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Abstract

Composite structures suffer from material imperfections. Non-deterministic models at the micro- and mesoscale propa-
gate this spatial variability. However, they become impractical when the structure size increases. This paper proposes
a numerically efficient multiscale methodology that links structural behaviour with the spatial variability of material
imperfections on smaller scales. Fibre strength variability is accounted for through a fibre break model. A mesoscale
model considers fibre volume fraction and fibre misalignment variability using random fields. Measurements provide
probabilistic data for these imperfections. Subsequent homogenisation results in intercorrelated material properties on
the structural macroscale that are modelled effectively with vine copulas. The methodology is verified by predicting the
failure load of a coupon model. Predictions are very similar to those obtained by directly modelling spatial variability
on the structural scale.
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1. Introduction

Carbon fibres have a very high intrinsic strength of well
over 20 GPa [1]. A simple rule of mixtures would suggest
a similar value for unidirectional carbon-fibre-reinforced
polymers (CFRPs). In practice, however, the strength is
considerably lower than this value, often not exceeding a
few GPa. It behaves more stochastically as well [2].

Material imperfections explain this difference to a large
extent. Fibre surface defects, among other imperfections,
lead to a stochastic fibre strength commonly modelled by a
Weibull distribution [3]. In combination with, for example,
misaligned fibres [4-6], unevenly distributed [2] fibres or
voids [7] in the matrix material this affects the stochastic
behaviour of composite structures.

The effect of such imperfections on the microscale be-
haviour has been studied extensively. Fibre break models
account for fibre strength stochasticity [2], and microscale
finite element (FE) homogenisation often accounts for in-
homogeneous fibre distributions [8]. In structural simula-
tions, however, propagation of material variability remains
challenging. Stochastic composite tube or pressure vessel
analyses in literature generally disregard spatial variability
[9-16]. Instead, a single stochastic variable models the lon-
gitudinal stiffness E; of a single layer of the laminate [15],
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sometimes without substantiating its stochastic input pa-
rameters. While other studies account for spatial variabil-
ity, they ignore the spatial correlation between material
properties of adjacent elements. Likewise, intercorrelation
between material properties is neglected [17-22].

Garcia-Martin et al. [17] introduce intralayer variabil-
ity of the Young’s modulus and Poisson coefficient in their
material, using data obtained from DIC measurements.
However, both the inter- and autocorrelation structure of
these variables are not considered. Malgioglio et al. [6]
include spatial variability by modelling the fibre misalign-
ment and fibre volume fraction as random fields. The small
correlation lengths of these imperfections, however, result
in a prohibitively small element size (tens of pm) in the
FE analysis, limiting its use in large structural analyses.

Prior research by Van Bavel et al. [23] alleviates this
problem by providing a multiscale framework. A mesoscale
model implements spatial variability. The macromodel,
on its turn, retrieves effective material properties by ho-
mogenizing the mesomodel. Therefore, it remains compu-
tationally inexpensive, while the intercorrelation between
the resulting effective material properties is modelled with
a vine copula model. This efficiency enables new insights
on the effect of individual material imperfections on the
output stochasticity. Moreover, the research identifies that
mesoscale boundary conditions significantly affect the cal-
culated effective strength.

This paper improves the multiscale framework and fo-
cuses on mesoscale variability. The proposed methodology
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Nomenclature

A Surface area in hierarchical scaling law

B Body considered for homogenisation

0B Boundary of body B

C Covariance function; Copula; Stiffness matrix
FE;; Young’s modulus along axis 4

Ep Strain energy density

F Cumulative distribution function

Gij Shear modulus in direction j on the plane with
normal direction ¢

I Fibre bundle level

Compliance matrix
Vy Fibre volume fraction
X Gaussian random field
X Discretized Gaussian random field
Y Non-Gaussian random field
Yi1 Thermodynamic force
Y™t Longitudinal tensile energy threshold
d Euclidean distance
df Damage variable

Probability distribution function

g A nonlinear function describing a non-Gaussian
distribution in terms of a Gaussian distribution.

