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act

learning single-loop Kriging methods have gained significant attention for time-dependent rel

nalysis. However, it still remains a challenge to estimate the time-dependent failure probabili

tly and accurately in practical engineering problems. This study proposes a new method, call

informed Parallel Adaptive Kriging’ (EPAK) for efficient time-dependent reliability analysis. Fir

ntial variance-amplified importance sampling technique is developed to estimate the time-depende

probability based on the trained global response Kriging model of the true performance functio

the maximum relative error of the time-dependent failure probability is derived to facilitate the co

on of stopping criterion. Finally, a parallel sampling strategy is proposed through combining t

error contribution and an influence function, which enables parallel computing and reduces the u

ry limit state function evaluations caused by excessive clustering. The superior performance of t

ed method is validated through several examples. Numerical results demonstrate that the meth

urately estimate the time-dependent failure probability with higher efficiency than several compar

s.

rds: Time-dependent reliability analysis; Active learning; Kriging model; Importance sampling;

l computing; Estimation error
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roduction

iability analysis aims to assess the likelihood that a structural system or component will consistent

the intended functions when considering multi-source uncertainties, such as material properti

loads, geometry, model uncertainty, and others [1]. The traditional time-invariant reliability analy

s the time-dependent factors and is limited to assessing the reliability at a specific time instan

ering the fact that the performance of engineered component or systems usually degrades with t

e of service time, time-dependent reliability analysis (TRA) has drawn much attention in rece

s [2–4]. Incorporating the time dimension adds complexity to the problem, which makes the TR

ime-consuming than the time-invariant cases [5, 6]. The current TRA methods could be categoriz

ree following groups: (1) out-crossing rate methods; (2) composite limit state methods; (3) extrem

ethods.

he out-crossing rate methods, the time-dependent failure probability (TDFP) is approximated by i

ng the instantaneous out-crossing rate over a specified time interval. The origin of this type of metho

tracked into the 1940s when Rice introduced the famous Rice formula [7], laying the theoretical fou

for the development of the out-crossing rate methods for time-dependent reliability problems. T

ssing rate methods can be further classified into the two following groups. The first group consists

erical methods, mainly based on the FORM or the method of moments. The representative metho

PHI2 [8] , PHI2+ [9], and MPHI2 [10], etc. The second is the analytical methods, including b

ited to [11–13]. Although the performance of the out-crossing rate methods have been improved

t several decades [14, 15], the large computation cost and the inherent assumption still restrict t

bility of the out-crossing rate methods in TRA.

composite limit state methods discretize the time-dependent limit state function (LSF) into a ser

antaneous LSFs, thereby transforming the time-dependent issue into a time-invariant one with t

ystem reliability concept [16]. Some studies use FORM to calculate the instantaneous reliabili

ng but not limited to [17–19]. These methods may produce inaccurate results when the LSF

nonlinear or contains multiple most probable points (MPPs). Simulation-based methods have al

2
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eveloped for TRA, e.g., subset simulation [20], line sampling [21] and importance sampling [2

espite better accuracy, the simulation-based methods still suffer from low efficiency in engineeri

es.

extreme value methods transform the time-dependent problem into a time-invariant one, and t

is estimated by solving the extreme value distribution [23, 24]. Recent advancements in artific

ence have accelerated the application of machine learning in predicting the extreme value distrib

here adaptive surrogate models have gained significant attention for their effective balance betwe

cy and efficiency [25–27]. The extreme response surrogate-based methods, as a type of double-lo

s, need to identify the extreme response in the inner loop and build a surrogate model for the e

response in the outer loop [28]. The typical methods falling into this category include the paral

t global optimization [29], confidence-based adaptive extreme response surface method [30], impo

ampling-based double-loop Kriging [31], mixed EGO method [32] and so forth. The double-lo

s may suffer from low accuracy due to the fact the accuracy of searching extreme time instant wou

ce the accuracy of surrogate model. Besides, this kind of method requires a large amount LSF eval

for the problems with stochastic process with a long time interval. Instead of a double-loop schem

e-loop scheme involving constructing the global response surrogate models has been extensively i

ted [33, 34]. Among the various kinds of surrogates, the Kriging model is particularly prominent f

ability to interpolate and provide a local measure of prediction uncertainty. In this regard, the mo

ing is the single-loop Kriging surrogate modeling (SILK) method [33]. Some other representati

oop methods include variance reduction-guided adaptive Kriging (VARAK) method [35], real-tim

tion error-guided active learning Kriging (REAL) method [36], single-loop Gaussian process regre

sed-active learning (SL-GPR-AL) method [37], and several others [38, 39]. In the aforemention

oop methods, the estimation of the TDFP is all based on Monte Carlo Simulation (MCS) and

tationally challenging for small failure probability problems. To solve this problem, several met

ve been developed by combining the single-loop Kriging model with importance sampling techniq

] and subset simulation [42–45], respectively. Recently, the first author and his co-authors [46] ha

3
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ed the Bayesian active learning originally developed for time-invariant reliability analysis [47–4

time-dependent counterpart, and proposed uncertainty-aware adaptive Bayesian inference combin

per-ring decomposition importance sampling for TRA. As mentioned in [36], the estimation error

is an important measure for assessing whether the TDFP is sufficiently accurate as the final resu

hout the active learning process. To the best of authors’ knowledge, however, none of existing stud

empt to quantify and reduce the estimation error of TDFP provided by Kriging model and impo

ampling. Besides, these single-loop methods can only identify one point per iteration, hindering th

ility of the parallel computing.

