝑 =

[

𝛽, 𝜎0, 𝑙1, 𝑙2,… , 𝑙𝑑
]⊤. Note that
in most cases these hyperparameters cannot be known a priori.
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Fig. 1. Schematic diagram of the BFPI framework in standard normal space.
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2.2. Tuning hyperparameters

Suppose that we have a dataset  = { ,}, where  =
[

𝒖(1), 𝒖(2),
… , 𝒖(𝑛)

]⊤ is an 𝑛 × 𝑑 matrix comprising 𝑛 observation locations and
 =

[

𝑦(1), 𝑦(2),… , 𝑦(𝑛)
]⊤ is an 𝑛 × 1 vector with 𝑦(𝑗) = (𝒖(𝑗)). Then, the

hyperparameters 𝝑 can be learned from the dataset  by maximizing
the log-marginal likelihood:

log 𝑝( | ,𝝑) = −1
2

[

( − 𝛽)⊤𝑲−1
0
( − 𝛽) + log |𝑲0 | + 𝑛 log 2𝜋

]

, (5)

where 𝑲0 denotes an 𝑛×𝑛 covariance matrix with its (𝑖, 𝑗)th entry being
𝑘0 (𝒖

(𝑖), 𝒖(𝑗)).

2.3. Posterior statistics

The posterior distribution of  conditional on the data  also proves
to be a GP:

𝑛(𝒖) ∼ (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′)), (6)

where 𝑛 stands for the posterior distribution of ; 𝑚𝑛 (𝒖) and 𝑘𝑛 (𝒖, 𝒖
′)

are the posterior mean and covariance functions of  respectively,
which have the following analytical expressions:

𝑚𝑛 (𝒖) = 𝑚0 (𝒖) + 𝒌0 (𝒖, )⊤𝑲−1
0

(

 −𝒎0 ( )
)

, (7)

𝑘𝑛 (𝒖, 𝒖
′) = 𝑘0 (𝒖, 𝒖

′) − 𝒌0 (𝒖, )⊤𝑲−1
0
𝒌0 ( , 𝒖′), (8)

where 𝒎0 ( ) is an 𝑛 × 1 mean vector whose 𝑗th element is 𝑚0 (𝒖
(𝑗));

𝒌0 (𝒖, ) is an 𝑛×1 covariance vector whose 𝑗th element is 𝑘0 (𝒖, 𝒖
(𝑗));

𝒌0 ( , 𝒖′) is an 𝑛×1 covariance vector whose 𝑗th element is 𝑘0 (𝒖
(𝑗), 𝒖′).

The posterior distribution of the indicator function  conditional on
the data  follows a generalized Bernoulli process (GBP):

𝑛(𝒖) ∼ (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′)), (9)

where 𝑛 denotes the posterior distribution of ; 𝑚𝑛 (𝒖) and 𝑘𝑛 (𝒖, 𝒖
′)

are the posterior mean and covariance functions of  respectively,
which can be expressed as:

𝑚𝑛 (𝒖) = 𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

, (10)

𝑛 (𝒖, 𝒖
′) = 𝛷2

(

[0, 0]⊤;𝒎𝑛 (𝒖, 𝒖
′),𝑲𝑛 (𝒖, 𝒖

′)
)

−𝛷

(

−𝑚𝑛 (𝒖)
)

𝛷

(

−𝑚𝑛 (𝒖
′)

′

)

, (11)
3

𝜎𝑛 (𝒖) 𝜎𝑛 (𝒖 ) t
where 𝛷 denotes the cumulative distribution function (CDF) of the
standard normal variable; 𝜎𝑛 (𝒖) is the posterior standard deviation
function of , i.e., 𝜎𝑛 (𝒖) =

√

𝑘𝑛 (𝒖, 𝒖); 𝛷2 stands for the bi-variate
normal CDF, which has no closed form; 𝒎𝑛 (𝒖, 𝒖

′) is the posterior

mean vector of , i.e., 𝒎𝑛 (𝒖, 𝒖
′) =

[

𝑚𝑛 (𝒖), 𝑚𝑛 (𝒖
′)
]⊤

; 𝑲𝑛 (𝒖, 𝒖
′) is the

posterior covariance matrix of :

𝑲𝑛 (𝒖, 𝒖
′) =

[

𝜎2𝑛 (𝒖) 𝑘𝑛 (𝒖
′, 𝒖)

𝑘𝑛 (𝒖, 𝒖
′) 𝜎2𝑛 (𝒖

′)

]

. (12)

The posterior mean and variance of the failure probability 𝑓 read:

𝑚𝑓,𝑛
= ∫

𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖, (13)

𝜎2𝑓,𝑛
= ∫ ∫

[

𝛷2

(

[0, 0]⊤;𝒎𝑛 (𝒖, 𝒖
′),𝑲𝑛 (𝒖, 𝒖

′)
)

−𝛷

(

−𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝛷

(

−𝑚𝑛 (𝒖
′)

𝜎𝑛 (𝒖
′)

)]

𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′, (14)

where 𝑓,𝑛 denotes the posterior distribution of 𝑓 conditional on .
The above BFPI framework treats the problem of failure probability

stimation as a Bayesian inference problem, and provides a principled
ayesian approach to inferring the failure probability. As such, it
elongs to a class of probabilistic numerics, i.e., probabilistic integra-
ion [23,24]. Two salient features of the BFPI framework are: (1) it
llows the numerical uncertainty (i.e., discretization error) to be quan-
ified through a computational pipeline; (2) it permits the incorporation
f our prior knowledge about the performance function. Nevertheless,
ne main challenge is that the posterior mean and variance of the fail-
re probability are not analytically tractable. In particular, it should be
oted that the posterior variance involves the evaluating the posterior
ovariance of  and integrating with respect to the bivariate normal
DF (which itself usually requires numerical integration). This, of
ourse, poses a significant computational challenge to the development
f Bayesian active learning reliability methods.

