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A B S T R A C T

Line sampling (LS) stands as a powerful stochastic simulation method for structural reliability analysis,
especially for assessing small failure probabilities. To further improve the performance of traditional LS, a
Bayesian active learning idea has recently been pursued. This work presents another Bayesian active learning
alternative, called ‘Bayesian active learning line sampling with log-normal process’ (BAL-LS-LP), to traditional
LS. In this method, we assign an LP prior instead of a Gaussian process prior over the distance function
so as to account for its non-negativity constraint. Besides, the approximation error between the logarithmic
approximate distance function and the logarithmic true distance function is assumed to follow a zero-mean
normal distribution. The approximate posterior mean and variance of the failure probability are derived
accordingly. Based on the posterior statistics of the failure probability, a learning function and a stopping
criterion are developed to enable Bayesian active learning. In the numerical implementation of the proposed
BAL-LS-LP method, the important direction can be updated on the fly without re-evaluating the distance
function. Four numerical examples are studied to demonstrate the proposed method. Numerical results show
that the proposed method can estimate extremely small failure probabilities with desired efficiency and
accuracy.
1. Introduction

Probabilistic structural reliability analysis is concerned with the
calculation of the failure probability, which is defined by a multiple
integral of the form:

𝑃𝑓 = ∫X
𝐼(𝑔(𝒙))𝑓𝑿 (𝒙)d𝒙, (1)

where 𝑿 = [𝑋1, 𝑋2,… , 𝑋𝑑 ]⊤ ∈ X ⊆ R𝑑 is a vector of 𝑑 random
variables; 𝑓𝑿 (𝒙) denotes the joint probability density function (PDF)
of 𝑿, which is assumed to be known; 𝑔(𝑿) ∶ X → R is the so-
called performance function (also known as limit state function) such
that 𝑔 takes negative values when the underlying system behaves
unacceptably and vice versa; 𝐼(⋅) is the indicator function: 𝐼(𝑔(𝒙)) =
1 if 𝑔(𝒙) < 0 and 𝐼(𝑔(𝒙)) = 0 otherwise. Typically, Eq. (1) is not
analytically tractable, leading to the development of various numerical
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methods over the years. One of the major challenges arises in assess-
ing extremely low failure probabilities for computationally demanding
problems, a situation commonly encountered in real-world scenarios.

Stochastic simulation techniques occupy a prominent position
among the existing methods to estimate failure probabilities. As the
most representative example, Monte Carlo simulation (MCS) has proved
to be a universal method for reliability analysis. In many practical
cases, however, the use of MCS is ruled out due to its low sampling
efficiency, especially when the 𝑔-function is expensive-to-evaluate and
the failure probability is extremely small. This leads to the development
of more advanced stochastic simulation techniques that require less
performance function evaluations. A partial list of such techniques
includes importance sampling [1–3], subset simulation [4,5], direc-
tional simulation [6,7] and line sampling (LS) [8,9]. Among these
methods, the LS technique has attracted growing attention, especially
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when dealing with the challenging task of evaluating very small failure
probabilities.

As a stand-alone simulation method, the invention of LS is attributed
to the work of Koutsourelakis et al. [8,10]. However, a similar but
slightly different idea was exposed early in [11]. In the standard normal
space, LS first identifies a unit vector that points towards the failure
domain, which is the so-called important direction 𝜶. Then, the 𝑑-
dimensional failure probability integral is reformulated into a nested
integral, with the inner being a one-dimensional conditional integral
along 𝜶, and the outer being a (𝑑 − 1)-dimensional integral over the
hyperplane orthogonal to 𝜶. In practice, the inner integral conditional
on a point on the hyperplane is solved by means of a root-finding algo-
rithm, while the outer integral is approximated by the MCS. The basic
idea of LS can be understood as follows: to explore the failure domain
by using random but parallel lines instead of random points. As a result,
the simulation can be focused on the region where failure is most likely
to occur. This makes it possible to provide an accurate estimate for the
failure probability with less 𝑔-function calls than the crude MCS. The LS
method has been shown to be particularly suitable for assessing small
failure probabilities of weakly and moderately nonlinear problems.

The traditional LS has been enhanced in various ways to improve its
performance and applicability. In [12–14], efforts have been made to
efficiently adjust the important direction and/or process lines. These
methods still rely on the direct use of MCS to address the outer
integral, which can lead to unnecessary computational cost. To alleviate
this problem, LS can be used in combination with active-learning-
driven surrogate models [15,16]. Beyond its original purpose, the
application scope of the traditional LS has also been expanded greatly.
Examples include but not limited to reliability sensitivity analysis [17–
19], imprecise reliability analysis [12,20–24], reliability-based design
optimization [25] and system reliability analysis [26].

More recently, the first author and his collaborators have attempted
to interpret the reliability analysis problem as a Bayesian inference
problem and then to further frame reliability analysis in a Bayesian
active learning setting [27–29]. Compared with the existing active
learning reliability methods, the developed Bayesian active learning
methods put more emphasis on using Bayesian principles, and hence
have many promising advantages. For example, the uncertainty about
the failure probability estimate can be modeled explicitly, based on
which two critical components for active learning, i.e., learning func-
tion and stopping criterion, can be developed. The Bayesian active
learning idea has also been pursued in the context of LS for reliability
analysis. In [30], a method, called ‘partially Bayesian active learning
line sampling’ (PBAL-LS), has been developed. This is a first attempt to
approach the failure probability integral in LS from a Bayesian active
learning perspective, where the posterior mean and an upper bound
of the posterior variance of the failure probability are available. The
exact expression of the posterior variance of the failure probability is
then given in [31], which allows for a more complete uncertainty char-
acterization of the failure probability in terms of second-order statistics.
The resulting method is termed ‘Bayesian active learning line sampling’
(BAL-LS), which can be regarded as an enhanced version of PBAL-LS.
However, both PBAL-LS and BAL-LS only account for the discretization
error, which is only one source of uncertainty than preventing us from
learning the true value of the failure probability. Actually, there is
another kind of numerical uncertainty, i.e., the approximation error,
due to the numerical approximation of the inner integral. In addition,
the non-negativity constraint of the distance function is disregarded in
PBAL-LS, as well as in BAL-LS. Ignoring these two factors (i.e., approxi-
mation error and non-negativity constraint) may lead to a less accurate
failure probability estimate.

The goal of this work is to simultaneously consider the discretization
error, the approximation error, and the non-negativity constraint in a
strategic manner when approaching the Bayesian active learning idea
in the context of LS for structural reliability analysis. For this purpose,
2

the distance function associated with the inner integral of LS is assigned
Fig. 1. Illustration of the traditional LS in two dimensions.

to a log-normal process (LP) prior in order to explicitly express the
non-negativity constraint, instead of a Gaussian process (GP) as used
in PBAL-LS and BAL-LS. Using a trick, the prior assumption can be
equivalent to placing a GP prior over the logarithmic distance function.
Further, the approximation error between the logarithmic approximate
distance function and the logarithmic true distance function is assumed
to follow a zero-mean normal distribution. Conditional on some ob-
servations arising from evaluating the logarithmic distance function at
several locations, the posterior distribution of the logarithmic distance
function follows a GP. This implies that the posterior distribution of the
distance function follows an LP. The posterior mean and variance of
the failure probability can be derived based on a moment-matched GP
approximation of the LP posterior of the distance function. To enable
Bayesian active learning, a learning function and a stopping criterion
are developed in light of the uncertainty representation of the failure
probability.

The rest of this paper is structured as follows. In Section 2, two re-
lated methods are briefly reviewed. The proposed method is presented
in Section 3. Four numerical examples are investigated in Section 4
to demonstrate the proposed method. Section 5 gives some concluding
remarks.

2. Brief review of two related methods

In this section, two methods in close relation to our development,
i.e., traditional LS [8] and BAL-LS [31], are briefly introduced. To do
so, we first reformulate our reliability analysis problem in the standard
normal space. Assume that a reversible transformation 𝑇 can be applied
to transforming the basic random vector 𝑿 into a standard normal
vector 𝑼 = [𝑈1, 𝑈2,… , 𝑈𝑑 ]⊤, i.e., 𝑼 = 𝑇 (𝑿). This makes it possible
o define a transformed performance function (𝑼 ) ∶= 𝑔(𝑇 −1(𝑼 )).