s study aims to propose a novel method termed ‘Error-informed Parallel Adaptive Kriging’ (EPAK

ient TRA. The primary contributions can be outlined as follows:

he variance-amplified importance sampling (VAIS) proposed in [48] is adapted in a sequential w

imating the small TDFPs. The resulting sequential VAIS can reduce the sample size and tot

tation time but also avoid the computer memory issue due to the one-shot Kriging prediction on t

mount of samples;

he maximum relative error of the TDFP is derived under the combination of the single-loop Krigi

and VAIS. This allows the quantification of error in estimating TDFP, and facilitates the constructi

ffective stopping criterion. In this study, the adaptive updating of Kriging model is terminated

the maximum relative error;

parallel sampling strategy is developed through combining the relative error contribution and

ce function that considers the correlation between the existing training points and the candida

This strategy can select multiple training points and overcome the problem of unnecessary LS

ions caused by excessive clustering.

rest of this study is structured as follows. Section 2 introduces the estimation of TDFP based

and MCS. In section 3, the proposed EPAK method is presented in detail. Four examples a

in Section 4 to validate the proposed method. Section 5 concludes the present study.

4
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ckground of time-dependent reliability analysis

his section, we first give the definition of TDFP. The MCS-based TDFP estimation is then reviewe

riging-based global response surrogate method is finally introduced.

efinition of time-dependent failure probability

key to TRA is to calculate the failure probability (denoted as Pf (0, te)) of a structural syste

ponent within a predefined time interval [0, te]. A failure event is defined when the LSF is belo

any time instant within [0, te]. Let g(X,Y (t), t) denote the LSF with an n-dimensional inp

of random variables X = [X1, X2, ..., Xn] and an m-dimensional input vector of stochastic process

[Y1(t), Y2(t), ..., Ym(t)], where t denotes the time parameter.

TDFP Pf (0, te) is expressed as follows:

Pf (0, te) = P {g (X,Y (t) , t) < 0,∃t ∈ [0, te]} (

P denotes the operation of probability.

uming that the stochastic processes Y (t) are represented by a function of the random variables

e parameter t, the TDFP can be expressed as an integral given by:

Pf (0, te) =

∫

Rn

∫

R∞
I (x,y (ξ, t) , t) fX (x) fΞ (ξ) dxdξ (

I (x,y (ξ, t) , t) is the time-dependent indicator function; x and ξ are the realizations of X and

ively; fX (x) and fΞ (ξ) are the joint probability density functions (PDFs) of the random variab

fΞ (ξ), respectively; I (x,y (ξ, t) , t) is written as:

I (x,y (ξ, t) , t) =





1, g (x,y (ξ, t) , t) < 0,∃t ∈ [0, te]

0, otherwise

(

5
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iscretization of stochastic processes

stochastic processes Y (t) are discretized into random variables for computation purposes. T

nly used expansion optimal linear estimation (EOLE) [50] is adopted in this study due to its hi

cy and accuracy. One should note that it is not straightforward to simulate non-Gaussian process

OLE method. For general stochastic processes, some advanced simulation methods can be used, e.

. In this study, only Gaussian processes are considered for convenience. nt time instants are employ

retize the time interval [0, te]. Considering a Gaussian process Y (t) for the sake of illustration, Y

en as:

Y (t) ≈ µ(t) +

p∑

i=1

ξi√
λi

ϕ⊤
i ρY (t) (

µ(t) denotes the mean function; p denotes the number of dominated eigenvectors, which can

ined according to [8]. ξi (i = 1, ..., p) denote the expanded random variables; For Gaussian proce

re, ξi (i = 1, ..., p) are the standard normal variables; λi and ϕi represent the dominated eigenvalu

envectors, respectively. ρY (t) = [σ (t)σ (t1) ρ (t, t1) , ..., σ (t)σ (tnt) ρ (t, tnt)]
⊤

denotes the vector

nce function; σ(t) denotes the standard deviation function; ρY (ti, tj) is the autocorrelation functio

DFP estimation by MCS

er the stochastic processes Y (t) are discretized, the LSF is expressed as g (x,y ((ξ1, ξ2, ..., ξm) , t) ,

ξi (i = 1, ...m) denote the vectors of random variables. Based on MCS, the TDFP in Eq. (2)

ted as:

P̃f (0, te) =
1

Nmcs

Nmcs∑

i=1

It

(
x(i), (ξ

(i)
1 , ξ

(i)
2 , ..., ξ(i)m )

)
(

Nmcs denotes the number of samples; The indicator function It

(
x(i), (ξ

(i)
1 , ξ

(i)
2 , ..., ξ

(i)
m )
)
is express

It

(
x(i), (ξ

(i)
1 , ξ

(i)
2 , ..., ξ(i)m )

)
=





1, if g
(
x(i),y

(
(ξ

(i)
1 , ξ

(i)
2 , ..., ξ

(i)
m ), tj

)
, tj

)
< 0,∃j = 1, ..., nt

0, otherwise

(

6
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coefficient of variation (COV) of P̃f (0, te) is written as:

COV(P̃f (0, te)) =

√
1− P̃f (0, te)

(Nmcs − 1)× P̃f (0, te)
(

hould be noted that the MCS involves a double loop computation procedure. That is, the realizatio

ξ
(i)
1 , ξ

(i)
2 , ..., ξ

(i)
m )
}Nmcs

i=1
are first generated in the outer loop. For any realization, the LSF is evaluat

ime instants in the inner loop, i.e.,
{
g
(
x(i),y

(
(ξ

(i)
1 , ξ

(i)
2 , ..., ξ

(i)
m ), tj

)
, tj

)}nt

j=1
. If the minimu

se is less than zero (i.e., min

({
g
(
x(i),y

(
(ξ

(i)
1 , ξ

(i)
2 , ..., ξ

(i)
m ), tj

)
, tj

)}nt

j=1

)
< 0), the realization

d to be failed; otherwise, it is considered safe. A schematic representation of the MCS is given

where the failed time trajectories are denoted by the red lines. The TDFP is calculated by dividi

ber of failed time trajectories by the total number of time trajectories.