. Quasi-Bayesian active learning cubature

This section is devoted to the development of a Bayesian active
earning method, QBALC, for structural reliability analysis with ex-

remely small failure probabilities using the BFPI framework. First,



Probabilistic Engineering Mechanics 76 (2024) 103613C. Dang et al.

r
t
H
m
t
s
c

a
f

𝜎

T

𝜎

c

b

𝜎

𝑚

𝜎

𝜎

a stopping criterion is proposed as one of the main components for
Bayesian active learning based on the simplification of the posterior
variance of the failure probability. Second, the analytically intractable
integrals involved in the stopping criterion are solved with an ef-
fective numerical integration technique. Third, a learning function is
derived from the simplified posterior variance as another ingredient
for Bayesian active learning. Fourth, the step-by-step procedure for
implementing the proposed method is summarized.

3.1. Stopping criterion

A well-defined stopping criterion is crucial for a Bayesian active
learning method, as it determines when the active learning phase
should be stopped. The choice of stopping criterion depends on sev-
eral factors, such as the specific goals and available computational
resources. In this study, we are particularly interested in developing
a stopping criterion that can reflect whether the posterior mean of the
failure probability (i.e. 𝑚𝑃𝑓,𝑛 ) as a predictor of the failure probability
eaches a satisfactory level of accuracy. A natural choice would be
o use the posterior coefficient of variation of the failure probability.
owever, such a stopping criterion can be computationally prohibitive,
ainly due to the numerical complexity of the posterior variance of

he failure probability. With this in mind, our basic idea is to find a
implified version of the posterior variance defined in Eq. (14) that is
omputationally tractable without losing too much precision.

Note that the posterior variance of the failure probability is actu-
lly an expectation integral with respect to the posterior covariance
unction of  such that:

2
𝑓,𝑛

= ∫ ∫
𝑘𝑛 (𝒖, 𝒖

′)𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′. (15)

he above equation can be further written as:

2
𝑓,𝑛

= ∫ ∫
𝜌𝑛 (𝒖, 𝒖

′)𝜎𝑛 (𝒖)𝜎𝑛 (𝒖
′)𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′, (16)

where 𝜌𝑛 ∈ [−1, 1] is the posterior correlation coefficient of ; 𝜎𝑛 (𝒖) is
the posterior standard deviation function of , which has the following
expression:

𝜎𝑛 (𝒖) =

√

√

√

√𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝛷

(

𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

. (17)

To avoid solving the correlation coefficient 𝜌𝑛 (𝒖, 𝒖
′) and also the

double integral in Eq. (16), let us replace 𝜌𝑛 (𝒖, 𝒖
′) by an equivalent

onstant �̃� such that:

�̃�2𝑓,𝑛
=∫ ∫

�̃�𝜎𝑛 (𝒖)𝜎𝑛 (𝒖
′)𝜙𝑼 (𝒖)𝜙𝑼 (𝒖′)d𝒖d𝒖′

=�̃�
[

∫
𝜎𝑛 (𝒖)𝜙𝑼 (𝒖)d𝒖

]2

=�̃�
⎡

⎢

⎢

⎣

∫

√

√

√

√𝛷

(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝛷

(

𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖
⎤

⎥

⎥

⎦

2

,

(18)

where �̃�2𝑓,𝑛
is referred to as the quasi posterior variance of the failure

probability; the equivalent correlation coefficient �̃� should take a value
etween 0 and 1, which is defined by:

�̃� =
𝜎2𝑓,𝑛

[

∫

√

𝛷
(

−
𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝛷
(

𝑚𝑛 (𝒖)
𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖)d𝒖

]2
. (19)

It is worth pointing out that once �̃� is given, the quasi posterior variance
̃ 2𝑓,𝑛

can be much cheaper to compute than the exact one 𝜎2𝑓,𝑛
. When

�̃� = 1, the quasi posterior variance �̃�2𝑓,𝑛
reduces to the upper bound of

the posterior variance 𝜎2 given in [14,15].
4

𝑓,𝑛
In this study, it is suggested that the stopping criterion could be set
as follows:

𝛿𝑓,𝑛
=

�̃�𝑓,𝑛

𝑚𝑓,𝑛

< 𝜖, (20)

where 𝛿𝑓,𝑛
is referred to as the quasi posterior COV of the failure prob-

ability; 𝜖 is a user-specified threshold. To use this stopping criterion in
practice, two problems need to be considered and addressed properly.
The first one is related to the choice of �̃�. An ideal choice is according to
Eq. (19). However, this is clearly not feasible as it requires evaluating
the original posterior variance 𝜎2𝑓,𝑛

that we want to avoid. A more
pragmatic strategy for choosing �̃� might be to use our computational
experience. This is most likely feasible because the value of �̃� is only
in a small interval between 0 and 1. The second problem concerns the
evaluation of 𝑚𝑓,𝑛

and �̃�𝑓,𝑛
, due to their analytical intractability. To

ensure the computational accuracy and efficiency, a suitable numerical
integrator is of vital importance. In this paper, the variance-amplified
importance sampling (VAIS) method originally developed in [16] is
applied in a sequential manner.