l Correlation length

lo Gauge length in fibre strength distribution

Weibull modulus in fibre strength distribution

n Outward pointing normal vector

ng Number of fibres

P Non-negative integer in Whittle-Matérn kernel

] Position in Euclidean space

t Traction vector

U Displacement vector

x Random variable

€ Strain
Strain tensor

0 in-plane (ip) or out-of-plane (op) misalignment
angle

A Eigenvalue ¢

1 Arithmetic mean

Vij Poisson’s ratio corresponding to a contraction in
direction j when extending direction ¢

13 Independent standard normal variable

P Autocorrelation function

o Stress; Standard deviation

o Stress tensor

011 Longitudinal tensile strength

o) Scale parameter in fibre strength distribution

TIL Matrix interlaminar shear strength

P Joint Gaussian probability density function

o; Eigenvector ¢

oy Fibre diameter

w State index of random field evaluation

efficiently and accurately propagates uncertain material
imperfections to the structural macroscale. Specifically, fi-
bre misalignment, fibre volume fraction and fibre strength
variability are considered. These quantities have a sig-
nificant impact on the behaviour of composite structures,
as illustrated numerously [2, 4-6, 8] and their probabilis-
tic data is relatively well reported [24-26]. This paper is
organized as follows. Section 2 elaborates on the introduc-
tion of spatial variability into the FE model. Mesoscale
random fields model the fibre misalignment and volume
fraction variability. In addition, a fibre break model ac-
counts for fibre strength variability. Section 3 presents
the multiscale framework. It connects mesoscale spatial
variability and macroscale variability of intercorrelated ef-
fective material properties using FE homogenisation and
vine copula modelling. Section 4 discusses the results and
verifies the methodology. It uses a unidirectional compos-

ite coupon subjected to a tensile load to compare between
directly and indirectly modelling spatial variability on the
macroscale. Finally, we draw conclusions in section 5.

2. Spatial variability

This section elaborates on the probabilistic modelling
of spatial variability of composite imperfections. First,
Section 2.1 presents random fields as a modelling tool
for spatially correlated variables. Afterwards, Sections
2.2, 2.3 and 2.4 explain, respectively, the implementa-
tion of fibre misalignment, fibre volume fraction and fi-
bre strength variability. As a reference, T700 fibres and
an ARALDITE® epoxy are used. Table 1 lists material
properties. Measurements made by Mesquita et al. [24]
provide data on the strength of T700 fibres.



Fibre elastic properties

Matrix properties [27]

Fibre strength properties [24]

Eq1 28]  230GPa E 3.15 GPa Fibre diameter ¢y  6.87pm
Esz/33 29]  19GPa G 1.21 GPa | Weibull modulus m  3.94 [-]
vi2/13 [29] 0.2 [] v 0.3 [] Scale parameter oy 4.71 GPa
Giz/13 [29]  27GPa Interlaminar 56 MPa Gauge length l[p  12mm

Gas [29] 7 GPa shear strength 771,

Table 1: Fibre and matrix material properties.
V] 05 ] 0oy ) B, fwn] 0%, fwn] G, fwn] 5, o] 72, [in] 5, )
Mean 51.67  0.00 0.00 Value | 1073 675 71 619 407 339

Standard | 4.76 2.23 1.01
deviation

Table 2: Probabilistic data for fibre volume fraction Vy [25] and in-plane 6;;, and out-of-plane 6,, misalignment, with correlation lengths ZZ

2.1. Random fields

Random fields X (s;w), defined as an indexed set of
random variables  (w) over some parameter space {2, can
be thought of as a spatial extension of random variables.
As a result, sample evaluations do not only depend on
the state index w but also on the evaluated position in
space 8 C 2. Therefore, these random fields provide an
excellent tool for modelling spatially correlated compos-
ite imperfections, such as the fibre volume fraction at a
specific position in the material.

Gaussian random fields can be obtained by a series ex-
pansion using some set of convenient functions. Ideally,
these form a basis of the Hilbert space £2 (2) of square in-
tegrable functions over 2. One possible expansion consists
of the numerically efficient Ezpansion Optimal Linear Fs-
timator (EOLE) [30]. It uses a spectral decomposition of
the autocovariance function Cxx (s,8’) to construct such
a basis. The random field representation thus becomes

Zfz

Herein, p(s) is the mean of the random field, &; (w)
are independent standard normal variables, \; and ¢; are
eigenvalues and eigenvectors, respectively, of C'xx. Dis-
cretization is achieved by truncating the series expansion
and evaluating the autocovariance function at a finite num-
ber of positions {X (81),..., X (8m)} C Q. In that case
Cx x becomes an autocovariance matrix.

