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Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-
plasticity – a variance-based global sensitivity analysis
M. Böddecker,M.G.R. Faes,A. Menzel,M.A. Valdebenito

• Uncertainty of material parameters for finite elasto-plasticity modeled using probability theory.
• Effect of uncertainty on stress triaxiality and Lode angle investigated by variance-based sensitivity.
• Surrogate modeling required for feasible numerical implementation and performance.
• Material parameters governing plasticity affect stress triaxiality and Lode angle the most.
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A B S T R A C T
This work establishes a computational framework for the quantification of the effect of uncertainty
of material model parameters on extremal stress triaxiality and Lode angle values in plastically
deformed devices, whereby stress triaxiality and Lode angle are accepted as key indicators for
damage initiation in metal forming processes. Attention is paid to components, the material response
of which can be represented as elasto-plastic with proportional hardening as a prototype model,
whereby the finite element method is used as a simulation approach generally suitable for complex
geometries and loading conditions. Uncertainty about material parameters is characterized resorting to
probability theory. The effects of material parameter uncertainty on stress triaxiality and Lode angle
are quantified by means of a variance-based global sensitivity analysis. Such sensitivity analysis is
most useful for apportioning the variance of the stress triaxiality and Lode angle to the uncertainty on
material properties. The practical implementation of this sensitivity analysis is carried out resorting
to a Gaussian process regression, Bayesian probabilistic integration and active learning in order to
decrease the associated numerical costs. An example illustrates the proposed framework, revealing
that parameters governing plasticity affect stress triaxiality and Lode angle the most.

1. Introduction
Forming processes of metals are of the highest impor-

tance in industrial and manufacturing engineering. Such
processes affect material properties along the respective load
paths, in particular in view of deformation-induced damage
effects. These effects, together with initial material prop-
erties, influence, amongst others, performance and lifetime
properties of related components. The prediction of prop-
erties at material and component level is typically based on
advanced modeling and simulation approaches; see, e.g., Ba-
nabic (2010) and Sprave et al. (2020) as well as references
cited therein. In general however, loading conditions, ge-
ometry and initial material properties are associated with
uncertainties due to inherent variabilities, insufficiency in
the available information, or a combination of both Faes et al.
(2021). In this work, a simulation framework is established
to analyze uncertainties related to initial material properties,
respectively material parameters of the underlying material
model. In particular, their influences on measures used to
detect damage effects are of interest here. This approach
ultimately contributes to constructing a simulation frame-
work that allows to optimize the robustness of metal forming
processes to variations in material and manufacturing pa-
rameters by explicitly quantifying the effect of uncertain or
variable quantities on the overall damage state of the formed
metal part.
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Stress triaxility – as a ratio that relates hydrostatic stress
to a shape changing related deviatoric stress contribution
– is accepted as one of the key indicators for quantifying
damage initiation (and evolution) in metal forming processes
of mechanical components; see the elaborations and models
for (ductile) damage discussed in, e.g., Lemaitre (1996)
and Murakami (2012), and related models proposed for non-
local ductile damage in Mediavilla et al. (2006) and Zhu
and Engelhardt (2018). In addition to stress triaxiality, the
Lode angle, which can be considered as the orientation
of the stress state within its octahedral plane in principal
stress space, is established as a stress measure relevant for
the initiation (and evolution) of damage related phenomena,
in particular at states of low stress triaxiality; cf. Bai and
Wierzbicki (2008) and the investigations including finite
element analysis Malcher et al. (2012); Malcher and Mamiya
(2014); Darlet and Desmorat (2015). Moreover, the effect
of the respective stress state on both, damage initiation and
evolution is elaborated in Brünig et al. (2013) with focus of
different damage mechanisms depending of stress triaxiality,
Lode angle and stress intensity.

Stresses cannot be directly measured in experiments, but
(typically) forces and displacements can. At homogeneous
states of deformation, stresses can then be calculated di-
rectly from measured force levels and information of, e.g.,
cross-sectional area. In general, stresses are computed based
on suitable numerical methods, such as the finite element
method, in combination with a constitutive, respectively
material model. In consequence, particular values of stress
triaxiality and Lode angle in general depend, amongst other
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factors, on the particular constitutive model and the par-
ticular material properties associated with a specific com-
ponent under consideration. Solving the related finite ele-
ment model is usually a challenging task from a numerical
viewpoint, as it may comprise a large number of degrees
of freedom and may demand repeated iterations to capture
nonlinear material behavior.

In summary, stress triaxiality and Lode angle are re-
sponses, respectively measures of interest, which are depen-
dent on material properties. In practice, selecting suitable
values for material parameters of a model reflecting the
respective material properties may be challenging due to
uncertainty associated with these, such as variability of raw
materials or production processes, to name but a few; see,
e.g., Oakley et al. (1998). A possible means for capturing
uncertainty regarding material parameters consists of apply-
ing probability theory (see e.g., Fishman (1996)). Indeed, the
uncertainty about parameters can be described in terms of
random variables with a probability distribution. The type of
probability distribution (for example, Normal, uniform, etc.)
and its distribution parameters (for example, mean, variance)
can be selected based on prior knowledge combined with
experimental measurements. Following probability theory
as described previously, the (predicted) measure of interest
(either stress triaxiality or Lode angle) is no longer a fixed,
crisp value but instead, it becomes a random variable it-
self. However, its probability distribution and distribution
parameters are usually different from those prescribed to
the material parameters. In fact, recall that the measure of
interest is calculated based on, e.g., a finite element analysis
which is nonlinear in its degrees of freedom and, moreover,
the material model itself may also be nonlinear in its material
parameters. Hence, even if uncertainty regarding material
parameters can be quantified by means of probability dis-
tributions, it is still a challenge to characterize the resulting
uncertainty on the measure of interest, as there is no closed-
form access to its probabilistic characteristics. Hence, when
quantifying uncertainty of this measure, one must focus
on specific probabilistic descriptors, such as second-order
statistics (that is, mean and variance), confidence intervals
or probabilities of exceeding a critical value, to name a few.

One probabilistic calculation which is very informative
in practice is the variance-based global sensitivity analysis,
which produces the so-called Sobol’ indices (Sobol’ (1993)).
In a nutshell, Sobol’ indices explain which part of the vari-
ance of the measure of interest can be attributed to the uncer-
tainty (described here using the variance) associated with the
input parameters of a certain model. In the case of this work,
recall that the measure of interest is the stress triaxiality or
Lode angle and that the input involves the uncertain material
parameters. Thus, Sobol’ indices can reveal which of the
material parameters characterizing the material behavior is
the most influential regarding the measure of interest. Such
information is most valuable as, for example, one may decide
to collect additional information on that material parameter
to either reduce its uncertainty or take appropriate measures
that ameliorate its effect on stress triaxiality and ultimately,

damage on metal forming processes. This similarly applies
to other stress-based measures established to predict dam-
age related effects, evolution and performance, such as the
related Lode angle.

The practical calculation of Sobol’ indices is most de-
manding from a numerical viewpoint (see, e.g. Saltelli et al.
(2008); Patelli et al. (2010)). Indeed, such calculation in-
volves repeated evaluations of the measure of interest for
different combinations of the input material parameters,
possibly in the order of tens of thousands. Considering that
the solution of a single nonlinear finite element simulation
may demand minutes, hours or even days of CPU time
(depending on the complexity of the underlying model), the
direct calculation of Sobol’ indices is usually not feasible
from a computational viewpoint. Hence, specialized numer-
ical approaches are required for their calculation in practical
problems (see, e.g. Sudret (2008)).

Taking into account the challenges described above, the
objective of this work is to implement a framework for
performing computationally efficient variance-based global
sensitivity analysis of the stress triaxiality and Lode an-
gle of a mechanical component. Sensitivity is considered
with respect to the material parameters characterizing an
elasto-plastic stress-strain material behavior. The focus is on
conducting a sensitivity analysis which is efficient from a
numerical viewpoint and that demands a limited number of
evaluations of the associated nonlinear finite element model.
In particular, this work implements a framework introduced
in Song et al. (2022) to yield the calculation of Sobol’ indices
feasible. The framework involves constructing a Gaussian
process regression (Rasmussen and Williams (2006)), which
replaces (or surrogates) the nonlinear finite element model
and which can be evaluated at negligible numerical costs.
This Gaussian process is trained with a limited number
of realizations of the finite element model (usually in the
order of a few tens). In a post-processing step, the Gaus-
sian process is employed within a Bayesian probabilistic
integration framework (Briol et al. (2019)), that allows cal-
culating the sought Sobol’ indices. Furthermore, Bayesian
probabilistic integration allows quantifying the error in the
estimates that it produces. These error estimates are most
useful for improving the Gaussian process regression on-
the-fly through active learning (Jones et al. (1998)), thus
allowing to enhance the estimates of the Sobol’ indices with
additional evaluations of the finite element model.

The rest of this paper is organized as follows: Sec-
tion 2 describes the class of problems considered in this
contribution from a purely deterministic viewpoint. That is,
essentials of the background on the assessment of stress
triaxiality and Lode angle for materials with fixed material
parameters and exhibiting elasto-plastic response with pro-
portional hardening are (briefly) summarized. The particular
model also serves for the subsequent finite element analysis.
Section 3 describes the framework for uncertainty quantifi-
cation and global sensitivity analysis of stress triaxiality and
Lode angle with respect to material properties. Concepts
such as Sobol’ indices, Gaussian processes and Bayesian
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probabilistic integration are explained in depth. The frame-
work developed in the aforementioned two sections is put
into practice in Section 4, where sensitivity analysis of a
tensile test specimen is carried out. This work closes with
a summary and outlook in Section 5.