R
ea

li
za

ti
o

n
s 

o
f 
𝑔
(𝑿

,𝒀
𝑡
,𝑡
)

Time

Figure 1: Illustrative diagram of MCS.

riging-based global response surrogate method

MCS-based TDFP estimation requires Nmcs × nt LSF evaluations, making it prohibitive in ma

al engineering problems. To address this problem, the Kriging model is adopted to build a glob

se surrogate model for the LSF, enabling efficient estimation of the TDFP. The details of Krigi

is presented in Appendix A. The stochastic processes Y (t) are expressed using
∑m

i=1 p
(i) rando

es. Hence, the input dimension of LSF is equal to n+
∑m

i=1 p
(i) + 1. In order to avoid dealing wi

imensions, the stochastic processes are directly used as inputs of the Kriging model, instead of t

7
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ed random variables. The input dimension is thus reduced to n+m+1. The transformation of inp

given as:




x(1)
(
ξ
(1)
1 , ...ξ

(1)
m

)
t(1)

x(2)
(
ξ
(2)
1 , ..., ξ

(2)
m

)
t(2)

...
...

...

x(n0)
(
ξ
(n0)
1 , ..., ξ

(n0)
m

)
t(n0)




→ Eq. (4) →




x(1) y
(1)
t t(1)

x(2) y
(2)
t t(2)

...
...

...

x(n0) y
(n0)
t t(n0)




(

n0 is the number of training points.

adaptive Kriging based TRA methods starts with constructing a rough Kriging surrogate mod

small number of initial training points. Then, new informative training points are sequentia

d through a learning function and the Kriging model is updated. The procedure is terminated wh

fined stopping criterion is fulfilled. Finally, the TDFP is estimated as:

P̂f (0, te) =
1

Nmcs

Nmcs∑

i=1

Ît

(
x(i),y

(i)
t

)
(

Ît

(
x(i),y

(i)
t

)
is denoted as:

Ît

(
x(i),y

(i)
t

)
=





1, if µĝ

(
x(i),y

(i)
tj , tj

)
< 0,∃j = 1, ..., nt

0, otherwise

(1

µĝ

(
x(i),y

(i)
tj , tj

)
is the mean prediction of the Kriging model.

or-informed Parallel Adaptive Kriging

s section proposes a new method called EPAK, which can estimate small TDFPs and enable paral

ting. First, the VAIS is adapted in a sequential way to reduce the sample size and computation

ater, the maximum relative error of TDFP is derived under the combination of Kriging model a

8
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Finally, a stopping criterion and a parallel sampling strategy are developed to adaptively enrich t

g point set.

quential variance-amplified importance sampling

mentioned in the last section, MCS involves a double loop computation procedure and requir

nt Kriging model predictions. For problems with low TDFPs, a large Nmcs should be specified

the estimation accuracy, rendering the computation cumbersome. To address this problem, the VA

ed in [48] is introduced and adapted in a sequential way to replace the MCS in this study, so as

the sample size and total computation time.

TDFP Pf (0, te) in Eq. (2) is rewritten as:

Pf (0, te) =

∫

Rn

∫

R∞
I (x,y (ξ, t) , t)

fX (x)

hX (x)
hX (x) fΞ (ξ) dxdξ (1

hX(x) = fX(x;mX , γ · σX) denotes the importance sampling density (ISD), which is establish

rging the vector of standard deviations σX (or enlarging the vector of variances σ2
X) of the PD

(maintain the means mX unchanged), where γ is the amplification factor. Note that the stochas

es are typically represented by many random variables, and amplifying the standard deviations

andom variables greatly increases the computational complexity. For simplicity, only the standa

ons of input random variables in LSF are amplified.

n, ∆N samples are generated from hX(x) and fΞ (ξ). Pf (0, te) in Eq. (11) can be estimated as:

P̂f (0, te) =
1

∆N

∆N∑

i=1

Ît

(
x(i),y

(i)
t

) fX
(
x(i)

)

hX

(
x(i)

) (1

variance and COV of P̂f (0, te) are given as:

V
[
P̂f (0, te)

]
=

1

∆N − 1


 1

∆N

∆N∑

i=1

Ît

(
x(i),y

(i)
t

)( fX
(
x(i)

)

hX

(
x(i)

)
)2

−
(
P̂f (0, te)

)2

 (1

9
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COV
[
P̂f (0, te)

]
=

√
V
[
P̂f (0, te)

]

P̂f (0, te)
(1

samples are generated sequentially from the ISD and fΞ (ξ), and then predicted on the Krigi

which can greatly save the computation time. First, ∆N samples are generated. Let the number

n s = 1 and the total number of samples N0 = s ×∆N . The TDFP is estimated by Eq. (12) a

ed as P̂
(s)
f . A quantity ϖ(s) is introduced to efficiently store the Kriging prediction information f

mples, minimizing memory usage while enabling the calculation of the variance estimator. ϖ(s)

as:

ϖ(s) =
1

∆N

∆N∑

i=1

Ît

(
x(i),y

(i)
t

)( fX
(
x(i)

)

hX

(
x(i)

)
)2

(1

itional ∆N samples are generated and let s = s + 1. P̂
(s)
f and ϖ(s) are estimated by Eq. (12) a

), respectively. The TDFP and its variance can be re-estimated as:

P̂f (0, te) =
1

s

s∑

i=1

P̂
(s)
f (1

V
[
P̂f (0, te)

]
=

1

N0 − 1

(
1

s

s∑

i=1

ϖ(s) −
(
P̂f (0, te)

)2
)

(1

sampling process is executed until the COV of the TDFP is lower than the target threshold, i.