A stationary random field has a correlation structure
that is independent of the position in space. In the as-
sumption of such a stationary field, a simplified Matérn
autocorrelation function, written as

pre = 50 (—mmz) s
> (vaa)

1=

X (s;w) beCX(s (1)

(2)

provides a versatile analytical fit to many experimental
autocorrelations. Here, p is a non-negative integer and d

a correlation-weighted distance equal to

(IR YR G EC

with d; the distance between two positions measured along
direction ¢ and I; the correlation length along direction
i. The correlation length is defined as the length [y, for
which the autocorrelation becomes smaller than 0.1.

In case of (p = 0) or (p = o00) this equation simplifies to
the popular exponential and squared exponential autocor-
relation functions. However, both have important draw-
backs, either due to numerical inefficiency (exponential)
or lack of physical interpretability (squared exponential).
Therefore, p = 3 is considered a good compromise [31].

Most random field discretization methods only work
with Gaussian fields. A straightforward extension to non-
Gaussian fields consists of using the target non-Gaussian
cumulative distribution function (CDF) Fy (-) to trans-
form a Gaussian field X (s) to its non-Gaussian counter-
part Y (8), by using

Y(s) = Fy ' {Fx (X (5)),8} =g (X (s).5), (4

where Fx () is the CDF of a standard normal variable.
The unknown autocorrelation p,, of the underlying Gaus-
sian field is related implicitly to p,, by

Pyyoy + 1y =

[ [ e

The non-Gaussian distribution’s mean py and standard
deviation oy are required to normalize the autocorrela-
tion function. ® is the joint Gaussian probability density
function. Equation 5 has to be solved iteratively to find
Pz, While accounting for the fact that p,, might not yield
a positive semidefinite autocorrelation matrix [32].

g (22,8) ®{x1,x2; prs } dr1dxs. (5)

2.2. Fibre misalignment

Mean field image analysis [33] is used to characterize
fibre misalignment. This technique measures the average



Fibre direction

(a) In-plane misalignment (b) Out-of-plane misalignment

Figure 1: Example of 6;;, and 0, definition for a schematic UD-ply.

orientation of fibres over a specific area, typically several
mm long and wide. Therefore, it is particularly useful for
mesoscale implementations where fibres are not modelled
explicitly.

The average orientation is decomposed into an in-plane
0;p and out-of-plane 6,, misalignment angle. In-plane mis-
alignment is defined as a rotation about the ply stacking
direction vector. Out-of-plane misalignment is defined as a
rotation about the vector perpendicular to the plane made
by the stacking direction vector and the nominal fibre di-
rection vector. Figure 1 illustrates their definition.

The resulting spatially averaged in-plane and out-of-
plane misalignment angles are spatially correlated, with
correlation lengths on the order of several mm. As an
approximation, the fields are stationary and Gaussian [26].
Table 2 lists measured in- and out-of-plane misalignment
probabilistic data.

Both misalignment angles are modelled by an indepen-
dent random field. The local misalignment values are im-
plemented in finite element models by transforming the
material coordinate system of the element at the corre-
sponding position. As an illustration, Figure 3 shows both
in-plane and out-of-plane misalignment realisations. The
random field is calculated for a cuboid unidirectional com-
posite with dimensions 11 x 7 x 1.05 mm. Section 3 elab-
orates on the choice of this model.

2.8. Fibre volume fraction

In contrast to fibre misalignment, the fibre volume frac-
tion Vy does not follow a Normal distribution. Instead, it
is left-skewed and better described by a Weibull distribu-
tion [25]. Therefore, in this study, a non-Gaussian random
field is used to model V. Table 2 provides probabilistic
data for V; using measurements from [25].