The VAIS estimators of 𝑚𝑓,𝑛
and �̃�𝑓,𝑛

can be given by:

̂ 𝑓,𝑛
= 1

𝑁

𝑁
∑

𝑖=1
𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

, (21)

̂̃𝑓,𝑛
=

√

�̃�
𝑁

𝑁
∑

𝑖=1

√

√

√

√𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝛷

(

𝑚𝑛 (𝒖
(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

, (22)

where ℎ(𝒖) is the sampling density, which equals to the joint PDF of
𝑑 independent normal variables with a mean of zero and a standard
deviation of 𝜆 > 1;

{

𝒖(𝑖)
}𝑁
𝑖=1 is a set of 𝑁 random samples drawn from

ℎ(𝒖). The variances of the two estimators can be formulated as:

V
[

�̂�𝑓,𝑛

]

= 1
𝑁 − 1

⎧

⎪

⎨

⎪

⎩

1
𝑁

𝑁
∑

𝑖=1

[

𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

]2

− �̂�2
𝑓,𝑛

⎫

⎪

⎬

⎪

⎭

, (23)

V
[

̂̃𝜎𝑓,𝑛

]

= 1
𝑁 − 1

×

⎧

⎪

⎨

⎪

⎩

�̃�
𝑁

𝑁
∑

𝑖=1

⎡

⎢

⎢

⎣

√

√

√

√𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝛷

(

𝑚𝑛 (𝒖
(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

⎤

⎥

⎥

⎦

2

− ̂̃𝜎2𝑓,𝑛

⎫

⎪

⎬

⎪

⎭

,

(24)

where V is the variance operator. Given a sample set
{

𝒖(𝑖)
}𝑁
𝑖=1, we can

obtain the estimates of 𝑚𝑓,𝑛
and �̃�𝑓,𝑛

using Eqs. (21) and (22) and their
associated variances using Eqs. (23) and (24). However, it is most likely
that the appropriate sample size to ensure that the two estimates reach
a desirable level of accuracy is not known a priori. Furthermore, if one
tends to choose a sample size that is too large, it may not be feasible for
the GP posterior predictions due to numerical issues. For these reasons,
the sample size should be enlarged gradually, as described below.

For convenience, assume that the sample size is the same for each
enrichment, denoted as 𝑁0. At the 𝑗th step, a set of 𝑁0 random
samples

{

𝒖(𝑖)
}𝑁0
𝑖=1 are first generated from ℎ(𝒖). Then, the following two

quantities are evaluated for each sample 𝒖(𝑖):

𝜂(𝑖) = 𝛷

(

−
𝑚𝑛 (𝒖

(𝑖))

𝜎𝑛 (𝒖
(𝑖))

)

, (25)

𝛾 (𝑖) =
𝜙𝑼 (𝒖(𝑖))
ℎ(𝒖(𝑖))

. (26)

Next, we evaluate the following four quantities:

𝑚(𝑗) = 1
𝑁0

𝑁0
∑

𝑖=1
𝜂(𝑖)𝛾 (𝑖), (27)

̃ (𝑗) =
�̃�

𝑁0
∑√

𝜂(𝑖)(1 − 𝜂(𝑖))𝛾 (𝑖), (28)

𝑁0 𝑖=1
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𝑦

𝑟(𝑗) = 1
𝑁0

𝑁0
∑

𝑖=1

[

𝜂(𝑖)𝛾 (𝑖)
]2 , (29)

𝑠(𝑗) =
�̃�
𝑁0

𝑁0
∑

𝑖=1

[
√

𝜂(𝑖)(1 − 𝜂(𝑖))𝛾 (𝑖)
]2

. (30)

fter that, the estimates and their associated variances of 𝑚𝑓,𝑛
and

̃𝑓,𝑛
can be computed as follows:

�̂�𝑓,𝑛
= 1

𝑗

𝑗
∑

𝑡=1
𝑚(𝑡), (31)

̂̃𝑓,𝑛
= 1

𝑗

𝑗
∑

𝑡=1
�̃�(𝑡) (32)

[

�̂�𝑓,𝑛

]

= 1
𝑗𝑁0 − 1

[

1
𝑗

𝑗
∑

𝑡=1
𝑟(𝑡) − �̂�2

𝑓,𝑛

]

, (33)

[

̂̃𝜎𝑓,𝑛

]

= 1
𝑗𝑁0 − 1

[

1
𝑗

𝑗
∑

𝑡=1
𝑠(𝑡) − ̂̃𝜎2𝑓,𝑛

]

. (34)

Repeat the above procedure until a stopping criterion is reached,

e.g.,
√

V
[

�̂�𝑓,𝑛

]

∕�̂�𝑓,𝑛
< 𝜏1 and

√

V
[

̂̃𝜎𝑓,𝑛

]

∕ ̂̃𝜎𝑓,𝑛
< 𝜏2, where 𝜏1 and 𝜏2

re two user-specified tolerances. An important advantage of the above
rocess is that the most time-consuming term 𝜂(𝑖) is reused in several
laces, hence reducing the overall computation time.

The terms 𝑚𝑓,𝑛
and �̃�𝑓,𝑛

in Eq. (20) should thus be replaced by
heir respective estimates �̂�𝑓,𝑛

and ̂̃𝜎𝑓,𝑛
. Since both �̂�𝑓,𝑛

and ̂̃𝜎𝑓,𝑛
may process a certain amount of error depending on the values of
𝜏1 and 𝜏2, the stopping criterion in Eq. (20) may need to be satisfied
several times in a row to avoid fake convergence.