P̂f (0, te)
]
< ϵp.

elative error of TDFP

ording to Eq. (10), Ît

(
x(i),y

(i)
t

)
is estimated based on judging the sign of µĝ

(
x(i),y

(i)
t , t

)
, whi

icted by Kriging and may be wrongly estimated. The relative error of the predicted TDFP P̂f (0, t

spect to the true result Pf (0, te) can be defined as:

δ =

∣∣∣∣∣
Pf (0, te)− P̂f (0, te)

Pf (0, te)

∣∣∣∣∣ (1

10
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true result Pf (0, te) is expressed as:

Pf (0, te) =
1

N0




N0∑

i=1

Ît

(
x(i),y

(i)
t

) fX
(
x(i)

)

hX

(
x(i)

) +
N̂w

s∑

h=1

fX
(
x(h)

)

hX

(
x(h)

) −
N̂w

f∑

k=1

fX
(
x(k)

)

hX

(
x(k)

)


 (1

N̂w
s denotes the total number of time trajectories predicted to be safe by Kriging model but miscla

N̂w
f denotes the total number of time trajectories predicted to be failed but misclassified. Due to t

at the true number of misclassified time trajectories is unknown, the last two terms in Eq. (19) a

in. Let
∑N̂w

s

h=1

fX(x(h))
hX(x(h))

= Ns and
∑N̂w

f

k=1

fX(x(k))
hX(x(k))

= Nf , the relative error δ can thus be written a

δ =

∣∣∣∣∣∣∣
1−

∑N0

i=1 Ît

(
x(i),y

(i)
t

)
fX(x(i))
hX(x(i))

∑N0

i=1 Ît

(
x(i),y

(i)
t

)
fX(x(i))
hX(x(i))

+ Ns − Nf

∣∣∣∣∣∣∣
(2

hough the exact values of Ns and Nf are unknown, it is possible to obtain the expectation and varian

two quantities. To achieve this goal, Îst

(
x(h),y

(h)
t

)
= 1 is first introduced to denote that the tim

ory predicted to be safe by Kriging is actually in a failed status. Correspondingly, Îst

(
x(h),y

(h)
t

)
=

s that the time trajectory predicted to be safe is correctly classified. Ns can thus be written as:

Ns =

N̂w
s∑

h=1

fX
(
x(h)

)

hX

(
x(h)

) =

Ns∑

h=1

Îst

(
x(h),y

(h)
t

) fX
(
x(h)

)

hX

(
x(h)

) (2

Ns is the total number of safe time trajectory predicted by Kriging.

expectation and variance of Ns can be expressed as:

E [Ns] = E

[
Ns∑

h=1

Îst

(
x(h),y

(h)
t

) fX
(
x(h)

)

hX

(
x(h)

)
]
=

Ns∑

h=1

E
[
Îst

(
x(h),y

(h)
t

)] fX
(
x(h)

)

hX

(
x(h)

) (2

V [Ns] = V

[
Ns∑

h=1

Îst

(
x(h),y

(h)
t

) fX
(
x(h)

)

hX

(
x(h)

)
]
=

Ns∑

h=1

V
[
Îst

(
x(h),y

(h)
t

)]( fX
(
x(h)

)

hX

(
x(h)

)
)2

(2

the probability of Îst

(
x(h),y

(h)
t

)
= 0, i.e., the probability of correct sign estimate of

(
x(h),y

(h)
t

)
, c

11
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ressed as:

ps,c

(
x(h),y

(h)
t

)
= P

{
Îst

(
x(h),y

(h)
t

)
= 0
}
= P

{
nt⋂

h=1

ĝ
(
x(h),y

(h)
tj , tj

)
> 0

}
(2

the computation of ps,c

(
x(h),y

(h)
t

)
is quite cumbersome in practice. Instead of calculating t

alue of the ps,c

(
x(h),y

(h)
t

)
, it is possible to obtain its sub-optimal estimate without sacrificing t

tion accuracy according to our recent study [46]. The sub-optimal estimate p̄s,c

(
x(h),y

(h)
t

)
can

ed as [46]:

p̄s,c

(
x(h),y

(h)
t

)
= min

j=1,...,nt

Φ



µĝ

(
x(h),y

(h)
tj , tj

)

σĝ

(
x(h),y

(h)
tj , tj

)


 (2

sub-optimal estimate of misclassification probability is written as:

p̄s,w

(
x(h),y

(h)
t

)
= P

{
Îst

(
x(h),y

(h)
t

)
= 1
}
= 1− min

j=1,...,nt

Φ



µĝ

(
x(h),y

(h)
tj , tj

)

σĝ

(
x(h),y

(h)
tj , tj

)


 (2

s easy to find that Îst

(
x(h),y

(h)
t

)
follows the Bernoulli distribution. The expectation and variance

rewritten as:

E [Ns] =

Ns∑

h=1

p̄s,w

(
x(h),y

(h)
t

) fX
(
x(h)

)

hX

(
x(h)

) (2

V [Ns] =

Ns∑

h=1

p̄s,w

(
x(h),y

(h)
t

)(
1− p̄s,w

(
x(h),y

(h)
t

))( fX
(
x(h)

)

hX

(
x(h)