Sanei and Fertig [25] show that the transverse corre-
lation length of the fibre volume fraction is small, with
an uncorrelated window size of only 70pum. This con-
firms the observation that most studies involving inho-
mogeneous transverse fibre distribution in their simula-
tions occur at the microscale [4, 34] rather than at the
mesoscale. Moreover, this correlation length determines
the transverse element size of the mesomodel as discussed
in Section 3. Data on the longitudinal correlation length
are not available. As an approximation, the longitudinal

correlation length is assumed to be equal to that of 6,
since determining an exact value is not the focus of this
study.

Subsequently, the analytical Mori-Tanaka method [35]
is used to derive effective elastic properties from the local
fibre volume fraction, rather than a numerical simulation
including micro-scale variability since the focus lays on
mesoscale variability. Figure 3 shows an example realisa-
tion of the fibre volume fraction for the same unidirectional
composite used previously for fibre misalignment realisa-
tions.

2.4. Fibre strength

The single fibre strength is often modelled by combin-
ing the weakest-link theory with a 2-parameter Weibull
distribution [36], which yields

Fly(0)=1—-exp [_ll (")m} . (6)

0 \0o

Equation (6) predicts the failure probability of a single
fibre of arbitrary length [ at stress ¢ with Weibull param-
eters og and m, fitted at some reference length ;.

However, it is shown that the (tensile) failure behaviour
of composites is more complicated [37]. Fibre breaks cause
stress concentrations in neighbouring intact fibres, which
now carry a higher load. Therefore, fibre breaks tend to
accumulate in clusters. Numerous fibre break models de-
scribe this complex failure behaviour. A benchmarking
study [2] shows that the analytical model of Pimenta [38]
corresponds well with experiments.

This hierarchical scaling law (HSL) model considers
the failure of fibre bundles of size ny = 2. ny is the num-
ber of fibres and I some positive integer indicating the
bundle level, as shown in Figure 2. An analytical perfectly
plastic shear lag model accounts for stress concentrations
around broken fibres. Therefore, failure statistics of a cer-
tain bundle level I follow from the failure statistics of the
previous bundle level I — 1, up until the failure strength
of a single fibre at I = 0. For a specific local fibre volume
fraction V, the model implicitly assumes that increasing
bundle levels have larger cross sections A. Keeping A fixed
(corresponding to the element size in FE simulations), the
number of fibres ny (and therefore the bundle level) equals

4
= Qﬁfﬂr
¢y is the fibre diameter. Generally, the calculated num-
ber of fibres does not correspond to an integer valued I.
However, its failure distribution can be retrieved by inter-
polating between the two nearest ny for which I is integer
valued.

After predicting the fibre bundle strength 0’{1 with the
HSL, a rule of mixtures subsequently calculates the com-
posite tensile strength 011 as

Vio {1

g11 = . (8)
L= (1—Vy) Em/Ef,

ny AVf. (7)
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Figure 2: Definition of fibre bundles in the hierarchical scaling law.

It accounts for the matrix E™ and fibre Young’s modulus
EJ,, assuming matrix and fibre strain are equal. In combi-
nation with the previously fixed element size in the HSL,
this rule of mixtures results in a correlated fibre volume
fraction and composite strength, as shown by Figure 3.

3. Mesoscale model

The next section presents the multiscale framework.
Mesoscale imperfections are modelled using the method-
ology of Section 2. First, Section 3.1 discusses the elas-
tic properties homogenisation of an imperfect mesomodel.
Next, Section 3.2 similarly describes tensile strength ho-
mogenisation. Finally, Section 3.3 details an intercorre-
lated model of these homogenised properties using a vine
copula.

Both the model and element size of the mesomodel de-
pend on the spatial correlation of the material variability.
For the former, the largest correlation lengths determine a
minimum model size in order to consider the homogenized
properties as variables rather than fields. For the latter,
the smallest correlation lengths determine a minimum el-
ement size in order to provide a sufficient level of fidelity
for the random field modelling, corresponding to roughly
3 to 5 elements per unit of smallest correlation length.