.1. Traditional line sampling

Traditional LS begins by identifying an important direction 𝜶, see
ig. 1. It is a unit vector pointing to the failure domain in the standard
ormal space, i.e.,  = {𝒖 ∈  ∶ (𝒖) < 0}. The identification of 𝜶 can
e achieved by using the, e.g., gradient information of  at a certain
oint [12], design point by the first-order reliability method [32], or
ailure samples generated by the Markov Chain Monte Carlo [32].

Under the premise that the failure domain  is a half-open region,
he failure probability can be formulated as:

𝑓 = 𝛷(−𝛽(𝒖⟂))𝜙 ⟂ (𝒖⟂)d𝒖⟂, (2)
∫R𝑑−1 𝑼
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where 𝒖⟂ denotes a realization of a (𝑑−1)-dimensional standard normal
vector 𝑼⟂ = [𝑈⟂

1 , 𝑈
⟂
2 ,… , 𝑈⟂

𝑑−1]
⊤ such that 𝑼 = 𝜶𝑈∥ + 𝑩𝑼⟂; 𝑈∥ is a

tandard normal variable parallel to 𝜶; 𝑩 is a 𝑑×(𝑑−1) matrix contain-
ng (𝑑 − 1) orthogonal basis vectors for the hyperplane perpendicular
o 𝜶; 𝛽(𝒖⟂) returns the Euclidean distance between 𝒖⟂ and the limit
tate surface  = 0 along 𝜶; 𝛷(⋅) is the cumulative distribution function

(CDF) of the standard normal distribution; 𝜙𝑼⟂ (⋅) is the joint PDF of
𝑼⟂. The standard normal vector 𝑼 ′ = [𝑈∥;𝑼⟂] can be interpreted as a
rotated counterpart of 𝑼 , and the matrix 𝑹 = [𝜶,𝑩] turns out to be the
otational matrix such that 𝑼 = 𝑹𝑼 ′.

In traditional LS, the failure probability integral defined in Eq. (2) is
olved by the crude MCS in conjugation with a root-finding technique.
he MCS estimator of 𝑃𝑓 is given by:

̂𝑓 = 1
𝑁

𝑁
∑

𝑖=1
𝛷(−𝛽(𝒖⟂,(𝑖))), (3)

here
{

𝒖⟂,(𝑖)
}𝑁
𝑖=1 is a set of 𝑁 random samples generated according to

𝑼⟂ (⋅); 𝛽(𝒖⟂,(𝑖)) denotes the approximate result of 𝑢∥ subject to (𝜶𝑢∥ +
𝒖⟂,(𝑖)) = 0 (see Fig. 1), which can be obtained by a suitable root-

inding algorithm such as polynomial interpolation [8] and Newton’s
ethod [12]. The crude MCS method is a robust technique for approx-

mating the integral (Eq. (2)). However, its convergence rate is quite
ow. In addition, the approximation error of 𝛽(𝒖⟂,(𝑖)) is not considered
hen forming the estimate for the failure probability.

.2. Bayesian active learning line sampling

BAL-LS provides a Bayesian active learning alternative to the tra-
itional LS described above. The basic ideas of BAL-LS are as follows.
n contrast to frequentist inference, estimating the failure probability
ntegral defined in Eq. (2) is first treated as a Bayesian inference
roblem, where the discretization error is considered as a kind of
pistemic uncertainty. Then, the induced probabilistic uncertainty in
he failure probability allows the development of an active learning
cheme so as to reduce the epistemic uncertainty.

Following a Bayesian approach, BAL-LS places a GP prior over the
-function:

0(𝒖⟂) ∼ (𝑚𝛽0 (𝒖
⟂), 𝑘𝛽0 (𝒖

⟂, 𝒖⟂′)), (4)

here 𝛽0 denotes the prior distribution of 𝛽; 𝑚𝛽0 (𝒖
⟂) is the prior mean

unction; 𝑘𝛽0 (𝒖
⟂, 𝒖⟂′) is the prior covariance function. The prior mean

nd covariance functions are assumed to be a constant and squared
xponential kernel, respectively.

Suppose that we now obtain a training dataset  =
{

 ⟂,
}

by
valuating the 𝛽-function, where  ⟂ =

{

𝒖⟂,(𝑗)
}𝑛
𝑗=1 is a (𝑑−1)×𝑛 design

matrix with its 𝑗th column being a observation point 𝒖⟂,(𝑗), and  =
{

𝑦(𝑗)
}𝑛
𝑗=1 is a column vector with its 𝑗th element being 𝑦(𝑗) = 𝛽(𝒖⟂,(𝑗)).

onditioning the GP prior on the data  gives a GP posterior of 𝛽:

𝑛(𝒖⟂) ∼ (𝑚𝛽𝑛 (𝒖
⟂), 𝑘𝛽𝑛 (𝒖

⟂, 𝒖⟂′)), (5)

here 𝛽𝑛 denotes the posterior distribution of 𝛽 conditional on ;
𝛽𝑛 (𝒖

⟂) and 𝑘𝛽𝑛 (𝒖
⟂, 𝒖⟂′) are the posterior mean and covariance func-

ions respectively, which can be expressed in closed form [33]:

𝛽𝑛 (𝒖
⟂) = 𝑚𝛽0 (𝒖

⟂) + 𝒌𝛽0 (𝒖
⟂, ⟂)⊤𝑲𝛽0 (

⟂, ⟂)−1( −𝒎𝛽0 (
⟂)), (6)

𝑘𝛽𝑛 (𝒖
⟂, 𝒖⟂′) = 𝑘𝛽0 (𝒖

⟂, 𝒖⟂′) − 𝒌𝛽0 (𝒖
⟂, ⟂)⊤𝑲𝛽0 (

⟂, ⟂)−1𝒌𝛽0 (
⟂, 𝒖⟂′),

(7)

where 𝒎𝛽0 (
⟂) = [𝑚𝛽0 (𝒖

⟂,(1)), 𝑚𝛽0 (𝒖
⟂,(2)),… , 𝑚𝛽0 (𝒖

⟂,(𝑛))]⊤; 𝒌𝛽0 (𝒖
⟂, ⟂) =

[𝑘𝛽0 (𝒖
⟂, 𝒖⟂,(1)), 𝑘𝛽0 (𝒖

⟂, 𝒖⟂,(2)),… , 𝑘𝛽0 (𝒖
⟂, 𝒖⟂,(𝑛))]⊤; 𝒌𝛽0 (

⟂, 𝒖⟂′) = [𝒌𝛽0
(𝒖⟂,(1), 𝒖⟂′),𝒌𝛽0 (𝒖

⟂,(2), 𝒖⟂′),… ,𝒌𝛽0 (𝒖
⟂,(𝑛), 𝒖⟂′)]⊤; 𝑲𝛽0 (

⟂, ⟂) is an 𝑛 × 𝑛
⟂,(𝑖) ⟂,(𝑗)
3

covariance matrix with (𝑖, 𝑗)-th entry being 𝑘𝛽0 (𝒖 , 𝒖 ).
Conditional on , the posterior mean and covariance functions of
𝛷(−𝛽(𝒖⟂)) can also be derived as [30,31]:

𝑚𝛷𝑛(−𝛽)
(

𝒖⟂
)

= 𝛷

⎛

⎜

⎜

⎜

⎝

−𝑚𝛽𝑛

(

𝒖⟂
)

√

1 + 𝜎2𝛽𝑛
(

𝒖⟂
)

⎞

⎟

⎟

⎟

⎠

, (8)

𝑘𝛷𝑛(−𝛽)(𝒖
⟂, 𝒖⟂′) = 𝛹

([

𝑚𝛽𝑛

(

𝒖⊥
)

𝑚𝛽𝑛

(

𝒖⊥′
)

]

;

[

0
0

]

,

[

𝜎2
𝛽𝑛

(

𝒖⊥
)

+ 1 𝑘𝛽𝑛 (𝒖
⊥, 𝒖⊥′)

𝑘𝛽𝑛 (𝒖
⊥′, 𝒖⊥) 𝜎2

𝛽𝑛

(

𝒖⊥′
)

+ 1

])

− 𝛷

⎛

⎜

⎜

⎜

⎝

𝑚𝛽𝑛

(

𝒖⟂
)

√

1 + 𝜎2
𝛽𝑛

(

𝒖⟂
)

⎞

⎟

⎟

⎟

⎠

𝛷

⎛

⎜

⎜

⎜

⎝

𝑚𝛽𝑛

(

𝒖⟂′
)

√

1 + 𝜎2
𝛽𝑛

(

𝒖⟂′
)

⎞

⎟

⎟

⎟

⎠

,

(9)

where 𝜎2𝛽𝑛
(

𝒖⟂
)

is the posterior variance function of 𝛽, i.e., 𝜎2𝛽𝑛
(

𝒖⟂
)

=

𝛽𝑛 (𝒖
⟂, 𝒖⟂); 𝛹 denotes the bivariate normal CDF.