)
)2

(2

ilarly, let Îft

(
x(k),y

(k)
t

)
= 1 denote that the time trajectory predicted to be failed by Kriging

y in a safe status. Correspondingly, Îst

(
x(k),y

(k)
t

)
= 0 denotes the time trajectory predicted to

s correctly classified.

misclassification probability can be written as:

pf,w

(
x(k),y

(k)
t

)
= P

{
Îft

(
x(k),y

(k)
t

)
= 1
}
= P





nt⋂

j=1

ĝ
(
x(k),y

(k)
tj , tj

)
> 0



 (2

12



Journal Pre-proof

Acc
)
)

226

can be227

0)

The228

1)

229

2)

where230

For fi-231

cation232

3)

Wit as233

the can he234

numbe s235

and Nf ly236

follow237

4)

238

5)
Jo
ur

na
l P

re
-p

ro
of

ording to the aforementioned discussion, the corresponding sub-optimal estimate of pf,w

(
x(k),y

(k
t

defined as:

p̄f,w

(
x(k),y

(k)
t

)
= min

j=1,...,nt

Φ



µĝ

(
x(k),y

(k)
tj , tj

)

σĝ

(
x(k),y

(k)
tj , tj

)


 (3

expectation and variance of Nf can be written as:

E [Nf ] =

Nf∑

k=1

p̄f,w

(
x(k),y

(k)
t

) fX
(
x(k)

)

hX

(
x(k)

) (3

V [Nf ] =

Nf∑

k=1

p̄f,w

(
x(k),y

(k)
t

)(
1− p̄f,w

(
x(k),y

(k)
t

))( fX
(
x(k)

)

hX

(
x(k)

)
)2

(3

Nf is the total number of failed points predicted by Kriging model.

any time trajectory predicted to be either safe or failed, the sub-optimal estimate of the misclassi

probability is expressed as:

p̄w

(
x(i),y

(i)
t

)
= Φ


−

∣∣∣∣∣∣
min

j=1,...,nt

µĝ

(
x(i),y

(i)
tj , tj

)

σĝ

(
x(i),y

(i)
tj , tj

)

∣∣∣∣∣∣


 (3

h the VAIS technique presented in Section 3.1, the dispersedly distributed samples are generated

didate samples. It is reasonable to consider that the number of safe time trajectories Ns and t

r of failed time trajectories Nf are both large enough. In this case, the confidence intervals of N

can be approximately obtained using the central limit theorem. Besides, Ns and Nf approximate

normal distributions, which are expressed as:

Ns ∼ N (E [Ns] ,V [Ns]) (3

Nf ∼ N (E [Nf ] ,V [Nf ]) (3

13



Journal Pre-proof

The239

6)

240

7)

where el241

(α = 0242

The243

δmax

8)

It s on244

of the he245

signific is246

based o247

3.3. St248

In a er249

the obt ng250

criterio ed251

thresho252

9)

where ly253

when E254

If t ue255

LSF to P,256
 Jo
ur

na
l P

re
-p

ro
of

confidence intervals of Ns and Nf can be obtained as:

Ns ∈
[
N l

s ,N
u

s

]
=
[
Φ−1

Ns
(α/2) , Φ−1

Ns
(1− α/2)

]
(3

Nf ∈
[
N l

f ,N
u

f

]
=
[
Φ−1

Nf
(α/2) , Φ−1

Nf
(1− α/2)

]
(3

Φ−1
Ns

(·) and Φ−1
Nf

(·) denote inverse cumulative distribution functions (CDFs); α is the confidence lev

.05 is used in this study).

maximum relative error of TDFP can thus be obtained by:

= max




∣∣∣∣∣∣∣

N l
s − N u

f

∑N0

i=1 Ît

(
x(i),y

(i)
t

)
fX(x(i))
hX(x(i))

+ N l
s − N u

f

∣∣∣∣∣∣∣
,

∣∣∣∣∣∣∣

N u
s − N l

f

∑N0

i=1 Ît

(
x(i),y

(i)
t

)
fX(x(i))
hX(x(i))

+ N u
s − N l

f

∣∣∣∣∣∣∣




(3

hould be noted that the quantification of the relative error of TDFP can be regarded as an extensi

study in static reliability analysis [53] and the one in time-dependent reliability analysis [36]. T

ant difference is that the estimation of relative error is based on the VAIS in this study, whereas it

n MCS in the two existing studies.

opping criterion and parallel sampling strategy

daptive Kriging based TRA method, a suitable stopping criterion is required to determine wheth

ained estimate of TDFP is accurate enough as the final result. Based on the Eq. (38), the stoppi

n can be defined by judging whether the maximum relative error of TDFP is below a prescrib

ld:

δmax ⩽ ϵr (3

ϵr is the specified threshold. Note that the adaptive updating of Kriging model is terminated on

q. (39) is satisfied twice consecutively to prevent the potential fake convergence.

he stopping criterion is not met, new training points need to be identified and evaluated on the tr

update the Kriging model. In order to efficiently decrease the maximum relative error of TDF

14
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ber of misclassified time trajectories should be as small as possible. In other words, the greater t

sification of a time trajectory, the greater the contribution to reducing the relative error of TDF

s, the p̄w (x,yt) in Eq. (33) measures the contribution of the time trajectory to the relative err

P. Therefore, the relative error can be minimized as much as possible through evaluating the poi

aximizes the misclassification probability in Eq. (33). However, directly selecting the point with t

misclassification probability overlooks the distance between the newly added training point and t

g ones, which may cause excessive clustering and lead to unnecessary LSF evaluations. To addre

oblem, this paper introduces a influence function by considering the correlation between the existi

g points and all candidate points as the distance measure, and then proposes a new learning functi

improved relative error contribution (IREC):

IREC (x,yt) = IF
(
x;x(1),x(2), · · · ,x(n0)

)
× p̄w (x,yt) (4

IF
(
x;x(1),x(2), · · · ,x(n0)

)
is the introduced influence function and denoted as [54]:

IF
(
x;x(1),x(2), · · · ,x(n0)

)
=

n0∏

i=1

[
1−R

(
x,x(i)

)]
(4

x(1),x(2), · · · ,x(n0) are the n0 existing training points; R(·) is the Gaussian correlation function

iging model in this study.