Therefore, the mesomodel is sized 1100 x 700 x 350 pm?
in the X-, Y- and Z-directions, respectively. In addition,
the element size equals 70 um in the transverse direction
and 110 pum in the longitudinal direction. Figure 4 shows
the resulting mesomodel. The figure does not show bound-
ary conditions, since they depend on the FE homogenisa-
tion scheme, as explained in the following subsections.

3.1. Elastic properties homogenisation

Homogenisation of elastic properties requires that the
Hill condition is satisfied [39]

0 = 0:E + ¢o:€. (9)
~—~ ~—~ N——
energetic mechanical =0

It equates the average of a scalar product of stress ¢ and
strain € fields to the product of their averages - [40]. Haz-
anot and Huez [41] show appropriate boundary conditions
need to be applied in case of homogenisation over a finite
domain B with boundary 0B. These conditions commonly
include [40]:

1. Uniform displacement u or Dirichlet boundary con-
dition: u(s) =€°-s Vs € OB

2. Uniform traction ¢ or Neumann boundary condition:
t(s)=0"-n VseOB

3. Periodic boundary conditions:
u(st)=u(s™)+e (st —s7),
t(st)=—t(s”) VseoB

Herein, €° and ¢ are uniformly applied strains and
stresses, respectively, and n is the outward pointing normal
vector on OB. Figure 5 shows a two-dimensional schematic
of the resulting deformation for different boundary con-
ditions. Six simulations with carefully applied boundary
conditions then suffice to determine the 6 x 6 stiffness ma-
trix C' of a linear elastic material. A non-zero uniform
O results in 7; = Cj;e?

strain (Dirichlet or periodic) & €3

where &; is the volume averaged stress of component 4.

A non-zero uniform traction (Neumann) 0? results in &; =

Sij a?, where § = C~! and g; is the volume averaged strain
of component 1.

Figure 6 shows C7; values for 10 mesomodel realisa-
tions, homogenised using three different boundary condi-
tions. The Dirichlet and Neumann conditions clearly pro-
vide upper and lower bounds, as proven in literature [40].
Meanwhile, periodic boundary conditions, shown to accu-
rately predict the in-situ material response [42], provide a
good compromise and are therefore selected as representa-
tive homogenised properties.

The homogenized stiffness matrix of a representative
random mesomodel presented in Figure 7 shows a nearly
orthotropic material behaviour, except for the non-zero
Ci15 and Cig entries. The large values of these coeffi-
cients are largely explained by truncation of the in-plane
and out-of-plane misalignment fields over a finite domain,
generally leading to a non-zero mean misalignment of the
meso-model. Orthotropy is restored by subtracting the
mean value, p (6;) = ZlN:O 0;/N, from the mesomodel re-
alisation. After homogenisation of the (now) orthotropic
material behaviour, the mean misalignment should be rein-
troduced. This occurs at the macroscale as a variable
which transforms the element. Table 3 shows that this zero
mean misalignment approach does not alter the elastic re-
sponse of a macroscale element. The anisotropic method
retains the non-zero mean in the mesomodel realisation,
while the orthotropic method first subtracts this non-zero
mean value from the mesomodel and then reintroduces it
on the macroscale.

3.2. Tensile strength prediction

The homogenized tensile failure strength equals the
maximum volume averaged stress o7;** which a meso-
model can attain before failure. For example, initially, an
increasing uniform traction load, leads to a proportional
increase of o1;. Elements start failing after a while, de-
creasing the overall stiffness and transmitting extra load to
the remaining elements until catastrophic failure occurs.



Ply stacking direction

(b) In-plane misalignment [°]

(c) Fibre volume fraction [-] (d) Longitudinal tensile strength 11 [MPa]

Figure 3: Example random field realisations on a unidirectional composite sample, with dimensions 11 X 7 x 1.05 mm.