The posterior mean and variance of the failure probability condi-
ional on  turn out to be:

𝑃𝑓,𝑛 = ∫R𝑑−1
𝑚𝛷𝑛(−𝛽)

(

𝒖⟂
)

𝜙𝑼⟂ (𝒖⟂)d𝒖⟂, (10)

2
𝑃𝑓,𝑛

= ∫R𝑑−1 ∫R𝑑−1
𝑘𝛷𝑛(−𝛽)(𝒖

⟂, 𝒖⟂′)𝜙𝑼⟂ (𝒖⟂)𝜙𝑼⟂′ (𝒖⟂′)d𝒖⟂d𝒖⟂′. (11)

ote that the posterior distribution of the failure probability (denoted
s 𝑃𝑓,𝑛) reflects our uncertainty about the true failure probability value,
here the uncertainty is due to the discretization of the 𝛽-function.
he posterior mean 𝑚𝑃𝑓,𝑛 can be used as a point estimate of the failure
robability, while the posterior variance 𝜎2𝑃𝑓,𝑛 lends itself as a natural
onvergence diagnostic. Due to their analytical intractability, 𝑚𝑃𝑓,𝑛 and
2
𝑃𝑓,𝑛

have to be numerically approximated.
Based on the uncertainty representation of the failure probability,

he above Bayesian inference framework can also be equipped with the
se of active learning, which is the so-called Bayesian active learning.
he stopping criterion for active learning is defined as:
𝜎𝑃𝑓,𝑛
𝑚𝑃𝑓,𝑛

< 𝛿, (12)

where 𝛿 is a user-specified tolerance value. If the stopping criterion is
not satisfied, the next best point to query the 𝛽-function can be iden-
tified by maximizing the following learning function, called ‘posterior
standard deviation contribution’ (PSDC):

PSDC
(

𝒖⟂
)

= 𝜙𝑼⟂ (𝒖⟂) × ∫ ⟂
𝑘�̃�𝑛(−𝛽)(𝒖

⟂, 𝒖⟂′)𝜙𝑼⟂′ (𝒖⟂′)d𝒖⟂′, (13)

where the integral term is estimated by means of a numerical integra-
tion scheme.

In addition, another salient feature of BAL-LS is that it can adjust
the important direction on the fly during its course. This means that it
is not necessary to specify an optimal important direction at the very
beginning, which is usually difficult or expensive to obtain. The reader
is referred to [31] for more information about BAL-LS.

However, the BAL-LS method also has some limitations that mo-
tivate the present work. First, BAL-LS directly places a GP prior over
the 𝛽-function. This can be a poor choice as it is unable to express
the non-negativity of 𝛽. Second, the numerical error introduced by the
numerical approximation of 𝑦(𝑗) = 𝛽(𝒖⟂,(𝑗)) is also ignored in BAL-LS,
which may result in a poor failure probability estimate.

3. Bayesian active learning line sampling with log-normal process

This section introduces another Bayesian active learning alternative,
i.e., BAL-LS-LP, to the traditional LS, in order to address the aforemen-
tioned limitations of BAL-LS. The proposed method starts by assigning
an LP prior, instead of a GP prior, over the 𝛽-function, which allows ex-
plicitly taking into account its non-negativity constraint. Furthermore,
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to account for the approximation error of the 𝛽-function resulting from
the root-finding procedure, the error term between the log approximate
distance function and the log true distance function is assumed to
follow a zero-mean normal distribution. The approximate posterior
mean and variance of the failure probability are obtained by using a
moment-matched GP approximation of the LP posterior of the distance
function. Based on the quantified uncertainty, two critical components
for active learning, i.e., stopping criterion and learning function, are
proposed accordingly.

3.1. Theoretical development

3.1.1. Prior distributions
Let 𝛽(𝒖⟂) denote the approximation of 𝛽(𝒖⟂). In this study, we

assume that the error between log
(

𝛽(𝒖⟂)
)

and log
(

𝛽(𝒖⟂)
)

is additive:

log
(

𝛽(𝒖⟂)
)

= log
(

𝛽(𝒖⟂)
)

+ 𝜀, (14)

where 𝜀 represents the error term. For notational simplicity, we denote
log

(

𝛽(𝒖⟂)
)

and log
(

𝛽(𝒖⟂)
)

as 𝑙(𝒖⟂) and 𝑙(𝒖⟂) respectively. It follows that
Eq. (14) can be rewritten as:

𝑙(𝒖⟂) = 𝑙(𝒖⟂) + 𝜀. (15)

Considering the non-negativity of 𝛽, our prior beliefs about it are
encoded by an LP model:

𝛽0(𝒖⟂) ∼ ( 𝑚 𝛽0
(𝒖⟂), 𝑘 𝛽0

(𝒖⟂, 𝒖⟂′)), (16)

where 𝑚 𝛽0
(𝒖⟂) and 𝑘 𝛽0

(𝒖⟂, 𝒖⟂′) denote the prior mean and covari-
ance functions respectively, which can completely characterize the LP
model. By using a trick, we equate the LP prior over 𝛽 to a GP prior
over 𝑙(𝒖⟂):

𝑙0(𝒖⟂) ∼ (𝑚𝑙0 (𝒖
⟂), 𝑘𝑙0 (𝒖

⟂, 𝒖⟂′)), (17)

where 𝑙0 denotes the prior distribution of 𝑙; 𝑚𝑙0 (𝒖
⟂) and 𝑘𝑙0 (𝒖

⟂, 𝒖⟂′) are
the prior mean and covariance functions, respectively. Without loss of
generality, the prior mean and covariance functions are chosen as a
constant and as a squared exponential kernel, respectively:

𝑚𝑙0 (𝒖
⟂) = 𝑏, (18)

𝑘𝑙0 (𝒖
⟂, 𝒖⟂′) = 𝜎2𝑘 exp

(

−1
2
(𝒖⟂ − 𝒖⟂′)⊤𝜮−1(𝒖⟂ − 𝒖⟂′)

)

, (19)

where 𝑏 ∈ R; 𝜎𝑘 > 0 is the process standard deviation; 𝜮 =
diag

(

𝑤2
1, 𝑤

2
2,… , 𝑤2

𝑑−1
)

with 𝑤𝑖 > 0 being the length scale in the 𝑖th
dimension.

In order to account for the difference between 𝑙 and 𝑙, the error
term should also be properly modeled. In this study, we assume that
the additive error 𝜀 follows a zero-mean normal distribution:

𝜀 ∼  (0, 𝜎2𝜀 ), (20)

where 𝜎𝜀 > 0 is the standard deviation of 𝜀. The mean is taken as zero
because we believe that the average error over the location 𝒖⟂ is not
very biased.