2. Elasto-plasticity framework
This section briefly introduces essential kinematic rela-

tions, mentions the underling balance equation (in strong
form) and provides basic background on the finite defor-
mation elasto-plasticity framework applied in this work.
Further details on the general theory and implementation
are addressed in Simo (1998), or e.g. Sprave and Menzel
(2020), even though the present paper does not focus on
ductile damage modeling, and references cited therein.
2.1. Essential kinematics

A finite deformation setting shall be considered, with
referential placements in the reference configuration denoted
by 𝑿 ∈ 0, whereas spatial placements in the spatial
configuration are represented by 𝒙 ∈ 𝑡. The motion is
introduced as a nonlinear mapping and, together with the
related so-called deformation gradient, denoted as

𝒙 = 𝝋(𝑿, 𝑡) and 𝑭 = ∇𝑿𝝋 , (1)
wherein 𝑡 represents time and 𝐽 = det(𝑭 ) > 0.

A multiplicative decomposition of the deformation gra-
dient into an elastic (e) and plastic (p) contribution is
assumed as this work proceeds, i.e. 𝑭 = 𝑭e ⋅ 𝑭p with
𝐽e = det(𝑭e) > 0. These deformation quantities allow
introduction of representative strain measure such as spatial
elastic logarithmic strains of the form

𝜺e =
1
2 ln(𝑭e ⋅ 𝑭 t

e ) =
1
2 ln(𝒃e) = 𝜺vole + 𝜺isoe , (2)

wherein ∙t denotes transposition and 𝜺vole = 1
3 tr(𝜺e) 𝑰 with

𝑰 the second-order identity tensor.
2.2. Finite isotropic elasto-plasticity

The Helmholtz energy is considered for an isothermal
setting and assumed to decompose additively into an elastic
volumetric, an elastic isochoric and a proportional hardening
related contribution of the form

𝛹 (𝒃e, 𝛼) =
1
2 𝐾 tr2(𝜺e) + 𝐺 tr(𝜺isoe ⋅ 𝜺isoe )

+ ℎ
𝑛p + 1

𝛼𝑛p+1 , (3)

wherein 𝛼 is a proportional hardening related internal vari-
able and 𝐾 , 𝐺, ℎ, 𝑛p are material parameters.

Based on this (isotropic) specification, the (mechanical)
dissipation contribution results in

 = 𝒎t ∶ 𝒍 − �̇� = 𝒎t ∶ 𝒍p + 𝛽 �̇� ≥ 0 , (4)

wherin ∙̇ denotes the material time derivative, 𝒍 = ∇𝒙�̇� =
𝒍e + 𝒍p with 𝒍p = 𝑭e ⋅ �̇�p ⋅ 𝑭 −1, together with

𝒎t = 2 𝜕𝛹
𝜕𝒃e

⋅ 𝒃e and 𝛽 = − 𝜕𝛹
𝜕𝛼

= −ℎ 𝛼𝑛p . (5)

Stresses 𝒎 can be interpreted as spatial Mandel-type
stresses, are further specified in e.g. Sprave and Menzel
(2020), and relate to the Kirchhoff stresses via the spatial
contra-variant metric tensor, i.e. 𝝉 = 𝒈−1 ⋅𝒎t = 𝝉 t .

In this work rate-independent von Mises plasticity is
considered in combination with nonlinear proportional hard-
ening. The related yield function reads

𝛷(𝒎t , 𝛽) = ‖𝒎t dev
‖ −

√

2
3 [ 𝜎𝑦0 − 𝛽 ] , (6)

with 𝒎t dev = 𝒎t − 1
3 tr(𝒎

t) 𝑰 and ‖ ∙‖ =
√

∙ ∶ ∙. This yields
the set of material parameters considered, here represented
in vectorial form, as 𝜽 = [𝐾 𝐺 𝜎𝑦0 ℎ 𝑛p].Moreover, associative plastic flow is considered so that

𝒍p = 𝜆 𝜕𝛷
𝜕𝒎t = 𝜆 𝒎t dev

‖𝒎t dev
‖

, (7)

�̇� = 𝜆 𝜕𝛷
𝜕𝛽

= 𝜆
√

2
3 , (8)

together with the Karush-Kuhn-Tucker conditions 𝛷 ≤ 0,
𝜆 ≥ 0, and 𝜆𝛷 = 0. While Euler backward integration is
applied to the proportional hardening variable, i.e. 𝛼𝑛+1 =
𝛼𝑛 +

√

2∕3Δ𝜆 for Δ𝜆 = Δ𝑡 𝜆 and time increment Δ𝑡 =
𝑡𝑛+1 − 𝑡𝑛, plastic incompressibility preserving exponential
integration is applied to 𝒍p, respectively 𝑭p; see, e.g., Simo
(1998) and Sprave and Menzel (2020) for further details.
2.3. Balance of linear momentum

An isothermal setting shall be considered in this work.
In consequence, the only balance equation to be solved is
the balance of linear momentum, with balance of angular
momentum intrinsically satisfied by the symmetry of Kirch-
hoff stresses 𝝉 , respectively symmetry of Cauchy stresses
𝝈 = 𝝉∕𝐽 = 𝝈t = 𝜎𝑖 𝒏𝑖⊗𝒏𝑖, whereby 𝜎𝑖 denote the principal
stresses with related principal vectors 𝒏𝑖. Neglecting accel-
eration contributions and volume forces, balance of linear
momentum in local form and spatial representation reduces
to

∇𝒙 ⋅ 𝝈 = 𝟎 in 𝑡 and 𝝈 ⋅ 𝒏 = 𝒕 on 𝜕𝒕
𝑡 , (9)

wherein 𝒏 denotes the normal surface unit vector and 𝒕 the
prescribed traction vector on the Neumann boundary 𝜕𝒕

𝑡 .The global weak form representation of eq. (9) is the basis
of the (implicit) finite element formulation considered as this
work proceeds.

Different stress-based measures represent local loading
states most relevant for reliable prediction purpose of, e.g.,
damage states and failure initiation processes. In this work,
such measures are referred to the Cauchy stresses 𝝈. Basic
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measures are the hydrostatic stress state 𝜎𝑚, the von Mises
equivalent stress 𝜎𝑒, and stress triaxiality 𝜂, i.e.

𝜎𝑚 = 1
3 tr(𝝈) , 𝜎𝑒 =

√

3
2 ‖𝝈

dev
‖ , 𝜂 =

𝜎𝑚
𝜎𝑒

, (10)

see, e.g., Davis and Connelly (1959) in view of application
of stress triaxiality in metal plasticity. Moreover, the Lode
angle 𝜗, as introduced in Lode (1926), represents properties
of the stress state, namely the orientation of the stress state
within its octahedral plane in principal stress space. To be
specific, the Lode angle 𝜗 can be generated based on the
stress mode (triaxiality) factor 𝜁 via

𝜁 =

√

27
2

𝐽3
𝐽 3∕2
2

= 27
2

𝐽3
𝜎3𝑒

and 𝜗 = 1
3 arccos(𝜁 ) ,

(11)
with the (deviatoric) Cauchy stress invariants 𝐽2 =
1
2 tr(𝝈

dev ⋅ 𝝈dev) = 1
2 ‖𝝈

dev
‖

2 = 1
3 𝜎

2
𝑒 and 𝐽3 = det(𝝈dev).

3. Uncertainty quantification and sensitivity
analysis
The preceding section has discussed the calculation of

stress triaxiality and Lode angle for a mechanical compo-
nent. In this section, the aim is to study the sensitivity of
stress triaxiality and Lode angle with respect to the material
parameters. For that purpose, Section 3.1 explains how the
finite element analysis is abstracted as a black-box function.
Then, the characterization of uncertainty on material param-
eters is addressed in Section 3.2. Probabilistic descriptors
for characterizing uncertainty and performing sensitivity
analysis of the measures of interest (either stress triaxiality
or Lode angle) are described in Sections 3.3 and 3.4. The
numerical strategies for calculating these descriptors are
discussed in detail in Sections 3.5 and 3.6.
3.1. Abstraction of the finite element analysis as a

black-box
The measures of interest (stress triaxiality and Lode

angle) are calculated by means of a nonlinear finite element
model. The different material parameters associated with
this model – that is bulk modulus 𝐾 , shear modulus 𝐺, yield
stress 𝜎𝑦0, hardening modulus ℎ, and hardening exponent
𝑛p – are collected in vector 𝜽, cf. Section 2.2. In addition,
recall that the stress triaxiality 𝜂 as well as the Lode angle
𝜗 are scalar quantities with the respective values dependent
on position 𝒙 ∈ 𝑡, respectively 𝑿 ∈ 0, as well as on
the particular values of the material parameters included in
𝜽. In order to perform sensitivity analysis, stress triaxiality
and Lode parameter are synthesized each in a single scalar
quantity by considering the respective maximum value of
its field distribution. The subsequent analysis shall empha-
sis one such maximum value and the framework similarly
applied to both, stress triaxiality 𝜂 and Lode angle 𝜗. In this
context, let such maximum value be denoted as 𝑦, introduced

as
𝑦 = max

{𝑿,𝑡}∈0×ℝ
(𝜂(𝑿, 𝑡,𝜽)) , (12)

where max(∙) is a function that returns the maximum value
of the argument. This last equation can be rewritten in
compact form as

𝑦 = 𝑔(𝜽), (13)
where 𝑔(∙) denotes a function that involves taking the maxi-
mum value of the measure of interest from a nonlinear finite
element analysis of the mechanical component under con-
sideration for a given set of values of the material parameter
vector and along prescribed boundary conditions, respec-
tively loading history. Clearly, eq. (13) provides a compact,
abstract representation of the finite element analysis as a
black-box function.
3.2. Uncertainty characterization of material

parameters
It is assumed that the material parameters 𝜽 governing

the stress-strain relations are uncertain. Such assumption
is often met in reality: due to variability in raw materials
and manufacturing process of steel, it may be challenging
to identify these parameters in a crisp manner. A possible
means to quantify the uncertainty associated with these pa-
rameters is resorting to probability theory, see e.g. Elnashai
and Chryssanthopoulos (1991). Under such framework, it
is considered that 𝜽 is actually a realization of a random
variable vector 𝜣. The individual coefficients of 𝜣 are con-
sidered as independent and therefore, the joint probability
density function becomes 𝑓𝜣 (𝜽) =

∏𝑛𝜃
𝑖=1 𝑓𝛩𝑖

(𝜃𝑖), where 𝜃𝑖denotes the 𝑖-th component of 𝜽; 𝑓𝛩𝑖
(𝜃𝑖) is the probability

density function associated with 𝛩𝑖, which is the 𝑖-th com-
ponent of the random variable vector 𝜣; and 𝑛𝜃 the number
of material parameters (𝑛𝜃 = 5 in this case). It is assumed
that 𝑓𝛩𝑖

(𝜃𝑖), 𝑖 = 1,… , 𝑛𝜃 is prescribed for 𝑖 = 1,… , 𝑛𝜃 .
Nonetheless, in a more general situation, it is possible to
infer 𝑓𝛩𝑖

(𝜃𝑖), for 𝑖 = 1,… , 𝑛𝜃 , based on prior knowledge
and actual measurements through Bayesian updating; see
e.g. Sivia (1996), or resort to more general models for the
description of the uncertainty (Faes et al. (2021)).