Ciu | Cio | Cis | Co | Co3 | Cs3 | Cis | Cis |
Anisotropic [GPa] | 118.942 | 2.8492 | 2.7243 | 7.9862 | 3.1929 | 7.9859 | 0.31069 | —1.2551
Orthotropic [GPa] | 118.947 | 2.8494 | 2.7243 | 7.9862 | 3.1929 | 7.9859 | 0.31133 | —1.2633
420 (%] - - - — — - —0.21 | —0.66

Table 3: Comparison between non-zero and zero mean misalignment homogenization approaches.
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Figure 5: Deformation of body B for different boundary conditions.
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.01 REROIOR 3.20 0.00 -0.00 -0.04
C5;12.76 3.20 0.00 0.02 0.01
Cy;1-0.02 0.00 0.00 2.40 -0.02 0.02
Cs;1.58 -0.00 0.02 -0.02 3.38 -0.01
Ce; 1-2.26 -0.04 0.01 0.02 -0.01 3.62

Ca Co Cy C

Cis Cis

Figure 7: Homogenized stiffness matrix with periodic boundary con-
ditions showing nonzero C15 and Cig entries.

Boundary conditions introduce stress concentrations at
the edges of the mesomodel. Therefore, the mesomodel is
augmented with extra infinite strength elements along each
cartesian direction. The augmented length along each di-
rection corresponds to the largest correlation length in that
same direction. To take macroscale boundary conditions
into account, mesomodels corresponding to edge elements
at the macroscale are not augmented at their free faces.

A progressive damage model [43] shows mesomodel fail-
ure is brittle (see Figure 8). Since it occurs immediately
after first element failure, a linear simulation adequately
predicts the model strength. The non-linear simulation
reduces the longitudinal stiffness E{¢™*°! = By, (1 — dy)
using the damage variable dy, which equals

. lim—+
dy = {0 Y, <M o (10)
1 ifY > }/ﬁm

where Y77 is a thermodynamic force, derived from the
strain energy density Ep as

oF 2
Yii= 22 = st 5 . (11)
ody  2(1—dy)° En

This equation calculates the energy threshold Y/™* by
substituting 11 with the longitudinal composite strength.

3.3. Correlated material parameters

Figure 9 shows that the homogenized material proper-
ties are intercorrelated. Copulas provide an excellent tool
for fitting such multivariate distributions. They handle
the marginal distributions F;(z;) and correlation structure
separately, due to Sklar’s theorem [44]

F(z1,...,2n) = C{F1(21), ..., Fr(zn)}. (12)

Derivation, using the chain rule, leads to an expression
in terms of the probability density functions (PDF) f;(x;),

flx1,yxn) =cron {F1 (1), ., By (20)}

""""" First element failure

Volume averaged stress o1, [MPa

Time [s]

Figure 8: Volume-averaged longitudinal stess 011 across time for an
arbitrary meso-scale sample, showing that structural failure occurs
immediately after first element failure.

where ¢;.. ., is an n-dimensional copula density. That is,
each multivariate distribution F' can be written in terms
of its marginals F; and an n-dimensional copula C, that
describes the correlation structure [45].

Finding suitable n-dimensional copulas is challenging
and in practice mostly bivariate copulas exist. However,
it is possible to decompose the joint density function into
conditional densities, like

f(@1, oy wn) = f1 (21) f(z2]21) f(23]71, 22)

"'f(xn|zla"'axn—1)' (14)

From Equation 13 it follows that for conditional densities

[ (@2|w1) = co1 {F2 (x2) , F1 (21)} f2 (22)
[ (@slwy, x2) = caop {F (w3]21) , F (w2]z1)} f (2321) -
(15)

Therefore, it is possible to rewrite Equation 13 in terms
of bivariate copulas. The same multivariate distribution,
however, can be decomposed in multiple ways. As pro-
posed by Bedford and Cooke [46, 47], vines provide a way
of ordering these different decompositions, leading to the
concept of vine copulas.

Fitting the right vine copula to a given multivariate
distribution requires an heuristic algorithm due to a gen-
erally large number of parametrizations. The algorithm
proposed by Difimann et al. [48] is used because of its
straightforward implementation using the Python package
“pyvinecopulib” [49], and its good performance [50]. The
algorithm sequentially identifies the whole vine. Maxi-
mization of the absolute empirical Kendall’s 7 ensures a
reasonably well fitted decomposition into bivariate copu-
las. Meanwhile, selection of individual copulas occurs with
the Akaike information criterion (AIC) in order to balance
model simplicity with goodness of fit [50].