3.1.2. Hyper-parameters tuning
Our prior assumptions expressed in Eqs. (18)–(20) depend on a set

of 𝑑+2 parameters 𝜴 =
{

𝑏, 𝜎𝑘, 𝑤1, 𝑤2,… , 𝑤𝑑−1, 𝜎𝜀
}⊤, which are referred

as hyper-parameters. Given a noisy training dataset ̃ =
{

 ⟂, ̃
}

,
where  ⟂ =

{

𝒖⟂,(𝑗)
}𝑛
𝑗=1 is a (𝑑−1)×𝑛 design matrix with its 𝑗th column

eing a design point 𝒖⟂,(𝑗), and ̃ =
{

�̃�(𝑗)
}𝑛
𝑗=1 is a column vector with

its 𝑗th element being �̃�(𝑗) = log
(

𝛽(𝒖⟂,(𝑗))
)

. The hyper-parameters can be
tuned by maximizing the log marginal likelihood:

𝜴 = arg max log 𝑝(̃| ⟂,𝜴), (21)

in which

log 𝑝(̃| ⟂,𝜴) = −1
[

log
(

|𝑲 𝑙 + 𝜎𝜀𝑰|
)

+
(

̃ − 𝑏
)⊤

(

𝑲 𝑙 + 𝜎𝜀𝑰
)−1
4

2 0 0
×
(

̃ − 𝑏
)

+ 𝑛 log (2𝜋)
]

, (22)

where 𝑲 𝑙0 is an 𝑛 × 𝑛 matrix whose (𝑖, 𝑗)th entry is 𝑘𝑙0 (𝒖
⟂,(𝑖), 𝒖⟂,(𝑗)); 𝑰 is

an 𝑛 × 𝑛 identity matrix.

3.1.3. Posterior distributions
The posterior distribution of 𝑙 conditional on ̃ is also a GP:

𝑙𝑛(𝒖⟂) ∼ (𝑚𝑙𝑛 (𝒖
⟂), 𝑘𝑙𝑛 (𝒖

⟂, 𝒖⟂′)), (23)

where 𝑙𝑛 denotes the posterior distribution of 𝑙 after seeing 𝑛 noisy
observations; 𝑚𝑙𝑛 (𝒖

⟂) and 𝑘𝑙𝑛 (𝒖
⟂, 𝒖⟂′) are the posterior mean and co-

variance functions respectively, which can be further expressed as [33]:

𝑚𝑙𝑛 (𝒖
⟂) = 𝑚𝑙0 (𝒖

⟂) + 𝒌𝑙0 (𝒖
⟂, ⟂)⊤

(

𝑲 𝑙0 + 𝜎𝜀𝑰
)−1

(̃ −𝒎𝑙0 (
⟂)), (24)

𝑘𝑙𝑛 (𝒖
⟂, 𝒖⟂′) = 𝑘𝑙0 (𝒖

⟂, 𝒖⟂′) − 𝒌𝑙0 (𝒖
⟂, ⟂)⊤

(

𝑲 𝑙0 + 𝜎𝜀𝑰
)−1

𝒌𝑙0 (
⟂, 𝒖⟂,′),

(25)

where 𝒎𝑙0 (
⟂) = [𝑚𝑙0 (𝒖

⟂,(1)), 𝑚𝑙0 (𝒖
⟂,(2)),… , 𝑚𝑙0 (𝒖

⟂,(𝑛))]⊤; 𝒌𝑙0 (𝒖
⟂, ⟂) =

𝑘𝑙0 (𝒖
⟂, 𝒖⟂,(1)), 𝑘𝑙0 (𝒖

⟂, 𝒖⟂,(2)),… , 𝑘𝑙0 (𝒖
⟂, 𝒖⟂,(𝑛))]⊤; 𝒌𝑙0 (

⟂, 𝒖⟂′) = [𝒌𝑙0
(𝒖⟂,(1), 𝒖⟂′),𝒌𝑙0 (𝒖

⟂,(2), 𝒖⟂′),… ,𝒌𝑙0 (𝒖
⟂,(𝑛), 𝒖⟂′)]⊤.

It is readily noticed that the induced posterior distribution for 𝛽
conditional on ̃ follows an LP:

𝛽𝑛(𝒖⟂) ∼ ( 𝑚 𝛽𝑛
(𝒖⟂), 𝑘 𝛽𝑛

(𝒖⟂, 𝒖⟂′)), (26)

where 𝛽𝑛 denotes the posterior distribution of 𝛽; 𝑚 𝛽𝑛
(𝒖⟂) and

𝑘 𝛽𝑛
(𝒖⟂, 𝒖⟂′) are the posterior mean and covariance functions respec-

tively, which can be derived as:

𝑚 𝛽𝑛
(𝒖⟂) = exp

(

𝑚𝑙𝑛 (𝒖
⟂) + 1

2
𝜎2𝑙𝑛 (𝒖

⟂)
)

, (27)

𝑘 𝛽𝑛
(𝒖⟂, 𝒖⟂′) =

[

exp
(

𝑘𝑙𝑛 (𝒖
⟂, 𝒖⟂′)

)

− 1
]

exp
(

𝑚𝑙𝑛 (𝒖
⟂) + 𝑚𝑙𝑛 (𝒖

⟂′)

+1
2

(

𝜎2𝑙𝑛 (𝒖
⟂) + 𝜎2𝑙𝑛 (𝒖

⟂′)
))

, (28)

here 𝜎2𝑙𝑛 (⋅) = 𝑘𝑙𝑛 (⋅, ⋅).
With the LP posterior of 𝛽, it is challenging to derive the resulting

osterior distribution of 𝛷(−𝛽) and even its posterior mean and covari-
nce functions. This in turn prevents us from obtaining the posterior
tatistics of the failure probability 𝑃𝑓 . Inspired by [34,35], we adopt an
pproximation scheme for 𝛽𝑛 in order to avoid the lack of traceability.
pecifically, the GP posterior ( 𝑚 𝛽𝑛

(𝒖⟂), 𝑘 𝛽𝑛
(𝒖⟂, 𝒖⟂′)) is approx-

mated by a moment-matched GP, i.e., ( 𝑚 𝛽𝑛
(𝒖⟂), 𝑘 𝛽𝑛

(𝒖⟂, 𝒖⟂′)).
ote that the accuracy of the approximation depends on the specific
haracteristics of the LP. If the LP deviates significantly from a GP,
he moment-matched GP approximation may become less accurate.
owever, according to our experience, this approximation can provide

airly good results in most cases. Besides, another advantage of such an
pproximation is that we can directly exploit the previous results given
n BAL-LS [31] when inferring the posterior statistics of both 𝛷(−𝛽) and
𝑓 .

Under the Gaussian approximation, the approximate posterior mean
nd covariance functions of 𝛷(−𝛽) conditional on ̃ can be given by:

𝑚 �̃�𝑛(−𝛽)

(

𝒖⟂
)

= 𝛷

⎛

⎜

⎜

⎜

⎜

⎝

− 𝑚 𝛽𝑛

(

𝒖⟂
)

√

1 + 𝜎 2
𝛽𝑛

(

𝒖⟂
)

⎞

⎟

⎟

⎟

⎟

⎠

, (29)

𝑘 �̃�𝑛(−𝛽)
(𝒖⟂, 𝒖⟂′)

= 𝛹
⎛

⎜

⎜

[

𝑚 𝛽𝑛

(

𝒖⊥
)

𝑚
(

𝒖⊥′
)

]

;
[

0
0

]

,
⎡

⎢

⎢

𝜎 2
𝛽𝑛

(

𝒖⊥
)

+ 1 𝑘 𝛽𝑛
(𝒖⊥, 𝒖⊥′)

𝑘 (𝒖⊥′, 𝒖⊥) 𝜎 2 (

𝒖⊥′
)

+ 1

⎤

⎥

⎥

⎞

⎟

⎟

⎝

𝛽𝑛 ⎣ 𝛽𝑛 𝛽𝑛 ⎦⎠
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−𝛷

⎛

⎜

⎜

⎜

⎜

⎝

𝑚 𝛽𝑛

(

𝒖⟂
)

√

1 + 𝜎 2
𝛽𝑛

(

𝒖⟂
)

⎞

⎟

⎟

⎟

⎟

⎠

𝛷

⎛

⎜

⎜

⎜

⎜

⎝

𝑚 𝛽𝑛

(

𝒖⟂′
)

√

1 + 𝜎 2
𝛽𝑛

(

𝒖⟂′
)

⎞

⎟

⎟

⎟

⎟

⎠

, (30)

here 𝜎 2
𝛽𝑛
(⋅) = 𝑘 𝛽𝑛

(⋅, ⋅). For proofs of Eqs. (29) and (30), please refer
o [31]. Note that Eqs. (29) and (30) are respectively different from
qs. (8) and (9) in essence due to the differences in the mean, variance
nd covariance functions involved.