As the uncertainty associated with material parameters
𝜽 is modeled through random variables and considering the
relation established in eq. (13), the maximum value 𝑦 be-
comes uncertain as well. That is, 𝑦 is actually a realization of
a random variable 𝑌 . To quantify the uncertainty associated
with the maximum value 𝑦, one can resort to probabilistic
descriptors, such as mean and variance or variance-based
global sensitivity analysis, as discussed in Sections 3.3
and 3.4, respectively.
3.3. Mean and variance

A simple means for quantifying the uncertainty associ-
ated with the maximum value 𝑦 is calculating its second-
order statistics, namely expected value 𝔼𝜣 (𝑦) and variance
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𝕍𝜣 (𝑦), which are defined as (see, e.g., Fishman (1996))

𝔼𝜣 (𝑦) = ∫𝜽∈𝛺𝜽

𝑔(𝜽)𝑓𝜣 (𝜽) d𝜽 , (14)

𝕍𝜣 (𝑦) = ∫𝜽∈𝛺𝜽

(

𝑔(𝜽) − 𝔼𝜣 (𝑦)
)2 𝑓𝜣 (𝜽) d𝜽 , (15)

where 𝛺𝜽 denotes the support of 𝜽.
Expected value and variance are most useful for provid-

ing a rough idea on the uncertainty associated with stress tri-
axiality, respectively Lode angle. In fact, variance measures
the level of dispersion and can provide an intuitive means
for assessing the ranges in which these stress quantities
may vary. Nonetheless, second-order statistics are generally
regarded as a first step in an uncertainty quantification analy-
sis. Therefore, more advanced probabilistic descriptors must
be considered, such as variance-based global sensitivity
indices, as discussed in the next section.
3.4. Variance-based global sensitivity indices

Variance-based sensitivity analysis aims at apportioning
the variance of the response of interest (in this case stress tri-
axiality and Lode angle) with respect to the parameters that
affect that response (in this case the material parameters).
The result of the sensitivity analysis is expressed in terms of
the so-called Sobol’ indices (Sobol’ (1993)). The first-order
(or main) Sobol’ sensitivity indices 𝑆𝑖 are defined as (see,
e.g. Saltelli et al. (2008))

𝑆𝑖 =
𝕍𝛩𝑖

(

𝔼𝜣−𝑖

(

𝑦|𝜃𝑖
)

)

𝕍𝜣 (𝑦)
, 𝑖 = 1,… , 𝑛𝜃 (16)

wherein 𝕍𝛩𝑖
(⋅) denotes that variance is calculated only with

respect to 𝛩𝑖. Moreover, 𝜣−𝑖 is the vector of all random
variables except for 𝛩𝑖; 𝔼𝜣−𝑖

(⋅) denotes expectation with
respect to 𝜣−𝑖; and 𝑦|𝜃𝑖 denotes that the maximum value
𝑦 is calculated considering a fixed value 𝜃𝑖 for the 𝑖-th
material parameter. The first-order Sobol’ index 𝑆𝑖 as shown
in eq. (16) can be interpreted as follows.

• Its numerator represents the variance with respect to
𝑖-th material parameter (associated with 𝛩𝑖) once the
effects of the remaining material parameters (associ-
ated with 𝜣−𝑖) have been averaged by means of the
conditional expectation.

• Its denominator represents the total variance.
Thus, the first-order Sobol’ index is a dimensionless quantity
that expresses the fraction of the variance associated with the
maximum value 𝑦 that can be attributed to the uncertainty
of the 𝑖-th material parameter. For those cases where the 𝑖-
th material parameter has a high impact on 𝑦 with respect
to the remaining material parameters, it is expected that the
aforementioned numerator will be close to the denominator
and thus the Sobol’ index will be close to 1 while the
opposite holds true.

It is noted that first-order Sobol’ indices are always
bounded between zero and one, that is 0 ≤ 𝑆𝑖 ≤ 1 for

𝑖 = 1,… , 𝑛𝜃 . Moreover, the summation of all first-order
Sobol’ indices is always equal or smaller than one, that is
∑𝑛𝜃

𝑖=1 𝑆𝑖 ≤ 1. Whenever the summation of the first-order
Sobol’ indices is close to 1, one is in presence of a so-
called additive model, meaning that there are no significant
interaction effects between the different material parameters
and hence, the variability of the output response (in this case
stress triaxiality and Lode angle) is mainly explained as the
superposition of the individual effects of each input (in this
case material parameters).

In addition to the first-order sensitivity indices, there are
also the so-called total Sobol’ sensitivity indices 𝑆𝑇 ,𝑖, which
are defined as (see, e.g. Saltelli et al. (2008))

𝑆𝑇 ,𝑖 =
𝕍𝜣 (𝑦) − 𝕍𝜣−𝑖

(

𝔼𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

𝕍𝜣 (𝑦)
, 𝑖 = 1,… , 𝑛𝜃 .

(17)

From the above equation, note that 𝕍𝜣−𝑖

(

𝔼𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

rep-
resents the variance that can be attributed to all material
parameters except for the 𝑖-th one (that is, the variance
associated with 𝜣−𝑖) once the effect of the 𝑖-th mate-
rial parameter has been averaged by means of the condi-
tional expectation. Thus, the subtraction between 𝕍𝜣 (𝑦) and
𝕍𝜣−𝑖

(

𝔼𝛩𝑖

(

𝑦|𝜽−𝑖
)

)

in the numerator of eq. (17) represents
the variance that can be attributed to uncertainty in the 𝑖-
th material parameter and its interaction with other material
parameters.

The total sensitivity indices are always bounded between
zero and one, just like the first-order sensitivity indices, that
is 0 ≤ 𝑆𝑇 ,𝑖 ≤ 1 for 𝑖 = 1,… , 𝑛𝜃 . Furthermore, the total
sensitivity index associated with the 𝑖-th variable will be
always equal or larger than its first-order counterpart, that
is 𝑆𝑇 ,𝑖 ≥ 𝑆𝑖 for 𝑖 = 1,… , 𝑛𝜃 . A significant difference
between 𝑆𝑇 ,𝑖 and 𝑆𝑖 may reveal a strong interaction of the
𝑖-th material parameter and the other material parameters on
the variance of the maximum stress triaxiality (Patelli et al.
(2010)).
3.5. Calculation of probabilistic descriptors

The probabilistic descriptors presented in Sections 3.3
and 3.4 are calculated by means of surrogate modeling, see
e.g. Sudret (2008). In this way, it is possible to avoid repeated
and numerically costly nonlinear finite element analyses.
Section 3.5.1 describes Gaussian process regression (GPR),
which is the type of surrogate model considered in this work.
The calculation of the probabilistic descriptors is carried
out by performing Bayesian probabilistic integration over
the GPR surrogate model, as considered in Section 3.5.2.
In addition, the accuracy of the calculated probabilistic
descriptors can be improved by refining the GPR through
active learning, as discussed in detail in Section 3.5.3.
3.5.1. Gaussian process regression

A surrogate is a mathematical model which is inexpen-
sive to calculate and that approximates a function whose
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evaluation is numerically involved. There are several types
of surrogate models available, such as polynomial response
surface, polynomial chaos and artificial neural networks,
to name a few (see, e.g., Faravelli (1989); Hurtado and
Alvarez (2001); Sudret (2008)). One of the most popular
surrogate models is Gaussian process regression (GPR), as
it provides both an estimate of the function being surrogated
as well as a measure on the level of confidence of that
estimate (Rasmussen and Williams (2006)). Therefore, GPR
is considered in this work.