3.2. Learning function

Another essential component of a Bayesian active learning method
is the learning function, which comes into play when the stopping
criterion is not satisfied. Specifically, a learning function can guide
the learning process by suggesting one or multiple informative points
at which to observe the -function next. In general, there are many

ays to construct a capable learning function. In our context, we are
specially interested in making fullest possible use of the available
osterior statistics of the failure probability. In addition, the resulting
earning function should facilitate the selection of multiple points at
ach iteration, and thus enabling parallel distributed processing and
educing the overall computational burden.

The proposed learning function, called ‘penalized quasi posterior
ariance contribution’ (PQPVC), has the following form:

QPVC(𝒖|𝑝) =

√

√

√

√𝛷

(

−
𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

𝛷

(

𝑚𝑛 (𝒖)
𝑝𝜎𝑛 (𝒖)

)

𝜙𝑼 (𝒖), (35)

where 𝑝 ∈ (0, 1] is the penalty factor that penalizes the current posterior
standard deviation function of . Obviously

√

�̃� ∫ PQPVC(𝒖|𝑝 = 1)d𝒖 =
�̃�𝑓,𝑛

holds. Therefore, the PQPVC function given 𝑝 = 1 can be inter-
preted as a scaled measure of the contribution at point 𝒖 to the quasi
posterior standard deviation (hence also the quasi posterior variance)
of the failure probability. Moreover, the learning function called ‘upper
bound posterior variance contribution’ developed in [14,15] turns out
to be a special case of the PQPVC function when 𝑝 = 1. It must be
stressed that the introduction of the penalty factor 𝑝 is quite crucial,
as it facilitates the selection of a set of points by simply optimizing
the PQPVC function given different 𝑝. The reason why we penalize
the current posterior standard deviation function 𝜎𝑛 (𝒖) but leave the
posterior mean function 𝑚𝑛 (𝒖) unchanged is because the posterior
standard deviation at any unobserved point, which is important for an
accurate failure probability estimation, is most likely to decrease in the
5

future, while it is difficult to prejudge whether its posterior mean will
increase or decrease.

Suppose that we wish to select 𝑛𝑎𝑑𝑑 points, which are denoted as
{

𝒖+,(𝑖)
}𝑛𝑎
𝑖=1. The 𝑖th point 𝒖+,(𝑖) can be identified by maximizing the

proposed PQPVC function such that:

𝒖+,(𝑖) = arg max
𝒖∈[−𝑅,𝑅]𝑑

PQPVC(𝒖|𝑝 = 𝑖
𝑛𝑎

), (36)

here [−𝑅,𝑅]𝑑 is a hyperrectangle defining a reduced region in the
-dimensional standard normal space; 𝑅 is the side length, which can
e specified according to 𝑅 =

√

𝜒−2
𝑑 (1 − 𝜐), where 𝜒2

𝑑 is the CDF
of a chi-squared distribution of degree 𝑑 and the parameter 𝜐 is set
to be 10−10. In Eq. (36), the penalty factor 𝑝 is given as 𝑖

𝑛𝑎
so that

its values are equally spaced within (0, 1]. In order to produce 𝑛𝑎𝑑𝑑
points, the PQPVC function must be optimized 𝑛𝑎𝑑𝑑 times. Fortunately,
the time required for optimization is negligible compared to the time
required for evaluating the  function, which is often computationally
xpensive in practice. Thus, the optimization problem can be solved
y any suitable global optimization algorithm. Usually, if 𝑛𝑎 is not
oo large, a set of diverse points can be identified by our multi-point
election strategy.

.3. Numerical implementation procedure of the proposed method

The step-by-step procedure for implementing the proposed QBALC
ethod is summarized below and accompanied by the flowchart shown

n Fig. 2.
Step 1: Generate an initial observation dataset
The proposed method needs to be initialized with an initial dataset

rom observing the -function. This can be achieved by first generating
small number (say 𝑛0) of samples  =

[

𝒖(1), 𝒖(2),… , 𝒖(𝑛0)
]⊤ that are

niformly distributed within a 𝑑-ball of radius 𝑅0 using the Hammer-
ley sequence. The radius 𝑅0 can be specified by 𝑅0 =

√

𝜒−2
𝑑 (1 − 𝜐0)

with 𝜐0 = 10−8. Next, evaluating the -function at these points  gives
he output values  =

[

𝑦(1), 𝑦(2),… , 𝑦(𝑛0)
]⊤ with 𝑦(𝑖) = (𝒖(𝑖)). Finally,

he initial observation dataset is constructed as  = { ,}. Let 𝑛 = 𝑛0.
Step 2: Obtain the GP posterior of the -function
This step involves obtaining the posterior distribution of the -

unction (𝑚𝑛 (𝒖), 𝑘𝑛 (𝒖, 𝒖
′)) conditional on the observation dataset

. In this study, the fitrgp function available in the Statistics and
achine Learning Toolbox of Matlab is used, where the prior mean

nd covariance functions are specified as a constant and an anisotropic
quared exponential kernel, respectively.
Step 3: Compute the posterior statistics of the failure probabil-

ty
At this stage, one needs to compute the posterior mean estimate

̂ 𝑓,𝑛
and the quasi posterior standard deviation estimate ̂̃𝜎𝑓,𝑛

of the
ailure probability using the sequential VIAS method, as described in
ection 3.1.
Step 4: Check the stopping criterion
If

̂̃𝜎𝑓,𝑛
�̂�𝑓,𝑛

< 𝜖 is satisfied twice in a row, go to Step 6; Otherwise, go
to Step 5.