As a consequence, we can approximate the posterior mean and
ariance of 𝑃𝑓 by:

𝑚 𝑃𝑓,𝑛
= ∫R𝑑−1

𝑚 𝛷𝑛(−𝛽)

(

𝒖⟂
)

𝜙𝑼⟂ (𝒖⟂)d𝒖⟂, (31)

𝜎 2
𝑃𝑓,𝑛

= ∫R𝑑−1 ∫R𝑑−1
𝑘 𝛷𝑛(−𝛽)

(𝒖⟂, 𝒖⟂′)𝜙𝑼⟂ (𝒖⟂)𝜙𝑼⟂′ (𝒖⟂′)d𝒖⟂d𝒖⟂′. (32)

Eqs. (31) and (32) can be proved by using the Fubini’s theorem, hence
the proofs are omitted. It is noted that Eqs. (31) and (32) are essentially
different from Eqs. (10) and (11) respectively due to the differences
in the integrands involved. The uncertainty in the failure probability
summarizes the numerical uncertainty resulting from both the dis-
cretization error (i.e., discretizing the 𝑙-function at discrete locations)
and the approximation error (i.e., approximating the value 𝑙(𝒖⟂)). The
approximate posterior mean 𝑚 𝑃𝑓,𝑛

can be used as a point estimate of

he failure probability, while the approximate posterior variance 𝜎 2
𝑃𝑓,𝑛

rovides a measure for the uncertainty.

.1.4. Estimating the approximate posterior mean and variance of the
ailure probability

The approximate posterior mean and variances of the failure prob-
bility defined in (31) and (32) have to be numerically approximated
ue to their analytical intractability. Following the same way in BAL-
S, we employ the standard deviation-amplified importance sampling
SDA-IS) originally developed in [29]. The SDA-IS estimators of 𝑚 𝑃𝑓,𝑛

nd 𝜎 2
𝑃𝑓,𝑛

can be given by:

�̂� 𝑃𝑓,𝑛
= 1

𝑁

𝑁
∑

𝑞=1
𝛷

⎛

⎜

⎜

⎜

⎜

⎝

− 𝑚 𝛽𝑛

(

𝒖⟂,(𝑞)
)

√

1 + 𝜎 2
𝛽𝑛

(

𝒖⟂,(𝑞)
)

⎞

⎟

⎟

⎟

⎟

⎠

𝜙𝑼⟂ (𝒖⟂,(𝑞))
𝜙𝑼⟂ ,𝜆(𝒖⟂,(𝑞))

, (33)

�̂�
2

𝑃𝑓,𝑛
= 1

𝑁

𝑁
∑

𝑖=1
𝑘 𝛷𝑛(−𝛽)

(𝒖⟂,(𝑞), 𝒖⟂′,(𝑞))
𝜙𝑼⟂ (𝒖⟂,(𝑞))𝜙𝑼⟂ (𝒖⟂′,(𝑞))

𝜙𝑼⟂ ,𝜆(𝒖⟂,(𝑞))𝜙𝑼⟂ ,𝜆(𝒖⟂′,(𝑞))
, (34)

where
{

𝒖⟂,(𝑞)
}𝑁
𝑞=1 and

{

𝒖⟂′,(𝑞)
}𝑁
𝑞=1 are two sets of 𝑁 random sam-

ples generated according to 𝜙𝑼⟂ ,𝜆(𝒖
⟂) and 𝜙𝑼⟂ ,𝜆(𝒖

⟂′), respectively;
𝜙𝑼⟂ ,𝜆(𝒖

⟂) is the SDA-IS density of the form 𝜙𝑼⟂ ,𝜆(𝒖
⟂) =

∏𝑑−1
𝑖=1 𝜙𝑈⟂

𝑖 ,𝜆(𝑢
⟂
𝑖 ),

in which

𝜙𝑈⟂
𝑖 ,𝜆(𝑢

⟂
𝑖 ) =

1

𝜆
√

2𝜋
exp

(

−
𝑢⟂,2𝑖

2𝜆2

)

, (35)

here 𝜆 > 1 is the amplification factor.
The corresponding variances of the above two estimators can be

xpressed as:

[

�̂�
𝑃𝑓,𝑛

]

= 1
𝑁(𝑁 − 1)

𝑁
∑

𝑞=1

⎡

⎢

⎢

⎢

⎢

⎣

𝛷

⎛

⎜

⎜

⎜

⎜

⎝

− 𝑚
𝛽𝑛

(

𝒖⟂,(𝑞)
)

√

1 + 𝜎 2
𝛽𝑛

(

𝒖⟂,(𝑞)
)

⎞

⎟

⎟

⎟

⎟

⎠

𝜙𝑼⟂ (𝒖⟂,(𝑞))
𝜙𝑼⟂ ,𝜆(𝒖⟂,(𝑞))

− �̂�
𝑃𝑓,𝑛

⎤

⎥

⎥

⎥

⎥

⎦

2

,

(36)

V
[

�̂�
2

𝑃𝑓,𝑛

]

= 1
𝑁(𝑁 − 1)

𝑁
∑

[

𝑘 𝛷𝑛(−𝛽)
(𝒖⟂,(𝑞), 𝒖⟂′,(𝑞))
5

𝑞=1
×
𝜙𝑼⟂ (𝒖⟂,(𝑞))𝜙𝑼⟂ (𝒖⟂′,(𝑞))

𝜙𝑼⟂ ,𝜆(𝒖⟂,(𝑞))𝜙𝑼⟂ ,𝜆(𝒖⟂′,(𝑞))
− �̂�

2

𝑃𝑓,𝑛

]2

. (37)

In order to reduce the computational burden and guarantee the
accuracy of the results, the SDA-IS is implemented in a step-by-step
manner, rather than all at once. That is, we generate samples in-

crementally (e.g., 1 × 104 at once) until
√

V
[

�̂� 𝑃𝑓,𝑛

]

∕ �̂� 𝑃𝑓,𝑛
< 𝜏1

and

√

V
[

�̂�
2

𝑃𝑓,𝑛

]

∕ �̂�
2

𝑃𝑓,𝑛
< 𝜏2 are satisfied, where 𝜏1 and 𝜏2 are two

ser-specified thresholds.

.1.5. Stopping criterion and learning function
The above Bayesian framework can be further cast in an active

earning setting based on the uncertainty modeling of the failure prob-
bility. Two principal components for active learning are the stopping
riterion and learning function.

Supposing that we are at the stage with 𝑛 noisy observations, the
topping criterion can be defined in terms of the estimated COV of the
osterior failure probability such that:

�̂� 𝑃𝑓,𝑛

�̂� 𝑃𝑓,𝑛

< 𝜂, (38)

where 𝜂 is a tolerance value. The stopping criterion in Eq. (38) should
be met twice in a row in order to avoid fake convergence.

If the stopping criterion is not reached, then the training dataset
should be enriched so as to further reduce the epistemic uncertainty
in the failure probability. For this propose, a learning function, called
‘approximate posterior standard deviation contribution’ (APSDC), is
first introduced:

APSDC
(

𝒖⟂
)

= 𝜙𝑼⟂ (𝒖⟂) × ∫R𝑑−1
𝑘 𝛷𝑛(−𝛽)

(𝒖⟂, 𝒖⟂′)𝜙𝑼⟂′ (𝒖⟂′)d𝒖⟂′. (39)

Note that ∫R𝑑−1 APSDC
(

𝒖⟂
)

d𝒖⟂ = 𝜎 2
𝑃𝑓,𝑛

holds true. Hence, the APSDC
function provides a measure of the contribution of the epistemic un-
certainty at site 𝒖⟂ to the approximate posterior variance (or standard
deviation) of the failure probability. The intractable integral term
involved in the APSDC function can be approximated by a numerical
integration scheme such that:

ÂPSDC
(

𝒖⟂
)

= 𝜙𝑼⟂ (𝒖⟂) 1
𝑀

𝑀
∑

𝑝=1
𝑘 𝛷𝑛(−𝛽)

(𝒖⟂, 𝒖⟂′,(𝑝)), (40)

where
{

𝒖⟂′,(𝑝)
}𝑀
𝑝=1 is a set of 𝑀 integration points, which are generated

according to 𝜙𝑼⟂′ (𝒖⟂′) using Sobol sequence in this study. To obtain
good results, the number of integration points 𝑀 should be as large
as possible. However, a too large 𝑀 will result in a non-negligible
computational load when optimizing the learning function.