The first step for constructing a GPR is choosing its
prior, which means defining its parametric form in terms of
a mean 𝜇𝐼 (𝜽) and covariance function 𝜅𝐼 (𝜽,𝜽′). Note that
the mean 𝜇𝐼 (𝜽) expresses expected value of 𝑦 at 𝜽 while the
covariance 𝜅𝐼 (𝜽,𝜽′) represents the joint variability between
𝑦 and 𝑦′ for two different realizations 𝜽 and 𝜽′ of the material
parameters. Without loss of generality and for simplicity, the
mean function can be chosen as a real constant 𝜇0 while the
covariance can be chosen as a squared exponential function:

𝜅𝐼 (𝜽,𝜽′) = 𝜎20 exp
(

−1
2

𝑛𝜃
∑

𝑖=1

[ 𝜃𝑖−𝜃′𝑖
𝐿𝑖

]2) (18)

where 𝜎20 is the variance of the prior GPR and 𝐿𝑖, for
𝑖 = 1,… , 𝑛𝜃 , are scale length parameters associated with
each of the material parameters. It is noted that the GPR
previously described involves a total of (𝑛𝜃 + 2) hyperpa-
rameters

[

𝜇0 𝜎20 𝐿1 … 𝐿𝑛𝜃

]

which must be identified. For
that purpose, it is necessary to generate a set of training
data points (𝒚𝑑 ,𝜣𝑑), where 𝒚𝑑 is a vector of dimension
𝑛𝑑 while 𝜣𝑑 is a matrix of dimension 𝑛𝑑 × 𝑛𝜃 . The 𝑗-th
row of matrix 𝜣𝑑 contains a realization 𝜽(𝑗) of the material
parameters while the 𝑗-th entry of vector 𝒚𝑑 contains the
maximum value 𝑦 associated with that realization, that is,
𝑦(𝑗)𝐷 = 𝑔

(

𝜽(𝑗)
). The latter step implies that a total of

𝑛𝑑 nonlinear finite element analyses must be carried out.
The set of realizations 𝜣𝑑 for training the GPR is usually
generated by means of a design-of-experiments scheme such
as Latin hypercube sampling (McKay et al. (1979)). This
sampling scheme is illustrated in Figure 1 and it involves
two main concepts. First, the space of feasible values for
each random variable 𝜃𝑖 is divided into strata of equal prob-
ability (represented with blue color in Figure 1) and then, a
random sample is drawn into each strata (represented with
orange dots in Figure 1). Second, the samples associated
with the different random variables are paired at random.
These randomly paired samples are shown with black dots in
Figure 1. In practical applications, it has been observed that
Latin hypercube sample offers an excellent balance between
space coverage and robustness with respect to the number of
involved random variables 𝑛𝜃 .

Once that the training data set has been generated, the hy-
perparameters

[

𝜇0 𝜎20 𝐿1 … 𝐿𝑛𝜃

]

of the GPR are inferred
by maximum likelihood, which is a well-established statis-
tical procedure for identifying parameters of a probability
model (see, e.g., Rasmussen and Williams (2006)). After

θ1

θ2

Figure 1: Schematic representation of Latin hypercube Sam-
pling.

identifying the hyperparameters of the GPR model, it is
possible to predict maximum value 𝑦 for an arbitrary real-
ization of the material parameters 𝜽∗. For that purpose, one
considers the hyperparameters identified previously in com-
bination with the training data set (𝒚𝑑 ,𝜣𝑑), which leads to
the posterior mean𝜇𝑃 (𝜽) and posterior covariance 𝜅𝑃 (𝜽,𝜽′).In this sense, the term posterior indicates that all available
information is reflected into the mean and covariance. To
further discuss this point, consider Figure 2, that illustrates a
Gaussian process regression which, for simplicity, depends
on a single material parameter 𝜃. The training set consists
of 𝑛𝑑 = 5 points, which are denoted with black dots in the
figure. This means that five values of the material parameter
𝜃(𝑗), for 𝑗 = 1,… , 5, were generated using a design-of-
experiments scheme and that for each of those values, the
maximum value 𝑦(𝑗)𝑑 = 𝑔

(

𝜃(𝑗)
), for 𝑗 = 1,… , 5, was

calculated by means of nonlinear finite element analysis.
After identifying the hyperparameters of the GPR and taking
into account the training data, it is possible to deduce the
posterior mean value 𝜇𝑃 (𝜃), which is the dashed black line
in the figure. It is observed that this dashed line passes over
each of the training data points and that it closely mimics
the true curve 𝑔(𝜃). Furthermore, the posterior covariance
𝜅𝑃 (𝜃, 𝜃′) quantifies the amount of uncertainty regarding the
prediction of the Gaussian process regression and is shown
in the figure as a confidence interval around the mean 𝜇𝑃 (𝜃)by means of the cyan shaded area. It is noted that at the
training data points the confidence interval collapses, as in
those points there is actually no uncertainty: the value of 𝑦
is known exactly as it was evaluated using nonlinear finite
element analyses.

θ

y

g(θ)

µP (θ)

Figure 2: Schematic representation of Gaussian process regres-
sion.
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3.5.2. Bayesian probabilistic integration
The probabilistic descriptors described in Sections 3.3

and 3.4 must be computed by solving multidimensional
integrals that comprise the maximum value of interest as
a function of the material parameters. To avoid repeated
nonlinear finite element analyses, the maximum value is
approximated by means of a GPR surrogate model, as de-
scribed previously. However, it should be recalled that for
a given value of the material parameters, the GPR model
provides both an estimate of the maximum value of interest
as well as the level of confidence on that estimate. This is
a salient feature from a practical viewpoint for calculating
the respective probabilistic descriptor. For example, if the
aim is calculating the expected value as shown in eq. (14)
and the GPR model is considered, it is possible to produce
a mean estimate (that is, the mean of the expectation) as
well as the variance of that estimate (that is, the variance
of the expectation). The latter variance is most important, as
it expresses the degree of uncertainty in the estimation of a
probabilistic descriptor due to the surrogate model.

The task of producing estimates of the probabilistic
descriptors as well as a measure of their uncertainty based
on the GPR surrogate is carried out by means of Bayesian
probabilistic integration; see, e.g., Briol et al. (2019). In fact,
in this work the Bayesian probabilistic integration approach
developed in Song et al. (2022) is implemented, in which

• The mean and variance of the expectation (see
eq. (14)) are calculated by means of closed-form so-
lutions.

• The mean and variance of the variance (see eq. (15))
as well as the variances associated with the first and
total order Sobol’ indices (see eqs. (16) and (17)) can
be calculated through analytical expressions that are
integrated numerically (that is, partially closed form).

The specific expressions associated with Bayesian proba-
bilistic integration of the mean, variance, first-order and total
order Sobol’ indices are not reproduced in here due to their
length. Detailed derivations, as well as specific expressions
for computing these probabilistic descriptors, can be found
in Song et al. (2022).
3.5.3. Active Learning

Bayesian probabilistic integration provides the mean
estimate of a probabilistic descriptor as well its variance.
This variance provides important information for deciding
whether the current GPR model provides sufficiently ac-
curate estimates of the sought probabilistic descriptors. If
the variance is too high, one may decide to improve the
quality of the estimate by including an additional training
data point and updating the GPR model. Figure 3 illustrates
this idea. In fact, Figure 3 is identical to Figure 2, except
that an additional training point marked with green color
is introduced. As noted from the figure, the mean of the
GPR 𝜇𝑃 (𝜃) reproduces almost exactly the reference curve
𝑔(𝜃) at the left hand side of the plot while the confidence
interval collapses almost to zero, revealing a high degree of

confidence regarding the prediction provided by the GPR
model in that location. This is due to the inclusion of the
new data point in green color.

θ

y

g(θ)

µP (θ)

new point

Figure 3: Schematic representation of Gaussian process regres-
sion with additional training data point.

The process of selecting a new training data point for
improving the GPR surrogate model can be interpreted as a
refinement or enrichment procedure. In practice, it has been
observed that such data point can be selected by maximizing
a so-called learning function that involves the variance
associated with the probabilistic descriptor in eq. (15), that
is, the variance of the variance, see Song et al. (2022).
This learning function balances the expected improvement
in the variance estimator versus the likelihood of observing
a particular combination of material parameters 𝜽. More
importantly, this learning function involves evaluating the
GPR model only. Hence, nonlinear finite element analysis is
carried out once the new point for enlarging the training data
set has been identified. Specific details about the learning
function considered in this work can be found in Song et al.
(2022).

The procedure for improving the accuracy of the proba-
bilistic descriptors described above can be regarded as active
learning. Indeed, starting from an initial data set gener-
ated with Latin hypercube sampling for training the GPR
surrogate model, one assesses the quality of the estimated
probabilistic descriptors and decides to improve their quality
based on the variance associated with those descriptors.
Then, one identifies a new training data point and performs
an additional nonlinear analysis, which allows to enlarge the
training data set and to improve both the quality of the GPR
and the accuracy of the estimated probabilistic descriptors.
3.6. Outline of procedure for uncertainty

quantification
From an algorithmic viewpoint, the framework of un-

certainty quantification in elasto-plasticity presented in Sec-
tions 2 and 3 can be summarized in the following steps.

1. Set up a nonlinear finite element model of the me-
chanical component of interest that allows calculat-
ing maximum stress triaxiality and maximum Lode
parameter.

2. Characterize the uncertainty regarding material pa-
rameters using appropriate probability distributions.

3. Generate a set of training data points involving real-
izations of the material parameters and compute their
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Table 1
Reference material parameter set (ref.) identified for DP800
steel, taken from Sprave and Menzel (2020), and upper (u.b.)
and lower bound (l.b.) used for uncertainty quantification.

𝐾 [GPa] 𝐺 [GPa] 𝜎𝑦0 [MPa] ℎ [MPa] 𝑛p [-]

u.b 124.92 89.82 273.45 1876.20 0.2389
ref. 118.97 85.54 248.59 1705.64 0.2654
l.b. 113.02 81.26 223.73 1535.08 0.2920

respective maximum stress triaxiality and maximum
Lode parameter by means of the nonlinear finite ele-
ment model established in step 1.

4. Train the GPR surrogate model and calculate proba-
bilistic descriptors using Bayesian probabilistic inte-
gration.

5. Check the variance of the estimated probabilistic de-
scriptors. If the variance is too high, identify an ad-
ditional point in the training data set through active
learning, perform nonlinear finite element analysis
and return to step 4. Otherwise, retain the current
probabilistic descriptors and finish the procedure.

All of these algorithmic steps have been implemented
within in-house software. Uncertainty quantification (in-
volving sampling, Gaussian process regression and Bayesian
probabilistic integration) has been implemented in Matlab.
Routines for analysis of elasto-plasticity within the nonlinear
finite element method have been implemented using C++.