IREC function can be further extended to parallel sampling case by exploiting the advantages

roduced influence function. In an active learning iteration, q training points are sequentially select

ultaneously enriched to the dataset D, which is elaborated as follows. First, the time trajecto

izing the IREC function is selected and then the time instant with the largest prediction uncertainty

. Herein, the commonly used U function is used to determine the optimal time instant [55]. Therefo
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ection strategy of the first added training point v
(n0+1)
new is expressed as follows:

v
(n0+1)
new =

[
x(i∗),y

(i∗)
tj∗ , tj∗

]

i∗ = argmax
i=1,...,N0

IF
(
x;x(1),x(2), · · · ,x(n0)

)
p̄w

(
x(i),y

(i)
t

)
, j∗ = argmin

j=1,...,nt

∣∣∣µĝ

(
x(i∗),y

(i∗)
tj∗

,tj
)∣∣∣

σĝ

(
x(i∗),y

(i∗)
tj∗

,tj
)

(4

uentially, after q − 1 updated training points have been identified, the q-th training point can

d as:

v
(n0+q)
new =

[
x(i∗),y

(i∗)
tj∗ , tj∗

]

= argmax
i=1,...,N0

IF
(
x;x(1),x(2), · · · ,x(n0+q−1)

)
p̄w

(
x(i),y

(i)
t

)
, j∗ = argmin

j=1,...,nt

∣∣∣µĝ

(
x(i∗),y

(i∗)
tj∗

,tj
)∣∣∣

σĝ

(
x(i∗),y

(i∗)
tj∗

,tj
)

(4

s evident from Eqs. (42)-(43) that q training points are sequentially identified through consideri

ative error contribution and the correlation between all training points and candidate points. Aft

ing points are selected within an iteration, the Kriging model is updated. Note that the develop

l sampling strategy may be similar to the idea that multiple informative points are sequentially gene

maximizing the product of the learning function and influence function, which is recently introduc

field of time-invariant reliability analysis [56, 57] and time-dependent system reliability analysis [5

fference lies mainly in two aspects. First, this study develops a new IREC learning function based

cept of minimizing the relative error of TDFP. Second, the several existing researches have only co

the correlation between the current and previously selected points within an iteration, ignoring t

tion of the training points prior to the current iteration, whereas this study addresses this problem

plementation of the proposed method

flowchart of the proposed method is shown in Fig. 2. The implementation procedures are summ

s follows:

p 1: Discretize the time interval [0, te] and the stochastic processes Y (t) (if involved).

p 2: Generate n0 initial training points by Sobol sequence. The sampling domain of these init

is set to [µ− 3σ,µ+ 3σ], where µ and σ are the mean and standard deviation of the input rando

16
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es, respectively. The corresponding responses are calculated by evaluating the LSF g (·). Establi

tial dataset D = {[x(i),y
(i)
ti , ti], g

(i)}n0
i=1 with the EOLE method. Let the number of LSF evaluatio

n0 and the number of iterations Nite = 1.

p 3: Construct the candidate sample pool S = [x(i), (ξ
(i)
1 , ..., ξ

(i)
m )]∆N

i=1 , where ∆N is the number

candidate samples. Let s = 1 and the the number of total candidate samples N0 = s×∆N .

p 4: Build the Kriging model based on the dataset D.

p 5: Estimate the TDFP P̂f (0, te) and its variance V
[
P̂f (0, te)

]
based on Eqs. (16)-(17). Calcula

ximum relative error δmax in Eq. (38).

p 6: If the stopping criterion in Eq. (39) is fulfilled twice consecutively, turn to Step 8; else, turn

p 7: Identify q pointsD+ = [x(i),y
(i)
ti , ti]

q
i=1 using the developed parallel sampling strategy. Evalua

F on the q selected points to obtain the responses {g(i)}qi=1. Enrich the points and responses into t

D. Let Neva = Neva + q and Nite = Nite + 1, and return to Step 4.

p 8: Check if the COV of the TDFP is below the target threshold, i.e, COV
[
P̂f (0, te)

]
< ϵp.

d, go to Step 9; else, generate additional ∆N candidate samples and enrich the candidate samp

, let s = s+ 1 and return to Step 5.

p 9: Return the estimated TDFP P̂f (0, te) and end the proposed method.

amples and results

effectiveness of the proposed EPAK method is validated by comparing it with several existing no

l TRA methods. The two compared methods, SILK [33] and REAL [36], are implemented in

les and the number of initial training points is set to be 12. Other implementation details follow t

settings in the original studies. The results for the remaining compared methods, including eSP

RA [60], SLK-co-SS [45], etc., are taken from the respective publications unless otherwise state

rameter settings for the proposed method are as follows: n0 = 12, γ = 1.5, ∆N = 104, ϵp = 5

. Different values are specified for q to investigate the impact on the results. The reported results a
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Generate 𝑛0 initial training points and construct the initial dataset 𝓓 =