The next best point 𝒖⟂,(𝑛+1) to query the 𝑙-function can be identified
by maximizing the estimated APSDC function such that:

𝒖⟂,(𝑛+1) = arg max
𝒖⟂∈R𝑑−1

ÂPSDC
(

𝒖⟂
)

, (41)

where a global optimization algorithm, i.e., particle swarm optimiza-
tion, can be used. As soon as 𝒖⟂,(𝑛+1) is selected, 𝑙(𝒖⟂,(𝑛+1)) should be
evaluated by an appropriate algorithm.

3.2. Step-by-step procedure

During the theoretical development of the proposed BAL-LS-LP
method, the important direction is assumed to be fixed. However, it
is not necessary to do so and the important direction can be updated
as well. To be specific, the BAL-LS-LP algorithm will start with a
sub-optimal important direction, and then update to a new one once
a more probable one is found during the active learning phase. In
addition, how to evaluate the 𝑙 function is another important aspect
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that remains unmentioned. These issues will be addressed as the steps
of the proposed method are presented.

The procedure for implementing the proposed BAL-LS-LP method is
summarized below in six main steps, and illustrated with a flowchart
in Fig. 2.

Step 1: Specifying an initial important direction
The proposed method is initialized with an important direction

𝜶(0), which can be a rough guess and does not need to be optimal.
n this study, the initial important direction is chosen as the negative
ormalized gradient of the -function at the origin:

𝜶(0) = −
∇𝒖(𝟎)

‖∇𝒖(𝟎)‖
, (42)

here ∇𝒖(𝟎) =
[

𝜕(𝟎)
𝜕𝑢1

, 𝜕(𝟎)𝜕𝑢2
,… , 𝜕(𝟎)𝜕𝑢𝑑

]⊤
; ‖ ⋅ ‖ is the Euclidean norm.

The gradient vector ∇𝒖(𝟎) may not be analytically available in most
cases. To this end, the forward difference method is used to provide a
numerical approximation at the cost of (𝑑 + 1) -function evaluations.
Given 𝜶(0), it is in principle not possible to uniquely determine the cor-
responding matrix 𝑩(0) that describes the hyperplane orthogonal to 𝜶(0).
However, this does not impose severe restrictions in practice because
one can simply employ, e.g., the Gram–Schmidt orthonormalization, to
specify an admissible 𝑩(0).

Step 2: Generating an initial training dataset and updating the
important direction

In this step, an initial training dataset needs to be generated and
the initial important direction can be updated. First, we draw a small
set of samples  ⟂ =

{

𝒖⟂,(𝑗)
}𝑛0
𝑗=1 uniformly distributed within a hyper-

rectangle [−𝑟, 𝑟]𝑑−1 on the hyperplane orthogonal to 𝜶(0), using Sobol
sequence. As a convenient rule of thumb, the two parameters 𝑛0 and
𝑟 are specified as 5 and 3.5, respectively. Second, for each sample
𝒖⟂,(𝑗), one has to compute the Euclidean distance between 𝒖⟂,(𝑗) and
he limit state surface  = 0 along 𝜶(0). This is equivalent to finding
he root of (𝜶(0)𝑢∥ + 𝑩(0)𝒖⟂,(𝑗)) = 0, which can be solved by using

the adaptive inverse interpolation method [31]. The approximate roots
corresponding to  ⟂ are denoted as ̃ =

{

�̃�(𝑗)
}𝑛0

𝑗=1
with �̃�(𝑗) = 𝛽(𝒖⟂,(𝑗)).

esides, it is also important to record each approximate intersection
(0)�̃�(𝑗) + 𝑩(0)𝒖⟂,(𝑗) of the line 𝜶(0)𝑢∥ + 𝑩(0)𝒖⟂,(𝑗) and  = 0. Third, a

new important direction 𝜶(1) can be set as the normalized vector of
he approximate intersection with the shortest distance to the origin,

.e., 𝜶(1) =
𝜶(0) �̃�(𝑗⋆ )+𝑩(0)𝒖⟂,(𝑗⋆ )

‖𝜶(0) �̃�(𝑗⋆ )+𝑩(0)𝒖⟂,(𝑗⋆ )
‖

with 𝑗⋆ = arg min1≤𝑗≤𝑛0 ‖𝜶
(0)�̃�(𝑗) +

𝑩(0)𝒖⟂,(𝑗)‖. The matrix 𝑩(1) corresponding to 𝜶(1) can be specified by
eans of the Gram–Schmidt process. Fourth, by projecting those 𝑛0

pproximate intersections onto the hyperplane perpendicular to 𝜶(1),
ne can simply obtain the projection points  ⟂ =

{

𝒖⟂,(𝑗)
}𝑛0
𝑗=1 and

istances ̃ =
{

�̃�(𝑗)
}𝑛0
𝑗=1. The initial training dataset is obtained as

̃ =
{

 ⟂, ̃
}

with ̃ = log ̃ . Let 𝑛 = 𝑛0 and 𝑞 = 1.

tep 3: Inferring the posterior statistics of the failure probability
The approximate posterior mean and variance of the failure prob-

bility can be inferred based on data ̃. First, we make an inference
bout the GP posterior of the 𝑙-function, as defined in Eq. (23). This can
e achieved by using, e.g., the fitrgp function in Statistics and Machine
earning Toolbox of Matlab. Second, via the relationship between the
-function and the 𝛽-function, it is straightforward to obtain the LP
osterior of the 𝛽-function, as given by Eq. (26). Third, with the help
f the moment-matched GP approximation, we can finally arrive at the
pproximate posterior mean and variance of the failure probability (as
hown in Eqs. (31) and (32)). Fourth, one can obtain the approximate
ean estimate �̂� 𝑃𝑓,𝑛

and the approximate variance estimate �̂�
2

𝑃𝑓,𝑛
y using the sequential SDA-IS method described in Section 3.1.4. The

equential method (𝜆 = 1.5) is stopped until
√

V
[

�̂� 𝑃𝑓,𝑛

]

∕ �̂� 𝑃𝑓,𝑛
< 𝜏1

nd

√

V
[

�̂�
2

𝑃

]

∕ �̂�
2

𝑃 < 𝜏2 are met (𝜏1 = 0.01 and 𝜏2 = 0.05).
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𝑓,𝑛 𝑓 ,𝑛
Step 4: Checking the stopping criterion

If the stopping criterion
̂𝜎

𝑃𝑓,𝑛
̂𝑚

𝑃𝑓,𝑛

< 𝜂 is reached twice in a row, go

to Step 6; Otherwise, go to Step 5. In this study, the threshold 𝜂 takes
the value of 0.05.