4. Example
In this section, the effect of uncertainty of material

parameters on damage initiation indicators of stress triaxi-
ality and Lode angle is quantified for an exemplary bound-
ary value problem of a plastically deforming mechanical
component. For this purpose, the computationally efficient
variance-based global sensitivity analysis strategy proposed
in Section 3 is applied to a finite element model of a tensile
test specimen. Basic characteristics and properties of the
underlying material model are analyzed in Appendix A,
where states under uniaxial tension are considered.

In this regard, a nonlinear finite element model for the
boundary value problem considered is established to identify
maximum stress triaxiality and Lode angle values on the
Gauss point level. This is achieved by evaluating the finite
elasto-plasticity constitutive model outlined in Section 2.2
for a given set of material parameters. The uncertainty as-
sociated with the material parameters characterizing elasto-
plasticity is described via the axioms of probability theory.
Uniform distributions with lower and upper bounds, as de-
scribed in Table 1, are assumed. The respective GPR surro-
gate model is trained based on stress triaxiality, respectively
Lode angle, obtained on the Gauss point level as maximum
values over the entire loading history. Finite element analy-
ses are conducted for an initial batch of training data points,
i.e. sets of material parameters. The initial training data set

is generated by Latin hypercube sampling through a design-
of-experiments scheme and is applied to both GPR surrogate
models of maximum stress triaxiality and Lode angle. A
subsequent active learning strategy further enhances each
GPR surrogate model through finite element simulation
evaluations at additional training data points generated by
maximizing the so-called learning function. Active learning
is continued until convergence in the maximum coefficient
is achieved for the variances involved in the analysis; that
is, total or partial variances, as appearing in eqs. (15),
(16) and (17). In this context, note that the coefficient of
variation represents the square root of the variance of an
estimator divided by the expected value of that estimator.
The converged Sobol’ sensitivity indices for both damage
initiation indicators resulting from Bayesian probabilistic
integration over the respective GPR surrogate model are
analyzed regarding the most influential material parameters
and interaction effects between the material parameters.
Thus, uncertainty on maximum stress triaxiality and Lode
angle is identified and characterized.
4.1. Boundary value problem

The underlying material model is applied to the finite
element setting for solving a boundary value problem of a
tensile test specimen. This enables a first investigation of
the effects of material parameters on the damage initiation
indicators of stress triaxiality and Lode angle. To this end, a
nonlinear finite element model is set up. The geometry and
dimensions of the tensile specimen are taken from Sprave
and Menzel (2020) and are specified in Figure 4a, show-
ing total dimensions of 52 mm length, 10 mm width and
1.5 mm thickness. To reduce computational costs for the
training of the GPR surrogate model, only one eighth of the
specimen is simulated due to symmetry considerations and
isotropic material response. Additionally applied Dirichlet
boundary conditions to the symmetry planes ensure that
symmetry conditions are met. To be specific, the small cross
section within the 𝑦-𝑧 symmetry plane at 𝑥 = 0 mm is
constrained in 𝑥-direction, see Figure 4b. On the opposite
side, the specimen is quasi-statically loaded by prescribing
a monotonically increasing tensile displacement 𝑢𝑥, while
the displacements in the 𝑦 and 𝑧 directions remain uncon-
strained at this boundary. The bottom 𝑥-𝑧 symmetry plane
at 𝑦 = 0 mm remains fixed in 𝑦-direction, whereas the 𝑥-𝑦
symmetry plane at 𝑧 = 0 mm is fixed in the 𝑧-direction.

A mesh convergence study is conducted to motivate a
computationally efficient and sufficiently accurate spatial
discretization. The results in the form of force-displacement
curves, see Figure 5a, are based on the reference mate-
rial parameter set of DP800 steel, taken from Sprave and
Menzel (2020), see Table 1, and a prescribed maximum
tensile displacement of 𝑢𝑥 = 2 mm. In addition, force-
displacement curves for the identified upper and lower
bounds material parameter sets are also highlighted; see
also Figure 11f in Appendix A. Spatial discretizations of
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(a) Tensile test specimen geometry and dimensions. (b) Spatial discretization of the tensile test specimen.
Figure 4: Tensile test specimen geometry and dimensions in millimeters taken from Sprave and Menzel (2020). A spatial
discretization of 𝑛el = 8000 eight-noded trilinear hexahedral F-bar elements with full integration is motivated by a mesh convergence
study at a maximum tensile displacement of 𝑢𝑥 = 0.65 mm on the basis of reaction force history, maximum stress triaxiality and
Lode angle.

(a) Force-displacement curves for different discretizations 𝑛el.
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(b) Localization of the proportional hardening variable 𝛼.
Figure 5: Mesh convergence study for full loading of 𝑢𝑥 = 2 mm shows mesh-dependent results due to severe necking. Localization
of the proportional hardening variable 𝛼 in one single element row for 𝑛el = 8000 observed for the reference material parameter
set at a maximum tensile displacement of 𝑢𝑥 = 2 mm.

𝑛el ∈ {980, 2120, 4224, 8000, 16128} number of ele-
ments are investigated using eight-noded trilinear hexahe-
dral elements with full integration, which are additionally
enhanced by an F-bar formulation to reduce non-physical
(numerical) stiffening effects related to volumetric locking.
The corresponding force-displacement curves in Figure 5a
show an initially mesh-independent response. With increas-
ing load, the reaction force saturates and then shows a
drop in reaction force starting at 𝑢𝑥 ≈ 1 mm for the
reference material parameter set due to necking observed in
the center region of the specimen. Deformation, respectively
strain eventually localizes in one single element row, as
also reflected by the proportional hardening related internal
variable; see Figure 5b. This generally results in mesh-
dependent solutions that necessitate a regularization tech-
nique applied to plasticity. Such a regularization approach
is outside the scope of this contribution. For further back-
ground on modeling and simulation frameworks including
regularization based on gradient contributions of plasticity-
related quantities see, e.g., Kaiser and Menzel (2019a,b) and
references cited therein. Moreover, gradient-based regular-
ization of plasticity and damage contributions is discussed
in Friedlein et al. (2023). For the subsequent variance-based
global sensitivity analysis, respectively training of the GPR

surrogate model, loading is reduced to a maximum tensile
displacement of 𝑢𝑥 = 0.65 mm to ensure that necking and,
in consequence, mesh-dependent effects are avoided in the
considered loading range – particularly for varying sets of
material parameters analyzed for the training of the GPR
surrogate model. A mesh convergence analysis based on
reaction force history, as well as maximum stress triaxiality
and Lode angle as integral and local convergence measures,
results in a reasonable spatial discretization of 𝑛el = 8000
elements, as depicted in Figures 4b and 5b.

In Figures 6a, 6c and 6e contour plots of 𝜂, 𝜗 and 𝛼
are shown for the loading level 𝑢𝑥 = 0.65 mm, which
corresponds to the loading stage before necking as also
considered within the uncertainty analysis as this work pro-
ceeds. Moreover, Figures 6b, 6d and 6f highlight graphs of 𝜂,
𝜗 and 𝛼 at two selected positions of the specimen, whereby
loading levels up to 𝑢𝑥 = 2 mm are considered in order
to qualitatively indicate the values and evolution of these
quantities towards and within the necking stage of loading.
As discussed in Appendix A, the values of stress triaxiality
and Lode angle are independent of the material parameter
set in case of uniaxial tension, i.e. 𝜂 = 1∕3 and 𝜁 = 1 for
𝝈 = 𝜎∥ 𝒆∥⊗𝒆∥. The results shown in Figures 6a and 6c reveal
moderate values close to, but different from, those obtained
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(a) Contour plots of stress triaxiality 𝜂 by element average values at
reduced tensile loading of 𝑢𝑥 = 0.65 mm.

(b) Loading history of stress triaxiality 𝜂 over tensile displ. for full
loading of 𝑢𝑥 = 2 mm evaluated at quadrature points P1 and P2.
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(c) Contour plots of Lode angle 𝜗 by element average values at
reduced tensile loading of 𝑢𝑥 = 0.65 mm.

(d) Loading history of Lode angle 𝜗 over tensile displ. for full
loading of 𝑢𝑥 = 2 mm evaluated at quadrature points P1 and P2.
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(e) Contour plots of hardening variable 𝛼 by element average values
at reduced tensile loading of 𝑢𝑥 = 0.65 mm.

(f) Loading history of hardening variable 𝛼 over tensile displ. for full
loading of 𝑢𝑥 = 2 mm evaluated at quadrature points P1 and P2.

Figure 6: Contour plots and loading histories of stress triaxiality 𝜂, Lode angle 𝜗 and proportional hardening variable 𝛼 over tensile
displacement for 𝑛el = 8000, evaluated for reference (ref.), upper bounds (u.b.) and lower bounds (l.b.) material parameter sets.

Böddecker et al.: Preprint submitted to Elsevier Page 10 of 19



Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-plasticity

(a) Loading histories of hydrostatic stress 𝜎𝑚 and von Mises equiv-
alent stress 𝜎𝑒 at quadrature point P1.

(b) Loading histories of second and weighted third (deviatoric)
invariants 𝐽2 and 𝐽3 at quadrature point P1.

(c) Loading histories of hydrostatic stress 𝜎𝑚 and von Mises equiv-
alent stress 𝜎𝑒 at quadrature point P2.

(d) Loading histories of second and weighted third (deviatoric)
invariants 𝐽2 and 𝐽3 at quadrature point P2.