𝒙 𝑖 , 𝒚 𝑖 , 𝑡 i , 𝑔 𝑖
𝑖=1

𝑛0
, let 𝑁𝑐𝑎𝑙𝑙 = 𝑛0 and 𝑁𝑖𝑡𝑒𝑟 = 1

Construct the Kriging model based on the dataset 𝓓

Estimate the ෠𝑃𝑓(𝑡0, 𝑡𝑒) and its variance 𝕍[ ෠𝑃𝑓 𝑡0, 𝑡𝑒 ],

calculate the maximum relative error 𝛿𝑚𝑎𝑥

No

Identify 𝑞 points, evaluate on the 

LSF, and enrich the dataset 𝓓, 

let 𝑁𝑐𝑎𝑙𝑙 = 𝑁𝑐𝑎𝑙𝑙 + 𝑛0 and

𝑁𝑖𝑡𝑒𝑟 = 𝑁𝑖𝑡𝑒𝑟 + 1

ℂ𝕆𝕍[ ෠𝑃𝑓(𝑡0, 𝑡𝑒)] < 𝜖𝑝?

Yes

No

Discretize the time interval [𝑡0, 𝑡𝑒] with 𝑛𝑡 time instants and the

stochastic processes 𝒀(𝑡). 

Construct the candidate sample pool 𝑺, let 𝑠 = 1 and 𝑁0 = 𝑠 × Δ𝑁

Generate additional 

Δ𝑁 candidate samples 

and enrich the sample 

pool 𝑺, let 𝑠 = 𝑠 + 1

Yes

Return the time-dependent failure probability ෠𝑃𝑓(𝑡0, 𝑡𝑒)

𝛿𝑚𝑎𝑥< 𝜖r
twice in succession

𝑡𝑖 

Figure 2: Flowchart of the proposed method.

d over 10 independent runs in MATLAB R2019(b) under the environment (CPU of Intel i5-13400

f 16 GB) unless otherwise stated.

athematical example

athematical model is investigated is this section [45, 59, 60]. The LSF is expressed as:

g(X, Y (t), t) = X2
1X2 + (X2 + 1) t2 − 5X1(1 + Y (t))t− 20 (4

he input variablesX1 andX2 both follow a normal distribution with the mean of 3.5 and the standa

on of 0.25; Y (t) denotes a Gaussian process, where the mean and standard deviation are 0 and
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ively. The autocorrelation function of the Gaussian process is defined as κ (t1, t2) = exp
[
− (t1 − t2)

2

] represents the time parameter.

time interval and Gaussian process Y (t) are discretized with 101 time instants and three independe

rd normal variables, respectively. Fig. 3 depicts one hundred realizations of Y (t). The TDFP resu

d by different methods are listed in Table 1. The TDFP P̂f = 0.3079 by MCS is considered

erence result. It is observed that all methods can produce results close to the reference result.

of efficiency, the proposed method requires fewer iterations with the help of the developed paral

ng strategy. When q = 1 (indicating that the parallel computing is unavailable), the proposed meth

ss LSF evaluations than other compared methods though it produces slightly larger COVs. Throu

ring the computation time between different methods, it can be found that the proposed meth

ly requires less CPU time than other active learning TRA methods.

Table 1: TRA results of example 4.1.

Methods Nite Neva P̂f ϵP̂f
COV[P̂f ] CPU Time (s)

MCS - 101× 106 0.3079 - 0.15% 1.9

eSPT1 - 139 0.2986 3.02% - -

STRA2 16.4 27.4 0.3041 1.23% - -

SLK-co-SS3 35.8 46.8 0.3072 0.23% - -

SILK 12.5 23.5 0.3075 0.13% 2.95% 31.1

REAL 10.8 21.8 0.3070 0.29% 3.56% 29.5

Proposed method

q = 1 6.6 17.6 0.3059 0.65% 6.58% 2.5

q = 2 4.3 18.6 0.2995 2.73% 7.02% 2.0

q = 3 4.1 21.3 0.3014 2.11% 5.16% 2.2

q = 4 3.7 22.8 0.3062 0.55% 4.16% 2.2

q = 5 3.8 23.2 0.3031 1.56% 4.95% 2.3

q = 6 3.5 27.0 0.3093 0.45% 3.14% 2.6

q = 7 2.8 24.6 0.3086 0.23% 2.57% 2.2

q = 8 2.8 26.4 0.3081 0.07% 3.51% 2.4

1 The results are taken from research [59];
2 The results are taken from research [60];
3 The results are taken from research [45].

orroded simply supported beam

his section, we consider the TRA of a corroded beam [60] shown in Fig 4. The span of the bea

The bending loads include the concentrated load F (t) and the uniformly distributed load p
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Figure 3: Realizations of Y (t) of example 4.1.

104b0h0(N/m). The LSF is defined as follows:

g (x, F (t) , t) =
(b0 − 2κt) [h0 − 2κt]

2
fy

4
−
(
F (t)L

4
+

7.85× 104b0h0L
2

8

)
(4

κ = 3× 10−5m/year control the corrosion rate and t ∈ [0, 20] years represents time parameter; b0,

are the initial width and height of the cross section, and the yield strength, respectively. Table

e details of the random parameters.

time interval [0, 12] and Gaussian process F (t) are discretized with 241 time instants and six ind

t standard normal variables, respectively. The TRA results provided by different methods are list

le 3. One can observe that all investigated methods can yield the results close to the reference val

d by MCS. In terms of the efficiency, however, the proposed method requires much less iterations a

aluations than other methods. The comparison of computation time shows that the proposed meth

s less CPU time than both REAL and SILK methods. When q varies from 1 to 8 in the propos

, the number of LSF evaluations gradually increases. Besides, the proposed method requires t

umber of iterations and computation time for the setting of q = 5. This observation indicates th

g too many training points per iteration does not necessarily result in a reduction in the the numb

tions and the total computation time.