Step 5: Enriching the training dataset and updating the important
direction

This step involves enriching the previous training dataset by iden-
tifying a new promising location at which to query the 𝑙-function,
nd updating the important direction once a more probable one is
ound. First, the next best point 𝒖⟂,(𝑛+1) is determined by maximizing
he learning function (Eq. (40)), where 𝑀 = 20 is adopted. Second,

the approximate distance �̃�(𝑛+1) between 𝒖⟂,(𝑛+1) and the limit state
surface  = 0 is solved by using the Newton’s method. As a guess,
𝑚 𝛽𝑛

(𝒖⟂,(𝑛+1)) can be taken as the starting point. An approximate
ntersection is recorded as 𝜶(𝑞)�̃�(𝑛+1) + 𝑩(𝑞)𝒖⟂,(𝑛+1). Third, if the new

intersection does not have the shortest distance to the origin among all
the available approximate intersections, the previous training dataset
̃ is directly enriched with

{

𝒖⟂,(𝑛+1), log �̃�(𝑛+1)
}

. Otherwise, the previ-
ous important direction is then updated to a new one, i.e., 𝜶(𝑞+1) =
𝜶(0) �̃�(𝑛+1)+𝑩(𝑞)𝒖⟂,(𝑛+1)

‖𝜶(0) �̃�(𝑛+1)+𝑩(𝑞)𝒖⟂,(𝑛+1)‖
. Accordingly, a new matrix 𝑩(𝑞+1) can be specified

and 𝑞 = 𝑞 + 1. Projecting all the available approximate intersections on
the latest hyperplane yields the enriched training dataset ̃. Let 𝑛 = 𝑛+1
nd go to Step 3.

tep 6: Stopping the algorithm
The latest �̂� 𝑃𝑓,𝑛

and �̂�
2

𝑃𝑓,𝑛
are returned and the algorithm is

stopped.

4. Numerical examples

In this section, we illustrate the proposed BAL-LP-LS method on
four numerical examples. Although some examples have explicit per-
formance functions, they are all treated as implicit. In all cases, the
crude MCS method is employed to provide the reference failure prob-
abilities whenever possible. For comparison purposes, several existing
methods, i.e., first-order reliability method with sequential quadratic
programming (FORM-SQP) [36], traditional LS [8], combination line
sampling (CLS) [14], active learning reliability method in UQLab ver-
sion 2.0 (denoted as ALR in UQLab) [37] and BAL-LS [31], are also
implemented. In FORM-SQP, the starting point is set as the point of
origin and the SQP method adopts the one available in Matlab R2022b
with its default settings. The important direction in traditional LS is
specified by FORM-SQP, and the Newton’s method is employed to
process lines. For CLS, the initial important direction uses the same as
the proposed method (Eq. (42)). The ALR in UQLab employs the Kriging
model with Gaussian kernel instead of its default polynomial chaos-
Kriging. For ALR in UQLab, BAL-LS and BAL-LS-LP, 20 independent
runs are performed for the first three examples in order to test their
robustness. Therefore, we only report the mean and/or variability of
the quantities of interest.

4.1. Example 1: A test function

For the first example, let us consider a test function taking the
form [30]:

𝑌 = 𝑔(𝑿) = 𝑎 −𝑋2 + 𝑏𝑋3
1 + 𝑐 sin

(

𝑑𝑋1
)

, (43)

here 𝑎, 𝑏, 𝑐 and 𝑑 are four parameters that can influence the non-
inearity of the problem and the level of failure probability, which are
pecified as: 𝑎 = 5.5, 𝑏 = 0.02, 𝑐 = 5

6 , 𝑑 = 𝜋
3 ; 𝑋1 and 𝑋2 are two standard

normal variables.
The results of the proposed BAL-LS-LP method and several existing

methods are summarized in Table 1. The reference failure probability is
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Fig. 2. Flowchart of the proposed BAL-LS-LP method.
Table 1
Results of Example 1 by several methods.

Method 𝑁𝑙𝑖𝑛𝑒 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 COV
[

𝑃𝑓
]

MCS – 1011 3.54 × 10−7 0.53%
FORM-SQP – 28 7.19 × 10−7 –

Traditional LS 100 366 3.74 × 10−7 7.01%
200 714 3.33 × 10−7 5.24%

CLS 100 490 3.79 × 10−7 6.91%
200 964 3.37 × 10−7 5.74%

ALR in UQLab – 16.00 3.95 × 10−7 6.30%
BAL-LS 9.25 35.50 3.50 × 10−7 3.50%
Proposed BAL-LS-LP 7.00 30.00 3.59 × 10−7 0.30%

Note: 𝑁𝑙𝑖𝑛𝑒 = the total number of lines; 𝑁𝑐𝑎𝑙𝑙 = the total number of -function calls
including the number of -function calls to find the roots, if applicable).

aken as 3.54 × 10−7, which is provided by MCS with 1011 samples. The
stimated failure probability from FORM-SQP (i.e., 7.19 × 10−7) differs
ignificantly from the reference value, mainly due to the violation of
he linearity assumption in FORM. In two cases, 𝑁𝑙𝑖𝑛𝑒 = 100, 200, both

traditional LS and CLS can produce more accurate results than FORM-
SQP. However, in order to have a small COV, both methods require a
large number of  function evaluations. ALR in UQLab only needs 16.00
performance function evaluations on average, but it results in obvious
bias in the mean of 20 failure probability estimates (say 3.95 × 10−7).
The BAL-LS method gives an average failure probability of 3.50 × 10−7

ith a COV of 3.50%, which are at a cost of 9.25 lines and 35.50 -
function evaluations on average. The proposed BAL-LS-LP can further
reduce the average number of 𝑁𝑙𝑖𝑛𝑒 and 𝑁𝑐𝑎𝑙𝑙, while producing a fairly
good failure probability mean (i.e., 3.59×10−7) with a sufficiently small
variability (COV

[

𝑃𝑓
]

= 0.30%).
To provide a schematic illustration of the proposed method, Fig. 3

shows some of the results obtained from an exemplary run. It can
be observed from Fig. 3(a) that the initial important direction is far
7

from optimal, but still informative. After five approximate intersections
Table 2
Random variables for Example 2.

Variable Description Distribution Mean COV

𝑚 Mass Lognormal 1.0 0.05
𝑘1 Stiffness Lognormal 1.0 0.10
𝑘2 Stiffness Lognormal 0.2 0.10
𝑟 Yield displacement Lognormal 0.5 0.10
𝐹1 Load amplitude Lognormal 0.4 0.20
𝑡1 Load duration Lognormal 1.0 0.20

are obtained, the initial important direction is immediately updated
to a new one. After three additional intersections are available, the
proposed method stops as the stopping criterion is satisfied. As seen
from Fig. 3(b), the final important direction is almost optimal.

4.2. Example 2: A non-linear oscillator

The second example consists of a non-linear oscillator subject to
a rectangular-pulse load [38], as shown in Fig. 4. The performance
function is defined by:

𝑍 = 𝑔
(

𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1, 𝑡1
)

= 3𝑟 −
|

|

|

|

|

|

2𝐹1
𝑘1 + 𝑘2

sin

(

𝑡1
2

√

𝑘1 + 𝑘2
𝑚

)

|

|

|

|

|

|

, (44)

where 𝑚, 𝑘1, 𝑘2, 𝑟, 𝐹1 and 𝑡1 are six random variables, as detailed in
Table 2.

In Table 3, we summarize the results of several methods, including
MCS, FORM-SQP, traditional LS, CLS, ALR in UQLab, BAL-LS and BAL-
LS-LP. The reference value for the failure probability is 4.01×10−8 with
a COV of 0.50%, provided by MCS with 1012 samples. At the cost of
176 -function evaluations, FORM-SQP provides a failure probability
estimate of 4.88 × 10−8, which is not that close to the reference value.
The accuracy of FORM-SQP can be further improved by the traditional
LS with some extra lines (e.g., 100), which, in turn, leads to a significant
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Fig. 3. Schematic illustration of the proposed BAL-LS-LP method for Example 1.
Fig. 4. A nonlinear oscillator driven by a rectangular pulse load.
Table 3
Results of Example 2 by several methods.

Method 𝑁𝑙𝑖𝑛𝑒 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 COV
[

𝑃𝑓
]

MCS – 1012 4.01 × 10−8 0.50%
FORM-SQP – 176 4.88 × 10−8 –

Traditional LS 50 376 4.16 × 10−8 2.93%
100 576 4.09 × 10−8 1.92%

CLS 200 868 4.87 × 10−8 7.91%
300 1,329 4.65 × 10−8 6.79%

ALR in UQLab – 46.55 4.75 × 10−8 11.62%
BAL-LS 12.65 43.25 3.73 × 10−8 30.52%
Proposed BAL-LS-LP 13.65 46.20 4.02 × 10−8 0.92%

increase in -function calls. Compared to the traditional LS, CLS needs
more lines and −function evaluations to yield a reasonable result. ALR
in UQLab is able to reduce the number of -function evaluations to
46.55 on average. Nevertheless, the mean value of 20 failure proba-
bility estimates (say 4.75 × 10−8) appears to be biased and relatively
larger than the reference value. At the cost of 12.65 lines and 43.25 -
function calls on average, BAL-LS produces a failure probability mean
of 3.73 × 10−8 with a COV of 30.52%. Compared to BAL-LS, BAL-LS-
LP requires on average slightly more lines and -function calls, but
produces a almost unbiased result with a significantly small COV, say
0.92%.