Step 5: Enrich the observation dataset
In this step, we need to enrich the currently available observation

dataset with some newly identified data. First, the next best points
 + =

{

𝒖+,(𝑖)
}𝑛𝑎
𝑖=1 where to evaluate the -function can be selected by

optimizing the PQPVC function, where the genetic algorithm is used in
this study. After that, the corresponding output values + =

{

𝑦+,(𝑖)
}𝑛𝑎
𝑖=1

of the -function at  + are obtained using parallel computing, where
+,(𝑖) = (𝒖+,(𝑖)). At last, the current observation dataset is enriched with
+ =

{

 +,+} such that  =  ∪+. Let 𝑛 = 𝑛+𝑛𝑎 and go to Step 2.
Step 6: Stop the method
Return �̂�𝑓,𝑛

as the failure probability estimate and stop the algo-

rithm.
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4. Numerical examples

To illustrate the performance of the proposed QBALC method, four
numerical examples are studied in this section. In all the examples,
some of the parameters of the proposed method are set to 𝑛0 = 10,
𝜆 = 2.0, 𝜏1 = 𝜏2 = 2%, 𝜖 = 5%. Multiple cases of the remaining
arameters �̃� and 𝑛𝑎𝑑𝑑 are considered in order to see their effects. If
pplicable, the crude MCS with a considerably large sample size is
arried out to provide a reference solution for the failure probability.
or comparison purposes, several exiting competing methods in the
iterature, i.e., Active learning Kriging Markov Chain Monte Carlo
AK-MCMC) [25], Bayesian subset simulation (BSS) [26] and extreme
K-MCS (eAK-MCS) [27], are also implemented in each example. The

nitial sample size is set to 10 for all (Bayesian) active learning methods
o make the comparison as fair as possible. To evaluate the robustness
f all methods except MCS, 20 independent runs are performed and the
orresponding statistical results are reported.

.1. Example 1: A series system with four branches

The first example considers a series system with two linear branches
nd two nonlinear branches, which has been used extensively in many
tudies (e.g., [11,15,16]). The performance function is given by:

(𝑿) = min

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑎 + (𝑋1−𝑋2)2
10 − (𝑋1+𝑋2)

√

2

𝑎 + (𝑋1−𝑋2)2
10 + (𝑋+𝑋2)

√

2

(𝑋1 −𝑋2) +
𝑏
√

2

(𝑋2 −𝑋1) +
𝑏
√

2

, (37)

where 𝑋1 and 𝑋2 are two standard normal variables that are indepen-
ently and identically distributed; 𝑎 and 𝑏 are two constant parameters,
hich are specified as 𝑎 = 6 and 𝑏 = 12 in this study.

Table 1 summarizes the results obtained using several structural re-
iability analysis methods. The reference value of the failure probability
6

s 3.01×10−9 with a COV of 1.82%, provided by MCS with 1012 samples.
K-MCMC requires an average of 171.10 iterations (equivalent to an
verage of 180.10 performance function calls), but it gives a slightly
maller failure probability mean with a very large COV, say 29.22%.
SS can significantly reduce the average number of iterations and 
unction calls, and also produce a more unbiased failure probability
ean compared to AK-MCMC. Nevertheless, its robustness is not good,

s evidenced by the large value of the COV, which is up to 28.58%.
ike the proposed QBALC method, eAK-MCS allows us to select multiple
oints at each iteration. Unfortunately, it encounters non-convergence
roblem in this example, so its results are missing. Considering different
arameter combinations (𝑛𝑎 and

√

�̃�), a total of 18 cases of the pro-
osed QBALC method are investigated. Overall, the proposed method
erforms very well in almost all the studied cases. Besides, it is also
ound that: (1) For a fixed

√

�̃�, the average number of iterations can be
reduced by increasing 𝑛𝑎 from 1 to 6, though the average number of
-function calls also increases; (2) For a fixed 𝑛𝑎, the average number
f iterations and -function calls can be increased by increasing

√

�̃�
from 0.25 to 0.75, while the COV of the failure probability estimates
decreases.

To further illustrate how the proposed method works, Fig. 3 shows
the points selected at each iteration with an arbitrary run of the
proposed method (𝑛𝑎 = 2 and

√

�̃� = 0.50), together with the true
limit state curve. It can be observed that: (1) the initial 10 points are
evenly distributed as we expected; (2) the two points identified by
the proposed learning function are far apart in some iterations, and
are close but not identical in others; (3) most of the identified points
from iterations 2–18 are distributed around the four regions of the
true limit state curve that are important for accurate failure probability
estimation.