The marginal distributions are fitted by minimizing the
negative log-likelihood function for the candidate distribu-
tions. The Kolmogorov-Smirnov (KS) test subsequently
compares different candidates by calculating their p-value.
If these results are inconclusive, either the simplest or, in
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Figure 9: Correlation plot for 100,000 homogenized samples. The strength 011 corresponds to the strength of a fully embedded mesoscale

model.

Figure 10: Indirect coupon model used for verification. It consists of
10 x 10 x 3 elements.

case of physically bounded variables, a bounded distribu-
tion is preferred.

4. Results and discussion

The multiscale framework is illustrated on a unidirec-
tional cuboid composite coupon. It is equal in size to
10 x 10 x 3 mesomodels along the X, Y and Z axis, re-
spectively. Therefore, a direct implementation of spatial
variability on the coupon model remains computationally
feasible. The coupon is simply constrained in a statically
determinate manner, while a uniform traction is applied
to both the +X and —X faces.

Coupon strength is predicted by two different mod-
els of the composite coupon. First, an “indirect” model,
shown in Figure 10, uses the multiscale framework estab-
lished earlier in order to reduce the number of elements at
the macroscale (the coupon model). The model is meshed
with linear hexahedral elements with a shape equal to
the mesomodel. It indirectly accounts for spatial vari-
ability using intercorrelated material properties retrieved
from homogenisation of a mesoscale model. Second, a “di-
rect” model, similar to the indirect model except for a
smaller mesh size, does not use the multiscale framework.
Instead, it directly accounts for spatial variability at the
macroscale. The model is also meshed with linear hex-
ahedral elements with a shape equal to that of the ele-
ments of the mesomodel. The indirect model uses 300 el-
ements at the macroscale, while the direct model requires
150,000 elements, which constitutes a 500 times increase.
This highlights the computational efficiency of the indirect
model. To estimate the coupon strength, 100, 000 and 1000
stochastic realisations are sampled, respectively.

Figure 11 shows a comparison of the predicted coupon
strength. This corresponds to the traction load at which
the first element fails. Visual comparison of the direct and
indirect model distribution shows that the empirical av-
erages p almost coincide (1919.9 MPa and 1924.3 MPa for
the indirect and direct model, respectively). This is a sig-
nificant improvement compared with previous results [23],
where the effect of macroscale boundary conditions on the
mesoscale homogenisation was not accounted for. How-
ever, the indirect model distribution appears more spread



out, as reflected in the higher coefficient of variance (3.55%
compared to the direct model’s 3.14%).

Two possible explanations can be mentioned. First, the
mesomodel X, Y and Z lengths correspond to the largest
correlation length along the same axis. This correlation
length defines the distance for which the autocorrelation
function drops below 0.1. Therefore, a non-negligible cor-
relation remains beyond the boundaries of the mesomodel
which is not taken into account by the indirect model. A
second explanation may be the finite sample size of both
the direct and indirect model. As a result, the empirical
distributions contain a sampling error.

The first hypothesis is tested by creating an adjusted
indirect model. The mesomodel is twice as large as the
previous one, except for the Z- (thickness) direction. As
shown by Figure 11 the resulting empirical distribution’s
shape matches more closely that of the direct model. In
addition, the CoV reduces (3.55% to 3.38%) compared to
the non-adjusted indirect model.

Testing of the second hypothesis is performed, first,
using the two-sample Kolmogorov-Smirnov test. This test
rejects the null hypothesis (p < 0.05) that the direct and
indirect model’s empirical strength distribution are drawn
from the same distribution with a p-value equalling p =
0.014. Meanwhile, the p-value for the adjusted indirect
model equals p = 0.184, indicating that it corresponds
much more closely to the direct model distribution.

The second hypothesis is tested further by fitting each
model’s distribution to an analytical PDF. Afterwards,
this analytical distribution is sampled in batches equal to
the sample size a large number of times (N = 10, 000).
As such, the scatter on the empirical mean and standard
deviation (STD) can be studied. As Table 4 shows, the
limited number of samples for the direct model results in
a relatively large scatter of u and o, with the mean of
the adjusted indirect model laying within 20 of the direct
model’s mean value. It further shows that the standard
deviation of the adjusted indirect model decreases con-
siderably compared to that of the non-adjusted indirect
model.