4.3. Example 3: An I beam

As a third example, we consider a simply-supported I beam subject
to a concentrated force [39], as depicted in Fig. 5. The performance
function is expressed as:

𝑌 = 𝑔(𝑿) = 𝑆 − 𝜎 , (45)
8

max
Table 4
Random variables for Example 3.

Variable Distribution Mean COV

𝑃 Lognormal 1500 0.20
𝐿 Normal 120 0.05
𝑎 Normal 72 0.10
𝑆 Normal 200,000 0.15
𝑑 Normal 2.3 0.05
𝑏𝑓 Normal 2.3 0.05
𝑡𝑤 Normal 0.16 0.05
𝑡𝑓 Normal 0.26 0.05

in which

𝜎max =
𝑃𝑎(𝐿 − 𝑎)𝑑

2𝐿𝐼
, (46)

with

𝐼 =
𝑏𝑓𝑑3 − (𝑏𝑓 − 𝑡𝑤)(𝑑 − 2𝑡𝑓 )3

12
. (47)

A total number of eight random variables 𝑿 = [𝑃 ,𝐿, 𝑎, 𝑆, 𝑑, 𝑏𝑓 , 𝑡𝑤, 𝑓𝑓 ]⊤

are involved in this example, as listed in Table 4.
The results obtained from several methods are reported in Table 5.

MCS with 1011 samples produces a reference failure probability of
1.69 × 10−7 with a COV being 0.77%. FORM-SQP gives a result (say
1.48 × 10−7) that is slightly smaller than the reference one. However,
it necessitates a large number (i.e., 1511) of performance function
evaluations. In order to achieve a failure probability estimate with a
COV less than 5%, traditional LS may require more than 100 additional
lines. Even with 200 lines, the failure probability given by CLS still
has a large COV, i.e., 7.40%. At the cost of 93.10 -function calls on
average, the result from ALR in UQLab is still biased and tends to be
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Fig. 5. A simply-supported I beam.
Table 5
Results of Example 3 by several methods.

Method 𝑁𝑙𝑖𝑛𝑒 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 COV
[

𝑃𝑓
]

MCS – 1011 1.69 × 10−7 0.77%
FORM-SQP – 1,511 1.48 × 10−7 –

Traditional LS 100 1,859 1.89 × 10−7 7.08%
200 2,195 1.62 × 10−7 2.43%

CLS 100 504 1.62 × 10−7 10.27%
200 993 1.50 × 10−7 7.40%

ALR in UQLab – 85.95 2.01 × 10−7 14.88%
BAL-LS 17.20 59.30 1.61 × 10−7 10.19%
Proposed BAL-LS-LP 11.35 40.70 1.62 × 10−7 8.88%

Table 6
Random variables for Example 4.

Variable Distribution Mean COV

𝐴 Normal 2,000 mm2 0.10
𝐸 Normal 200 GPa 0.10
𝑃0 Lognormal 400 kN 0.20
𝑃1 ∼ 𝑃12 Lognormal 50 kN 0.15

larger than the reference value. The average numbers of lines and -
function calls required by BAL-LP-LS are less than those of BAL-LS, but
can still give a failure probability mean that is closed to the reference
one and with a smaller COV.

4.4. Example 4: A space truss structure

The last example involves a 120-bar space truss structure subject
to thirteen vertical loads [27,28], as shown in Fig. 6. The structure
is modeled as a three-dimensional truss using an open-source finite
element analysis software, OpenSees. The established model consists of
49 nodes and 120 truss elements. It is assumed that all elements have
the same cross-sectional area, 𝐴, and the same modulus of elasticity,
𝐸. The thirteen vertical loads (as depicted in Fig. 6) are denoted as
𝑃0 ∼ 𝑃12. The performance function is defined as:

𝑌 = 𝑔(𝑿) = 𝛥 − 𝑉0(𝐴,𝐸, 𝑃0 ∼ 𝑃12), (48)

where 𝑉0 is the vertical displacement of node 0; 𝛥 is a threshold, which
is specified as 100 mm; 𝐴, 𝐸, 𝑃0 ∼ 𝑃12 are fifteen random variables, as
described in Table 6.

In this example, we cannot afford to run the crude MCS in order
to provide a reference solution because the target failure probability
is quite small. To this end, the importance sampling (IS) available in
UQLab [37] is then implemented as an alternative, where the impor-
tance sampling density is chosen as Gaussian centered on the most
probable point. The failure probability given by IS is 1.90 × 10−9 with
a COV of 1.97%. The results of IS and several other methods are
compared in Table 7. FORM-SQP converges to an infeasible point after
one iteration. Therefore, the traditional LS also cannot work because
it is based on the FORM-SQP in our setting. ALR in UQLab produces a
wrong result for the failure probability as it is premature in most trials.
9

Table 7
Results of Example 4 by several methods.

Method 𝑁𝑙𝑖𝑛𝑒 𝑁𝑐𝑎𝑙𝑙 𝑃𝑓 COV
[

𝑃𝑓
]

IS – 25,141 1.90 × 10−9 1.97%
FORM-SQP – – – –
Traditional LS – – – –

CLS 500 3,001 1.02 × 10−9 15.20%
1,000 5,926 1.82 × 10−9 14.12%

ALR in UQLab – – – –
BAL-LS 25 144 2.24 × 10−9 2.69%
Proposed BAL-LS-LP 26 102 1.90 × 10−9 2.39%

Although the CLS method is workable, its variability is quite large even
using 1000 lines. At the cost of 25 lines and 144 performance function
evaluations, BAL-LS gives a failure probability estimate of 2.24 × 10−9

with a COV of 2.69%. Remarkably, the proposed BAL-LS-LP method can
produce a much better estimate with less -functions calls compared to
BAL-LS.

5. Concluding remarks

This paper presents a new Bayesian active learning alternative,
called ‘Bayesian active learning line sampling with log-normal process’
(BAL-LS-LP), to the traditional line sampling for structural reliability
analysis, especially for assessing small failure probabilities. First, we
treat the estimation of the failure probability in LS with Bayesian
inference. By using an LP prior instead of a GP prior, it is possible to si-
multaneously consider the discretization error of the distance function,
as well as its non-negativity constraint that is ignored in both PBAL-LS
and BAL-LS. In addition, the approximation error of the distance func-
tion is taken into account by assuming a zero-mean normal distribution.
The approximate posterior mean and variance of the failure probability
are derived based on the use of a moment-matched GP approximation
of the posterior distribution of the distance function. Second, two
essential components for active learning, i.e., learning function and
stopping criterion, are developed using the posterior statistics of the
failure probability. Third, the important direction can be automatically
updated on the fly during the simulation from an initial rough guess.
By means of four numeral examples, it is demonstrated that the pro-
posed method is able to assess extremely small failure probabilities
(e.g., an order of magnitude 10−7 ∼ 10−9) with reasonable accuracy
and efficiency.

Note that the BAL-LS-LP method is suitable for weakly and mod-
erately nonlinear problems with a single half-open failure domain.
The authors suggest potential improvements for the method in the
following directions. Firstly, optimizing the learning function using a
nature-inspired global optimization algorithm can be time-consuming
as the dimensions increase. This reduces the efficiency of the proposed
method in higher dimensions. The problem may be solved by sim-
plifying the learning function or using a more efficient optimization
algorithm. Secondly, approximating the posterior variance of the failure
probability using the SDA-IS method can be challenging. One solution
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Fig. 6. A 120-bar space truss structure subject to thirteen vertical loads.
ould be to simplify the approximation or develop a more efficient
umerical integrator.
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