4.2. Example 2: A nonlinear oscillator

As a second example, we consider a nonlinear single-degree-of-

freedom oscillator driven by a rectangular pulse load [7], as shown in
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Table 1
Reliability analysis results of Example 1 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓

MCS – – – 1012 3.01 × 10−9 1.82%
AK-MCMC 𝑛𝑎 = 1 – 171.10 180.10 2.38 × 10−9 29.22%
BSS 𝑛𝑎 = 1 – 57.20 66.20 2.97 × 10−9 28.58%
eAK-MCS 𝑛𝑎 = 4 – – – – –

Proposed QBALC

𝑛𝑎 = 1

√

�̃� = 0.25 31.15 40.15 2.94 × 10−9 4.87%
√

�̃� = 0.50 35.75 44.75 3.03 × 10−9 2.57%
√

�̃� = 0.75 38.35 47.35 3.03 × 10−9 1.58%

𝑛𝑎 = 2

√

�̃� = 0.25 17.95 43.90 2.93 × 10−9 5.35%
√

�̃� = 0.50 20.10 48.20 3.03 × 10−9 1.70%
√

�̃� = 0.75 20.70 49.40 3.04 × 10−9 1.06%

𝑛𝑎 = 3

√

�̃� = 0.25 13.65 47.95 3.00 × 10−9 4.52%
√

�̃� = 0.50 15.30 52.90 3.02 × 10−9 1.51%
√

�̃� = 0.75 15.85 54.55 3.03 × 0−9 1.15%

𝑛𝑎 = 4

√

�̃� = 0.25 12.05 54.20 2.99 × 10−9 3.30%
√

�̃� = 0.50 13.10 58.40 3.03 × 10−9 1.50%
√

�̃� = 0.75 13.45 59.80 3.01 × 10−9 0.97%

𝑛𝑎 = 5

√

�̃� = 0.25 11.10 60.50 2.96 × 10−9 4.11%
√

�̃� = 0.50 12.45 67.25 3.02 × 10−9 1.12%
√

�̃� = 0.75 12.25 66.25 3.03 × 10−9 1.03%

𝑛𝑎 = 6

√

�̃� = 0.25 10.04 66.40 3.02 × 10−9 1.51%
√

�̃� = 0.50 11.40 72.40 3.02 × 10−9 0.80%
√

�̃� = 0.75 11.70 74.20 3.02 × 10−9 0.73%
w

t
M
w
1
p
r
3
𝑁
p

Table 2
Random variables for Example 2.

Variable Description Distribution Mean Standard deviation

𝑚 Mass Normal 1.0 0.05
𝑘1 Stiffness Normal 1.0 0.10
𝑘2 Stiffness Normal 0.2 0.01
𝑟 Yield displacement Normal 0.5 0.05
𝐹1 Load amplitude Normal 0.45 0.075
𝑡1 Load duration Normal 1.0 0.20

Fig. 4. The performance function is given as follows:

𝑔
(

𝑚, 𝑐1, 𝑐2, 𝑟, 𝐹1, 𝑡1
)

= 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑐1 + 𝑐2

sin

(

𝑡1
2

√

𝑐1 + 𝑐2
𝑚

)

|

|

|

|

|

|

, (38)

here 𝑚, 𝑐1, 𝑐2, 𝑟, 𝐹1 and 𝑡1 are six random variables, as described in
able 2.

The results of several methods, i.e., MCS, AK-MCMC, BSS, eAK-MCS
nd QBALC, are reported in Table 3. We take the reference failure
robability to be 1.52×10−8 (with a COV of 2.56%), which is produced
y MCS with 1011 samples. AK-MCMC gives a fairly good failure proba-
ility mean with a very small COV (i.e., 0.88%). However, it requires an
verage of 176.25 iterations (corresponding to an average of 185.25 -
unction evaluations), which is the most of the four competing methods
nd far more than others. The number of iterations on average can
e significantly reduced to 25.10 by BSS, but the variability of its
ailure probability estimates is quite large, as indicated by the COV. By
electing 𝑛𝑎 = 4 points at each iteration of the active learning phase,
AK-MCS only needs 7.95 iterations on average (34.10 -function calls)
nd gives a failure probability mean of 1.55×10−8 with a COV of 6.61%.
nder the same setting (i.e. 𝑛𝑎 = 4), the proposed QBALC method can
erform better than eAK-MCS (𝑛𝑎 = 4) overall, except for

√

�̃� = 0.25.
Furthermore, for the proposed method it can be seen that the average
number of iterations can be reduced by increasing 𝑛𝑎, but increased
y enlarging

√

�̃�. It should also be noted that in some cases, when
√

�̃� = 0.25, the proposed method can produce a COV significantly
greater than 5%.
7

4.3. Example 3: A reinforced concrete section

The third example involves the bending limit state a reinforced
concrete section [28], as shown in Fig. 5. The performance function
is formulated as:

𝑍 = 𝑔(𝑿) = 𝑋1𝑋2𝑋3 −
𝑋2

1𝑋
2
2𝑋4

𝑋5𝑋6
−𝑋7, (39)

here 𝑋1 to 𝑋7 are seven random variables, as listed in Table 4.
In Table 5, we summarize the results obtained from several struc-

ural reliability analysis methods. The failure probability estimate by
CS with 5 × 1011 samples is 1.57 × 10−8 with a COV of 1.13%,
hich is adopted as the reference solution. At cost of an average of
43.65 iterations (152.65 -function calls), AK-MCMC gives a failure
robability mean close to the reference one, with a small COV. BSS
equires much less iterations on average, but its COV is quite large, say
4.88%. Note that eAK-MCS (𝑛𝑎 = 4) requires a slightly smaller average
𝑖𝑡𝑒𝑟 (or 𝑁𝑐𝑎𝑙𝑙) than the proposed QBALC method (𝑛𝑎 = 4), while
roducing a larger variability in the failure probability results (say 𝛿𝑃𝑓

= 5.02%). On the contrary, in all 18 cases studied, the proposed method
is able to give an almost unbiased failure probability mean with a COV
less than 5%.