Figure 7: Loading histories of hydrostatic stress 𝜎𝑚, von Mises equivalent stress 𝜎𝑒, as well as second and weighted third (deviatoric)
invariants 𝐽2 (here represented via 𝜎3

𝑒 ) and 𝐽3 over tensile displacement for full loading 𝑢𝑥 = 2 mm at quadrature points P1 and
P2 evaluated for reference (ref.), upper bounds (u.b.) and lower bounds (l.b.) material parameter sets.

for the stress state of uniaxial tension, cf. Table 5. Hence,
an influence of material parameters on damage initiation
indicators of stress triaxiality and Lode angle is expected.
Both contour plots of stress triaxiality and Lode angle for
upper and lower bounds material parameter sets show almost
homogeneous results towards the center of the specimen
and in the outer region of clamping with stress states much
closer to uniaxial tension. In the center region, element
average values of 𝜂 ≈ 0.340 and 𝜗 ≈ 1.0◦ are observed
for both material parameter sets. In contrast, in the clamping
region, especially at the outer sides, values of nearly perfect
uniaxial tension of 𝜂 ≈ 0.333 and 𝜗 ≈ 0◦ are obtained. In
turn, inhomogeneous results are observed in the transition
zone from the specimen radius towards the clamping region,
where overall maximum stress triaxiality and Lode angle are
found on the middle axis of the specimen taking maximum
element average values of 𝜂 ≈ 0.358 and 𝜗 ≈ 5.5◦ for

the upper bounds material parameter set and 𝜂 ≈ 0.360
and 𝜗 ≈ 6.3◦ for the lower bounds material parameter
set. The contour plots for the two material parameter sets
mainly differ in magnitude, with the lower bounds material
parameter set showing the highest maximum values. Only a
minor shift in the location of maximum values is observed.

In Figures 6b and 6d, the loading histories of stress
triaxiality and Lode angle evaluated on the Gauss point level
over a tensile displacement of up to 𝑢𝑥 = 2 mm are
provided for two representative quadrature points denoted
as P1 and P2, as well as for the three material parameter
sets, as defined in Table 1. The quadrature point P1 denotes
the integration points identified to show maximum values
for stress triaxiality and Lode angle at the end of a reduced
maximum tensile displacement of 𝑢𝑥 = 0.65 mm, which is
also used for the subsequent training of the GPR surrogate
model. For most material parameter sets at this loading, the
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identified integration points P1 coincide with a fixed location
for each damage initiation measure taking the positions indi-
cated in Figures 6a and 6c. Otherwise, a quadrature point in
the immediate proximity of P1 showing maximum values is
identified and is used for training instead. The representative
quadrature point P2 corresponds to one of the integration
points of the element closest to the center of the specimen
that exhibits the highest stress triaxiality and Lode angle
values over the entire loading of up to 𝑢𝑥 = 2 mm. The
identified integration point P2 of that element, see Figures 6a
and 6c, is fixed over the entire loading history.

Figures 6b and 6d illustrate that non-trivial loading
histories of stress triaxiality and Lode angle over tensile
displacement are obtained at quadrature point P1. Starting
from initial values close to those identified for the stress
state of uniaxial tension, both damage initiation indica-
tors of stress triaxiality and Lode angle increase towards a
plateau, stay approximately constant and increase again at
the end of loading while showing overall moderate values.
At quadrature point P1, the lower bounds material parameter
set generally results in the highest stress triaxiality and
Lode angle values, which agrees with results obtained from
contour plots, cf. Figures 6a and 6c. More precisely, for stress
triaxiality, the opposite applies to the increase in value at the
beginning and at the end of loading, where, in turn, the upper
bounds material parameter set results in the highest stress
triaxiality values. Comparing results obtained for the force-
displacement curves, see Figure 5a, it can be concluded that
at quadrature point P1, the lowest reaction force curve gener-
ally results in the highest stress triaxiality, respectively Lode
angle. The loading history of the proportional hardening
related internal variable at quadrature point P1 highlighted
in Figure 6f shows that the hardening variable saturates to
a constant, here in comparison, vanishingly small value.
The saturation observed with increasing tensile loading is
attributed to geometrically induced stress concentrations in
the center region of the specimen, leading to a reduction
in the load-bearing cross-sectional area, as shown in (Fig-
ure 5b) and ultimately necking, as previously discussed. By
increasing material parameters, the necking effect becomes
more pronounced due to an increase in the evolution of
plasticity, respectively proportional hardening variable; see
Figure 6e. As a result, the outer regions of the specimen
unload during increasing loading, effectively reducing the
driving force of plasticity and therefore yielding smaller
proportional hardening variable values at quadrature point
P1 for the upper bounds material parameter set, as seen in
Figure 6f.

Figure 7 highlights graphs of 𝜎𝑚, 𝜎𝑒 as well as of combi-
nations of 𝐽2 and 𝐽3 by analogy with Figures 6b, 6d and 6f. In
particular, Figure 7a depicts the loading histories of the hy-
drostatic stress and von Mises equivalent stress for different
material parameter sets at quadrature point P1, which also
show an unloading behavior as a result of necking once a
critical maximum tensile displacement is surpassed. Taking
the fraction of both measures results in stress triaxiality, as
defined in eq. (10)3. Therefore, in combination, both curves

motivate the loading history of stress triaxiality of Figure 6b
and explain how changes in material parameter sets influence
stress triaxiality. For instance, the von Mises equivalent
stress 𝜎𝑒 shows a higher decrease rate for the upper bounds
material parameter set for increasing loads,which is a result
of increased plastic unloading, leading to a comparatively
higher stress triaxiality towards the end of loading, see Fig-
ure 7a, cf. Figure 6b. In analogy, following the stress mode
factor parametrization in terms of 𝜁 (𝐽3, 𝜎𝑒), cf. eq. (11)1,
Figure 7b motivates the loading history of the Lode angle,
where the numerator and the denominator are plotted against
each other at the quadrature point P1. Both terms of 27∕2 𝐽3and 𝜎3𝑒 also show a decrease in values at different rates
during necking, respectively plastic unloading, and motivate
the loading history of the Lode angle of Figure 6d over the
tensile displacement at quadrature point P1.

Quadrature point P2, in turn, shows values for stress
triaxiality and Lode angle before the onset of necking,
which are slightly smaller, respectively significantly smaller
than those obtained for quadrature point P1, see Figures 6b
and 6d. With increasing tensile loading, stress triaxiality
and Lode angle surpass their respective maximum values
at quadrature point P1 and further increase towards high
maximum values of 𝜂 ≈ 0.7 and 𝜗 ≈ 11◦. Thereafter,
a significant reduction in both measures is observed. As a
result, maximum stress triaxiality and Lode angle switch
between quadrature point P1 and P2 over the entire loading
history. The decrease in stress triaxiality can be motivated by
the plots of hydrostatic stress and von Mises equivalent stress
evaluated at quadrature point P2 over the entire loading
history, see Figure 7c. As loading increases and necking
becomes dominant, the von Mises equivalent stress increase
rate is approximately constant. In contrast, the hydrostatic
stress shows a negative increase rate towards the end of load-
ing, resulting in a decrease in stress triaxiality, cf. eq. (10)3.
The reduction in Lode angle towards the end of loading at
quadrature point P2, respectively the re-increase in stress
mode factor, is analyzed via Figure 7d using the alternative
parametrization of the stress mode factor, cf. eq. (11)1. This
shows that at the end of loading the increase rate of the
weighted third deviatoric stress invariant 27∕2 𝐽3 is higher
than that of the von Mises equivalent stress to the power of
three 𝜎3𝑒 due to a decrease in slope towards the end of loading
in the latter quantity, which results in an increase in stress
mode factor, respectively decrease in Lode angle.

In contrast to quadrature point P1, P2 generally shows
the highest stress triaxiality, Lode angle and proportional
hardening variable values for the upper bounds material
parameter set throughout the loading, where variations re-
garding different material parameter sets are much more
pronounced. The proportional hardening variable continu-
ously increases towards high values, resulting in a necking
behavior at increasing loadings, cf. Figure 6f. The results in-
dicate that higher material parameter values are detrimental
regarding damage initiation and evolution for high loading.
For reduced loading, the opposite is observed. In view of
higher maximum tensile displacements of 𝑢𝑥 > 1 mm
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accompanied by necking, such investigations need to be
re-evaluated in future work for results obtained by, e.g.,
gradient-based regularization of plasticity, which enables
the quantification of the effect of uncertainty at high loading.

(a) Force-displacement curves.

(b) Loading history of stress triaxiality 𝜂.

(c) Loading history of Lode angle 𝜗.
Figure 8: Force-displacement curves and loading histories of
stress triaxiality 𝜂 and Lode angle 𝜗 at quadrature point P1
for representative material parameter sets generated during
training for reduced loading of 𝑢𝑥 = 0.65 mm.

(a) Force-displacement curves.

(b) Loading history of stress triaxiality 𝜂.

(c) Loading history of Lode angle 𝜗.
Figure 9: Force-displacement curves and loading histories of
stress triaxiality 𝜂 and Lode angle 𝜗 at quadrature point P1 for
selected material parameter sets generated during training for
reduced loading of 𝑢𝑥 = 0.65 mm.

4.2. Results
In this section, the simulation framework for the quan-

tification of the effect of uncertainty of material parameters
on extremal stress triaxiality and Lode angle values is es-
tablished by combining the nonlinear finite element model
of an exemplary boundary value problem of a tensile test
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(a) First-order and total order Sobol’ sensitivity indices 𝑆𝑖 and 𝑆𝑇 ,𝑖associated with maximum stress triaxiality 𝜂.
(b) First-order and total order Sobol’ sensitivity indices 𝑆𝑖 and 𝑆𝑇 ,𝑖associated with maximum Lode angle 𝜗.

Figure 10: Visualization of first-order and total order Sobol’ sensitivity indices 𝑆𝑖 and 𝑆𝑇 ,𝑖 associated with maximum stress
triaxiality 𝜂 and Lode angle 𝜗. Illustration of most influential material parameters and interaction effects identified by differences
in first-order and total order Sobol’ sensitivity indices.