Modelling method | Direct Indirect Adj. indirect
Mean p [MPa] | 1924.3  1919.9 1921.7
STD p [MPa] 1.94 0.21 0.21
Mean o [MPa] | 60.5 68.2 64.9
STD o [MPa] | 1.70  0.21 0.20

Table 4: Scatter on indirect and direct model distributions due to
finite sample size.

Table 5 shows the influence of individual types of im-
perfections on the homogenized material properties o1y
and Fq1. Here, 017 is the homogenized failure strength
for a fully embedded mesomodel. These results are re-
trieved by sampling mesomodels (N = 100,000) and in-
cluding only a subset of all the imperfections. The table
shows that both the fibre misalignment and fibre volume

fraction have a significant effect on the stochasticity of the
homogenized properties. For example, the mean strength
decreases by ~ 1.5% and the standard deviation increases
by = 7.2%.

Strength 011 [MPa] | Stiffness Fq; [GPa]
Included 7 o W o
Vi, 0;, 00, | 23088  107.0 | 118.7 1.34
Vi, ol | 23353 1049 | 1203 1.30
0, 00, | 2319.6  103.0 | 1188 0.48
of, | 2344.3 99.8 120.4 0.00

Table 5: Influence of individual imperfections on the homogenized
material properties of a fully embedded mesomodel.

In addition, Figure 11 shows the predicted coupon fail-
ure strength in case only fibre strength variability is ac-
counted for, named Hierarchical Scaling Law (HSL) in the
figure. It shows that the inclusion of spatial variability of
the fibre misalignment and volume fraction considerably
impacts the coupon strength, irrespective of whether the
indirect or direct model is considered.

Moreover, it is studied whether excluding intercorrela-
tion of the homogenized properties in the indirect model
results in a significant coupon strength prediction differ-
ence compared to including it. As shown previously in
Figure 11, including intercorrelation results in a strength
prediction with g = 1920 MPa and ¢ = 68.1 MPa. Mean-
while, excluding intercorrelation results in a strength un-
derprediction with p = 1913MPa and ¢ = 69.0 MPa.
While statistically significant, the effect seems negligible
compared to the overall strength stochasticity.

5. Conclusion

This paper propagates the effect of material imperfec-
tions effectively by using a multi-scale methodology. The
mesoscale serves to include spatial variability of the fi-
bre misalignment and fibre volume fraction. A fibre-break
model introduces fibre strength variability at the same
scale. FE homogenisation of this mesomodel combined
with vine copula modelling further enables a computa-
tionally efficient inclusion of this spatial variability at the
structural (macro) scale.

The methodology closely matches the predicted failure
strength of a coupon model, compared with a direct inclu-
sion of spatial variability on the macroscale. Respectively,
both methods predict a mean strength of 1922 MPa and
1924 MPa, and a similar variance. The indirect coupon
model contains 75 elements, while the direct model con-
tains 150,000 elements, highlighting its computational ef-
ficiency. Compared with previous research [23] the predic-
tion improves considerably by the inclusion of macroscale
boundary conditions during the FE homogenisation of the
mesoscale model.

Propagation of only a subset of the three material im-
perfections shows that all have a considerable impact. The
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Figure 11: Predicted failure stress PDF's for different methodologies.

homogenized strength of a fully embedded mesomodel de-
creases by about 1.5% from 2344.3 MPa when simply in-
cluding fibre strength variability, to 2308.8 MPa when also
including fibre misalignment and volume fraction variabil-
ity. Similarly, the standard deviation increases by approx-
imately 7.2% from 99.8 MPa to 107.0 MPa.

A remaining challenge consists of the large number of
mesomodel samples required to characterize the homoge-
nized properties’ distributions and correlation structure.
Metamodelling provides a possible solution to this prob-
lem, by circumventing the relatively expensive finite ele-
ments simulations. In addition, the methodology is for
now restricted to cuboid macroscale elements. An ex-
tension of the homogenisation procedure to tetrahedrally
shaped elements, for instance, provides more flexibility for
composite structure shapes at the macroscale.
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