4.4. Example 4: A 56-bar space truss structure

The fourth and last example consists of a 56-bar space truss struc-
ture that was studied early in [29], as shown in Fig. 6. The structure is
modeled as a three-dimensional finite element model using OpenSees
with 56 truss elements and 25 nodes. Nine external loads, denoted
𝑃1, 𝑃2,… , 𝑃9, are applied to nodes 1, 2,… , 9 along the negative 𝑧-axis.
It is assumed that the modulus of elasticity and the cross-sectional area
of each member are the same and are denoted as 𝐸 and 𝐴 respectively.
The structure is considered as failure when the vertical displacement
of the top node exceeds a certain threshold, resulting in the following
performance function:

𝑔(𝑃1, 𝑃2,… , 𝑃9, 𝐸, 𝐴) = 𝛥 − 𝑉1(𝑃1, 𝑃2,… , 𝑃9, 𝐸, 𝐴), (40)

where 𝑉1 is the vertical displacement of node 1; 𝛥 is the tolerance,
which is specified as 50 mm; 𝑃1, 𝑃2,… , 𝑃9, 𝐸 and 𝐴 are 11 random
variables, as listed in Table 6.
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Fig. 3. Illustration of the proposed QBALC method (𝑛𝑎 = 2 and
√

�̃� = 0.50) for Example 1.

Fig. 4. A nonlinear single-degree-of-freedom oscillator under a rectangular pulse load.
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Table 3
Reliability analysis results of Example 2 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓

MCS – – – 1011 1.52 × 10−8 2.56%
AK-MCMC 𝑛𝑎 = 1 – 176.25 185.25 1.51 × 10−8 0.88%
BSS 𝑛𝑎 = 1 – 25.10 34.10 1.72 × 10−8 45.63%
eAK-MCS 𝑛𝑎 = 4 – 7.95 37.80 1.55 × 10−8 6.61%

Proposed QBALC

𝑛𝑎 = 1

√

�̃� = 0.25 10.00 19.00 1.50 × 10−8 12.63%
√

�̃� = 0.50 15.70 24.70 1.51 × 10−8 4.13%
√

�̃� = 0.75 18.45 27.45 1.49 × 10−8 2.57%

𝑛𝑎 = 2

√

�̃� = 0.25 6.65 21.30 1.46 × 10−8 7.87%
√

�̃� = 0.50 9.35 26.70 1.47 × 10−8 3.15%
√

�̃� = 0.75 11.10 30.20 1.49 × 10−8 2.90%

𝑛𝑎 = 3

√

�̃� = 0.25 5.10 22.30 1.46 × 10−8 8.08%
√

�̃� = 0.50 7.30 28.90 1.48 × 10−8 3.21%
√

�̃� = 0.75 8.20 31.60 1.50 × 10−8 1.78%

𝑛𝑎 = 4

√

�̃� = 0.25 4.45 23.80 1.51 × 10−8 10.42%
√

�̃� = 0.50 6.30 31.20 1.50 × 10−8 1.75%
√

�̃� = 0.75 6.95 33.80 1.50 × 10−8 2.48%

𝑛𝑎 = 5

√

�̃� = 0.25 4.10 25.50 1.49 × 10−8 5.07%
√

�̃� = 0.50 5.50 32.50 1.49 × 10−8 2.15%
√

�̃� = 0.75 6.15 35.75 1.51 × 10−8 1.59%

𝑛𝑎 = 6

√

�̃� = 0.25 4.10 28.60 1.48 × 10−8 3.78%
√

�̃� = 0.50 4.90 33.40 1.50 × 10−8 1.99%
√

�̃� = 0.75 5.70 38.20 1.51 × 10−8 1.63%
Fig. 5. Ultimate stress state of the reinforced concrete section.
Table 4
Basic random variables for Example 3.

Variable Description Distribution Mean COV

𝑋1 Area of reinforcement Normal 1260 mm2 0.05
𝑋2 Yield stress of

reinforcement
Lognormal 300 N/mm2 0.10

𝑋3 Effective depth of
reinforcement

Normal 770 mm 0.05

𝑋4 Stress–strain factor of
concrete

Lognormal 0.35 0.10

𝑋5 Compressive strength of
concrete

Lognormal 30 N/mm2 0.15

𝑋6 Width of section Normal 400 mm 0.05
𝑋7 Applied bending moment Lognormal 80 kN m 0.20

We implement the importance sampling (IS) method available in
QLab [30] as an alternative to providing a reference solution, as MCS

s computationally prohibitive in this example. The results of IS and
everal other methods are listed in Table 7. The failure probability
stimate given by IS is 4.94 × 10−8 with a COV of 1.00%, at the cost

of 66,107 -function evaluations. The two non-parallel active learning
methods, namely AK-MCMC and BSS, are either too computationally
intensive or lack robustness. eAK-MCS as a parallel active learning
9

method fails to converge in some trials, so its results are missing. In
contrast, the proposed QBALC method (𝑛𝑎 = 4) can produce fairly
good results in all three cases

√

�̃� = 0.25, 0.50, 0.75 with less than 10
iterations. Note also that as

√

�̃� increases, 𝛿𝑃𝑓 decreases.