Table 2
Representative material parameter sets as part of initial batch
before active training and generated during active training.

𝐾 [GPa] 𝐺 [GPa] 𝜎𝑦0 [MPa] ℎ [MPa] 𝑛p [-]

m.p.s. 201 120.04 87.92 230.50 1575.63 0.2915
m.p.s. 81 119.90 82.22 233.80 1671.09 0.2803
m.p.s. 41 121.78 86.10 239.03 1742.87 0.2643
m.p.s. 164 114.52 88.46 254.03 1791.30 0.2586
m.p.s. 170 115.80 84.65 264.01 1844.13 0.2468

m.p.s. 11 115.74 88.15 267.84 1575.33 0.2426
m.p.s. 152 120.08 86.84 229.48 1643.19 0.2401
m.p.s. 30 118.59 84.58 259.86 1676.22 0.2614
m.p.s. 108 116.07 88.04 265.91 1683.35 0.2662
m.p.s. 188 118.25 88.77 249.00 1747.20 0.2731

Table 3
First-order and total Sobol’ sensitivity indices of stress triaxial-
ity before active learning for different 𝑛𝑑 and after convergence.

𝑛𝑑 𝑆𝐾 [-] 𝑆𝐺 [-] 𝑆𝜎𝑦0 [-] 𝑆ℎ [-] 𝑆𝑛p [-]

10 0.0000 0.1394 0.0000 0.3586 0.4857
60 0.0185 0.0530 0.0075 0.3125 0.5682
60+145 0.0065 0.0622 0.0087 0.3134 0.5825

𝑆𝑇 ,𝐾 [-] 𝑆𝑇 ,𝐺 [-] 𝑆𝑇 ,𝜎𝑦0 [-] 𝑆𝑇 ,ℎ [-] 𝑆𝑇 ,𝑛p [-]

10 0.0000 0.1550 0.0000 0.3721 0.5027
60 0.0322 0.0662 0.0134 0.3403 0.5980
60+145 0.0107 0.0690 0.0221 0.3234 0.6015

specimen introduced in Section 4.1 and the variance-based
global sensitivity framework outlined in Section 3.

To this end, two GPR surrogate models for maximum
stress triaxiality and Lode angle are trained separately. An
initial batch of 𝑛𝑑 = 60 training data points, i.e. sets of
material parameters, is generated through Latin hypercube

Table 4
First-order and total Sobol’ sensitivity indices of Lode angle
before active learning for different 𝑛𝑑 and after convergence.

𝑛𝑑 𝑆𝐾 [-] 𝑆𝐺 [-] 𝑆𝜎𝑦0 [-] 𝑆ℎ [-] 𝑆𝑛p [-]

10 0.0000 0.0069 0.1337 0.0000 0.8451
60 0.0007 0.0143 0.1283 0.0043 0.8389
60+66 0.0006 0.0146 0.1348 0.0033 0.8428

𝑆𝑇 ,𝐾 [-] 𝑆𝑇 ,𝐺 [-] 𝑆𝑇 ,𝜎𝑦0 [-] 𝑆𝑇 ,ℎ [-] 𝑆𝑇 ,𝑛p [-]

10 0.0000 0.0076 0.1456 0.0000 0.8564
60 0.0010 0.0166 0.1335 0.0088 0.8449
60+66 0.0008 0.0157 0.1384 0.0072 0.8445

sampling assuming uniform distributions with lower and
upper bounds defined in Table 1, which forms the basis
for training both GPR surrogate models. To avoid loading
into necking and therefore the necessity of a regularization
technique applied to plasticity, as discussed in Section 4.1,
the tensile test specimen is loaded up to a maximum tensile
displacement of 𝑢𝑥 = 0.65 mm. Therefore, maximum
damage initiation indicators of stress triaxiality and Lode
angle are evaluated at the quadrature point P1, as indicated
in Figures 6a and 6c. To reduce numerical cost involved in
finite element analyses, only one eighth of the specimen is
simulated. A spatial discretization of 𝑛el = 8000 number
of elements is chosen based on the performed mesh conver-
gence study in Section 4.1. As an additional remark, it should
be noted that the initial set of 𝑛𝑑 = 60 training data points
was evaluated taking advantage of parallel computing. In
this context, please note that the computation of each of
these training data points is completely independent from
the others. The evaluation of maximum triaxiality and Lode
angle for different realizations of material parameters can
be done in parallel by running several instances of the finite
element model on available CPU cores simultaneously. This
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corresponds to the so-called embarrassingly parallel case,
see e.g. Pellissetti (2009). While the relationship between
computation time and the number of available cores is not
linear, the parallel execution of simulations optimizes overall
resource utilization by efficiently distributing the workload.
Then, using this training data, each of the trained GPR
models is used to produce estimates of the Sobol’ indices
associated with maximum stress triaxiality and Lode angle
through the Bayesian probabilistic integration approach de-
scribed in Section 3.5.2. The quality of these estimators is
judged by calculating the coefficient of variation associated
with each of the variances involved in the calculation of
Sobol’ indices, as described in eqs. (16) and (17). More
specifically, an estimator is deemed as accurate whenever
the value of the coefficient of variation associated with
each estimated variance (that involves the ratio between the
standard deviation of the estimator and the expected value of
the estimator) is below 10%. In case such criterion is not ful-
filled, active learning is implemented in order to improve the
quality of the GPR surrogate model. Following this active
learning strategy, the GPR model associated with the stress
triaxiality demanded performing 145 additional nonlinear
finite analysis, while the GPR model associated with Lode
angle demanded 66 additional analyses. As a side remark,
it should be noted that active learning was implemented
using a sequential approach that does not admit parallel
computations. This is a consequence of the fact that each
of the training data points identified through active learning
depends on the training history of the GPR surrogate model.

Before analyzing the Sobol’ indices estimated through
the procedure described previously, it is of interest to have
a closer look at results obtained for some of the training
data points generated during the training of the GPR sur-
rogate model. For that purpose, Figures 8 and 9 illustrate
the evolution of the tensile reaction force, stress triaxiality
and Lode angle as a function of the tensile boundary dis-
placement for different combinations of material parameters.
More specifically, Figure 8 illustrates the aforementioned
quantities for the first five material parameter sets (m.p.s.)
shown in Table 2. The selection of these parameters was
deliberate and intended to capture the entire range of values
observed for stress triaxiality and Lode angle, making them
representative despite not being chosen at random. It is
noted from Figures 8a, 8b and 8c that there is considerable
variability between the maximum values of tensile force,
stress triaxiality and Lode angle for different realizations of
the material parameter sets, respectively. These findings are
in agreement with results obtained in Section 4.1, where for
the highest reaction force curves, the lowest stress triaxiality
and Lode angle values are obtained. Upon closer inspection
of the material parameter sets arranged by maximum stress
triaxiality value in Table 2, it is noteworthy that the table
entries are ordered perfectly by yield stress 𝜎𝑦0, hardening
modulus ℎ, and hardening exponent 𝑛p. This unintentional
result provides an initial indication of the material parame-
ters that may have the greatest influence on stress triaxiality
and Lode angle. However, it does not provide information

about the relative magnitudes of these effects, nor does
it account for possible interactions among the parameters,
which is considered to be of utmost importance in this
study. Meanwhile, Figure 9 illustrates tensile force, stress
triaxiality and Lode angle for the last five material parameter
sets (m.p.s.) shown in Table 2. These sets of parameters
are labeled as selected, as they were chosen such that the
maximum tensile force values exhibit almost no variability,
as observed in Figure 9a. Remarkably, Figures 9b and 9c
show that there is still considerable variability between the
maximum values of stress triaxiality and Lode angle for
different realizations of these selected material parameter
sets. Such behavior reveals the inherently complex relation
between the uncertain material parameters and the responses
of interest. Thus, when conducting tensile test specimens
when calibrating material parameters, close attention must
be paid to these complexities.

In a next step, the Sobol’ indices associated with stress
triaxiality and Lode angle are analyzed. Table 3 and Fig-
ure 10a report the estimated Sobol’ indices associated with
stress triaxiality while Table 4 and Figure 10b report the
Sobol’ indices associated with Lode angle. Several impor-
tant conclusions can be drawn from these tables and figures,
as discussed in detail below.

• Both Table 3 and 4 report the estimated indices for
different numbers of training data points, namely 𝑛𝑑 =
10 (that is, considering a subset of the data generated
with Latin Hypercube sampling), 𝑛𝑑 = 60 (data
generated with Latin Hypercube sampling) and 𝑛𝑑 =
60 + 145 or 𝑛𝑑 = 60 + 66 (data generated with
Latin Hypercube sampling and active learning). It is
observed that even with 𝑛𝑑 = 10 data points, it is
possible to generate rough estimates of the Sobol’
indices. The additional simulations over 𝑛𝑑 = 10
contribute mostly to refine the estimates of the indices,
particularly for those that possess a small numerical
value.

• Figures 10a and 10b show that the first-order and
total order Sobol’ indices are almost identical, while
verifying that 𝑆𝑖 ≤ 𝑆𝑇 ,𝑖. This reveals that for the
problem at hand, the effect of uncertainty on material
parameters on stress triaxiality and Lode angle is of
additive nature.

• The results reported in Appendix A and Section 4.1
suggested that material parameters governing plas-
ticity may possess a considerable impact on stress
triaxiality and Lode angle.

• The Sobol’ indices associated with stress triaxiality
(see Figure 10a) indicate that the most relevant ma-
terial parameters are the hardening exponent 𝑛p, the
hardening modulus ℎ and the shear modulus 𝐺. In
contrast, for the case of the Lode angle (see Fig-
ure 10b), only the hardening exponent 𝑛p and the yield
stress 𝜎𝑦0 are relevant, with the hardening exponent 𝑛pplaying the more preponderant role. Such differences
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in the number of relevant parameters may explain the
difference observed regarding the number of training
data points in Tables 3 and 4. Indeed, less data points
may be required in the case of the Lode angle (a
total of 126 nonlinear finite element analyses) because
there is one parameter (the hardening exponent) that
almost completely dictates all the variability.

As a summary of the above observations, it is noted that
Sobol’ indices offers an excellent means for performing a
quantitative sensitivity analysis that allows learning much
about the input-output relations of challenging engineering
models.

5. Summary and Outlook
In this work, a variance-based global sensitivity anal-

ysis framework was proposed that allows for an efficient
quantification of uncertainty effects of material parameters
characterizing elasto-plasticity on stress triaxiality and Lode
angle.

Several relevant conclusions can be drawn from the
strategies and results presented in this work. From a purely
algorithmic viewpoint, it has been shown that a state-of-
the-art numerical model for characterizing the behavior of
a mechanical device can be effectively interfaced with al-
gorithms for uncertainty quantification. In this regard, the
application of a surrogate model plays a pivotal role. Indeed,
the Gaussian process regression (GPR) model considered
in this work is trained with a moderate number of nonlin-
ear finite element analysis. Once this GPR is trained, it is
possible to perform uncertainty quantification at reduced
numerical costs. Furthermore, the active learning strategy
implemented in this work allows to improve the quality of the
GPR surrogate gradually with a limited number of additional
nonlinear finite element analyses. This is quite remarkable,
as active learning allows to enrich the initial training set
(generated with Latin hypercube sampling) such that the
uncertainty associated with the estimation of probabilistic
descriptors is minimized. From the point of view of the
results presented, sensitivity analysis allows performing a
quantitative assessment of the problem at hand, which is
most relevant from a practical viewpoint. In fact, the results
presented in Figure 11, which involve a simple sensitivity
study, already indicated that the material parameters govern-
ing plasticity affect the most the maximum stress triaxiality
and Lode angle, respectively. While such results as discussed
in Appendix A are certainly valuable, they are intrinsically
qualitative. On the contrary, the Sobol’ indices as reported
in Section 4.2 provide quantitative evidence, revealing that
most of the variability present in both stress triaxiality and
Lode angle can be attributed to the variability associated
with the hardening exponent 𝑛p. Such quantitative evidence
suggests that to better control stress triaxiality and Lode
angle (and eventually damage), it is necessary to pay close at-
tention to this hardening exponent. This observation is rein-
forced by the results obtained for selected material parameter
sets during GPR surrogate model training, where notable

differences in stress triaxiality and Lode angle were found
despite showing nearly identical force-displacement curves
(the latter typically being considered for classic calibration
of material parameters). For example, one could attempt
to identify more precisely the range of uncertainty of this
exponent by combining prior knowledge on it plus practical
laboratory measurements under the framework provided by
Bayesian uncertainty.

The computational framework established in the present
work contributes to the simulation-based prediction of the
influence of uncertainty of material parameters on process-
induced material properties. The particular application anal-
ysed emphasizes evolution of stress triaxiality and Lode
angle in the context of finite deformation elasto-plasticity
since these contributions are typical indicators for dam-
age evolution and thereby for the material properties in-
fluenced, respectively induced, by the underlying manufac-
turing process. Such type of analysis becomes (in future)
most important in view of processing impure raw materials
with high uncertainties in initial material properties – e.g.
in the context of saving resources by means of recycling
materials or making use of scrap metal in manufacturing
processes. Moreover, the current contribution provides a
basis for continuing investigations and expansions of the
established framework. Further developments could involve
exploring the nonlinear finite element model of the tensile
test specimen under increased loadings, aiming to quantify
uncertainty effects of material parameters near the onset of
necking, where a change in the influence of material param-
eters on stress triaxiality and Lode angle has been observed.
The highly mesh-dependent results obtained in the current
implementation towards necking suggest that an extension
of the framework by a regularization technique applied to
plasticity is required, resulting in the solution of, e.g., an
additional non-local proportional hardening-related internal
variable field alongside the displacement field. Furthermore,
extending the current framework by a damage formulation
would enable a more comprehensive analysis of uncertainty
effects associated with material parameters that govern the
initiation and evolution of damage in the tested specimen.

Several more sophisticated tensile test specimens are
found in the literature that are designed to provoke different
stress states, which can be adopted into the current frame-
work to investigate the effects of uncertainty of material
parameters at varying levels of stress triaxiality and Lode
angle. Moreover, by considering non-uniform spatially dis-
tributed sets of material parameters, a more realistic analy-
sis can be achieved, which closely resembles the behavior
observed in real-life applications.

Another venue for improving the numerical performance
of the implemented framework for sensitivity analysis con-
sists of exploiting parallel process capabilities. From a gen-
eral perspective, approaches for uncertainty quantification
are usually highly parallelizable, as they comprise repeated
evaluation of a deterministic model. However, for the current
problem at hand, parallelization is not straightforward to
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Table 5
Stress triaxiality 𝜂 and stress mode factor 𝜁 evaluation for different stress states with principal Cauchy stresses 𝜎1, 𝜎2, 𝜎3.

𝜎1 > 0
𝜎2 = 𝜎1
𝜎3 = 𝜎1

𝜎1 > 0
𝜎2 = 𝜎1
𝜎3 = 0

𝜎1 > 0
𝜎2 = 0
𝜎3 = 𝜎2

𝜎1 > 0
𝜎2 = −𝜎1∕2
𝜎3 = 𝜎2

𝜎1 > 0
𝜎2 = 0

𝜎3 = −𝜎1

𝜎1 > 0
𝜎2 = 𝜎1

𝜎3 = −2 𝜎1

𝜎1 = 0
𝜎2 = 𝜎1
𝜎3 < 0

𝜎1 = 0
𝜎2 < 0
𝜎3 = 𝜎2

𝜎1 < 0
𝜎2 = 𝜎1
𝜎3 = 𝜎1

𝜂 ∞ 2/3 1/3 0 0 0 -1/3 -2/3 −∞
𝜁 ∞ -1 1 1 0 -1 -1 1 −∞

implement in context with an active learning scheme. Hence-
forth, specific research in this area is required in order to
further improve the numerical properties of the implemented
scheme.
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A. Homogeneous uniaxial tension
In order to illustrate the influence of the material pa-

rameters of the material model discussed in Section 2.2, ho-
mogeneous states of deformation under uniaxial tension are
investigated with respect to a reference material parameter
set that was fitted to DP800 steel, taken from Sprave and
Menzel (2020), see Table 1, and variations thereof. In order
to illustrate the main characteristics and properties of the
material model itself, also extreme values for the underlying
materials parameters are considered in the following, which
are not representative for DP800 steel as represented by the
reference set of material parameters; cf. Table 1.

For an isotropic material response, the deformation gra-
dient (related to a uniaxial stress state) takes the form

𝑭 = 𝜆∥ 𝒆∥ ⊗ 𝒆∥ + 𝜆⊥
[

𝑰 − 𝒆∥ ⊗ 𝒆∥
]

, (19)
wherein 𝜆∥ denotes the prescribed monotonically increasing
stretch in longitudinal tension direction 𝒆∥ with ‖𝒆∥‖ = 1.
The stretch 𝜆⊥ results from the constraint of a uniaxial
tension stress state, i.e. 𝝈 = 𝜎∥ 𝒆∥ ⊗ 𝒆∥, with 𝜎∥ being the
Cauchy stress in longitudinal tension direction.

In Figure 11, the material response of the reference
material parameter set in terms of stress-stretch curves of the
uniaxial Cauchy stress 𝜎∥ over the longitudinal stretch 𝜆∥ ∈
[1.0 , 1.2] is compared against the material response obtained
for material parameter variations where one of the parame-
ters is varied at a time. The graphs illustrate that the material

parameters governing plasticity exert the most significant
influence on the constitutive behavior in the vicinity of the
reference material parameter set. The bulk and shear moduli
𝐾 and 𝐺 significantly influence the stress-strain response
already before yielding; see Figures 11a and 11b. However,
this is the case only for high variations of their reference
values, whereby higher values result in higher stresses. The
latter is not expected to occur in practice. Varying yield
stresses 𝜎𝑦0, see Figure 11c, shows distinct trends already
for comparatively small variations. Thereby, the elastic and
plastic regimes are clearly distinguishable by the onset of
yielding. It is observed that the curves take a parallel path
with a constant offset in the plastic regime, where the offset
is directly related to the difference in yield stresses. The
hardening modulus ℎ, see Figure 11d, significantly influ-
ences the hardening evolution after yielding in terms of the
magnitude of the stress-stretch curve, whereby a vanishing
hardening modulus results in perfect plasticity. Finally, the
hardening exponent defines the nonlinearity of the hardening
evolution with 𝑛p = 1 resulting in linear hardening and
𝑛p = 0 resulting in perfect plasticity, see Figure 11e. In
contrast to the other material parameters, the hardening
exponent shows a decrease in stresses for increasing values.
The resulting stress-stretch curves for the reference, upper
and lower bounds material parameter sets defined in Table 1
are provided in Figure 11f for comparison. Based on the
discussed results obtained for varying hardening exponents,
the upper bounds material parameter set contains the lowest
hardening exponent, and the opposite applies to the lower
bounds parameter set, with overall ±5% and ±10% varia-
tions of elastic and plastic material parameters with respect
to the reference material parameter set.

The respective values of stress triaxiality and Lode angle
for a stress state of uniaxial tension are constant over the
entire loading history of 𝜂 = 1∕3 and 𝜗 = 0◦, respectively
𝜁 = 1, cf. Table 5 with principal Cauchy stresses 𝜎1, 𝜎2,
𝜎3 of type 𝜎1 > 0, 𝜎2 = 0 and 𝜎3 = 𝜎2. In particular,
stress triaxiality and Lode angle are independent of the set
of material parameters for the stress states shown.
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