4.5. Final remarks

Through the four numerical examples, we have studied the effects of
the parameters 𝑛𝑎 and

√

�̃� on the performance of the proposed QBALC
method. In general, it can be observed that the proposed method: (1)
can produce a failure probability mean with a COV less than 5% in all
the studied cases, except for

√

�̃� = 0.25; (2) does not lead to a significant
reduction in the number of iterations on average when 𝑛𝑎 is larger than
4. Therefore,

√

�̃� = 0.50 and 𝑛𝑎 = 4 could be a good choice in practice.

5. Concluding remarks

This article presents a new Bayesian active learning method, called
‘Quasi-Bayesian Active Learning Cubature’ (QBALC), for structural reli-
ability analysis with extremely small failure probabilities. The method
leverages the previously developed Bayesian failure probability infer-
ence framework. To avoid solving the costly exact posterior variance
of the failure probability, we propose a quasi posterior variance which
is cheaper to evaluate. Two critical ingredients for a Bayesian active
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Fig. 6. Schematic of a 56-bar space truss structure.
𝑛

t

earning method, i.e. the stopping criterion and the learning function,
re then derived based on the use of the posterior mean and quasi
osterior variance of the failure probability. Specifically, a stopping
riterion based on the quasi posterior coefficient of variation of the
ailure probability is proposed and its numerical solution is developed.
urthermore, a learning function motivated by the quasi posterior
ariance is proposed, which itself allows multi-point selection and thus
arallel distributed processing. By means of studying four numerical
xamples, it is empirically shown that: (1) the proposed method is
10

m

able to estimate extremely small failure probabilities (in the order
of 10−8–10−9) with a satisfactory degree of accuracy; (2) selecting
multiple points at each iteration can reduce the number of iterations,
and may improve the computational efficiency for expensive structural
reliability analysis if parallel computing is available; (3)

√

�̃� = 0.50 and
𝑎 = 4 may be a good choice in practice.

The authors believe that the proposed QBALC method can be ex-
ended in many ways. First, one possible way is to incorporate some di-
ension techniques, making the proposed method applicable to higher
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Table 5
Reliability analysis results of Example 3 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓

MCS – – – 5 × 1011 1.57 × 10−8 1.13%
AK-MCMC 𝑛𝑎 = 1 – 143.65 152.65 1.58 × 10−8 0.98%
BSS 𝑛𝑎 = 1 – 25.85 34.85 1.46 × 10−8 34.88%
eAK-MCS 𝑛𝑎 = 4 – 5.60 28.40 1.56 × 10−8 5.02%

Proposed QBALC

𝑛𝑎 = 1

√

�̃� = 0.25 11.30 20.30 1.58 × 10−8 3.86%
√

�̃� = 0.50 14.55 23.55 1.59 × 10−8 2.79%
√

�̃� = 0.75 16.25 25.25 1.59 × 10−8 3.30%

𝑛𝑎 = 2

√

�̃� = 0.25 7.65 23.30 1.59 × 10−8 4.26%
√

�̃� = 0.50 8.35 24.70 1.61 × 10−8 2.71%
√

�̃� = 0.75 9.95 27.90 1.59 × 10−8 2.10%

𝑛𝑎 = 3

√

�̃� = 0.25 7.05 28.15 1.61 × 10−8 2.30%
√

�̃� = 0.50 7.85 30.55 1.57 × 10−8 2.33%
√

�̃� = 0.75 8.50 32.50 1.58 × 10−8 1.79%

𝑛𝑎 = 4

√

�̃� = 0.25 6.15 30.60 1.58 × 10−8 2.13%
√

�̃� = 0.50 6.55 32.20 1.57 × 10−8 2.65%
√

�̃� = 0.75 7.25 35.00 1.55 × 10−8 1.98%

𝑛𝑎 = 5

√

�̃� = 0.25 5.65 33.25 1.57 × 10−8 3.18%
√

�̃� = 0.50 6.20 36.00 1.57 × 10−8 1.77%
√

�̃� = 0.75 6.75 38.75 1.57 × 10−8 1.88%

𝑛𝑎 = 6

√

�̃� = 0.25 5.45 36.70 1.57 × 10−8 2.84%
√

�̃� = 0.50 5.80 38.80 1.56 × 10−8 2.58%
√

�̃� = 0.75 6.70 44.20 1.56 × 10−8 1.90%
Table 6
Random variables for Example 4.

Variable Distribution Mean COV

𝑃1 Lognormal 150 kN 0.20
𝑃2 , 𝑃3 ,… , 𝑃9 Lognormal 100 kN 0.20
𝐸 Normal 2.06 GPa 0.10
𝐴 Normal 2000 mm2 0.05

Table 7
Reliability analysis results of Example 4 by several methods.

Method 𝑁𝑖𝑡𝑒𝑟 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 𝛿𝑃𝑓

IS – – – 66,107 4.94 × 10−8 1.00%
AK-MCMC 𝑛𝑎 = 1 – 456.00 465.00 4.97 × 10−8 2.92%
BSS 𝑛𝑎 = 1 – 27.60 36.60 5.06 × 10−8 33.49%
eAK-MCS 𝑛𝑎 = 4 – – – – –

𝑛𝑎 = 4

√

�̃� = 0.25 7.15 34.60 4.86 × 10−8 5.37%
√

�̃� = 0.50 8.40 39.60 4.92 × 10−8 4.77%
√

�̃� = 0.75 9.75 45.00 4.98 × 10−8 3.21%

dimensions. Second, the proposed method can be extended to system
reliability analysis by assigning a Gaussian process prior to each com-
ponent performance function instead of the composite performance
function. Other directions include time-variant reliability analysis and
reliability analysis under mixed uncertainties, etc.
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