. 5 schematically presents the TDFP within the time interval [0, 20] years, where the error bar indica
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ge of the mean ± 2 standard deviations of the TDFP. It is found that the TDFP estimates obtain

proposed method are similar to the reference values provided by MCS. These results confirm th

posed EPAK method is capable of estimating the TDFP across varied subintervals with satisfacto

cy. As shown in Fig. 5, the failure probability is rather low (e.g., around 10−3) within small tim

ls. The proposed method still maintains high estimation accuracy, which indicates the effectivene

proposed method in small TDFP problems.

p F(t)

b0

h
0

κt

Residual area b(t)h(t) 

L

Figure 4: Schematic diagram of the corroded beam.

Table 2: Distributions of inputs of example 4.2.

Input variable Distribution Mean Standard deviation Autocorrelation function

fy (MPa) Lognormal 240 24 -

b0 (m) Lognormal 0.2 0.01 -

h0 (m) Lognormal 0.03 0.003 -

F (t) (kN) Gaussian process 3.5 0.7 κ (t1, t2) = exp
[
− 1

25
(t1 − t2)

2
]

0 4 8 12 16 20
Time (years)

0.005

0.014

0.023

0.032

0.041

0.05

Fa
ilu

re
 p

ro
ba

bi
lit

y

MCS
Proposed method

Figure 5: TDFP of example 4.2 (q = 1).
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Table 3: TRA results of example 4.2.

Methods Nite Neva P̂f ϵP̂f
COV[P̂f ] CPU Time (s)

MCS - 201× 106 4.74× 10−2 - 0.45% 2.0

t-IRS1 - 171.4 4.71× 10−2 0.63% - -

eSPT1 - 113.4 4.88× 10−2 2.95% - -

STRA1 45.4 56.4 4.78× 10−2 0.84% - -

SILK 40.4 51.4 4.73× 10−2 0.21% 2.51% 432.8

REAL 31.1 42.1 4.75× 10−2 0.21% 3.29% 183.9

Proposed method

q = 1 8.7 19.7 4.78× 10−2 0.84% 4.50% 6.1

q = 2 7.3 24.6 4.74× 10−2 0 8.12% 7.2

q = 3 6.1 27.3 4.69× 10−2 1.05% 6.63% 6.8

q = 4 4.9 27.6 4.62× 10−2 2.53% 4.91% 6.5

q = 5 4.2 28.0 4.74× 10−2 0 3.98% 6.0

q = 6 5.2 37.2 4.79× 10−2 1.05% 3.14% 6.9

q = 7 4.6 37.2 4.76× 10−2 0.42% 5.85% 6.3

q = 8 4.5 40.0 4.60× 10−2 2.95% 3.51% 7.1

1 The results are taken from research [60].

rbine blade

urbine blade model adapted from Matlab PDE toolbox is investigated as the third example, who

lement model (FEM) and von Mises stress distribution are shown in Fig. 6. The Young’s modulu

’s ratio, coefficient of thermal expansion and the thermal conductivity are denoted as E, λ, α a

pectively. The temperature of the interior cooling air and the suction sides are denoted as T1 a

pectively. In this example, failure is defined as the maximum von Mises stress exceeding an allowab

ld. Taking into account that the allowable threshold decreases with the time t, the LSF is defin

g (x,F (t) , t) = σate
−0.02t − σm (x,F (t)) (4

σat = 1.5GPa represents the initial allowable threshold; σm(x,F (t)) denotes the maximum stre

d by FEM; F1(t) and F2(t) in F (t)) represent the pressure loads at the pressure side and sucti

spectively. Table 4 lists the details of the input variables.

time interval [0, 12] and the Gaussian processes F1(t) and F2(t) are discretized with 121 time instan

d eight independent normal variables, respectively. Table 5 presents the TRA results using differe

s. For MCS, 121 × 105 LSF evaluations are required to ensure the accuracy of TDFP estima

is computationally prohibitive. Instead, a simplified simulation with 12,100 LSF evaluations (taki
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imately 3.76 hours) is performed to provide an approximate assessment of the computational tim

oposed method, SILK and REAL provide similar TDFP estimates, while the proposed method exhib

efficiency in terms of Nite and computation time than the counterparts. When q varies from 1

proposed method requires minimal Nite for the setting of q = 5. As for the computation time, t

of q = 4 would minimize the computation time in this example.

0

0.4

0.8

1.2

1.6

2
×108

Figure 6: FEM and stress distribution of the turbine blade (unit: Pa).

Table 4: Distributions of inputs of example 4.3.

Variable Distribution Parameter 1 Parameter 2 Autocorrelation function

E Normal 220 22 -

α Normal 1.27× 10−5 1.27× 10−6 -

λ Lognormal 0.27 0.0216 -

Tc Lognormal 11.5 1.38 -

T1 Uniform 130 170 -

T2 Uniform 950 1050 -

F1(t) Gaussian process 500 100 κ (t1, t2) = exp
[
− 1

16
(t1 − t2)

2
]

F2(t) Gaussian process 450 90 κ (t1, t2) = exp
[
− 1

4
(t1 − t2)

2
]

Note: For the uniform distributions, parameter 1 and 2 respectively represent the lower and upper-
bounds; for other distributions, they denote the mean and standard deviation, respectively.

rch bridge

his section, a lower-bearing arch bridge with the calculated span of 150m and the rise-to-span rat

is considered [61], as shown in Fig. 7. The arch bridge features 34 suspenders, each spaced 6.8

A three-dimensional FEM model is built on the OpenSEES platform, consisting of 241 nodes a

ments, as shown in Fig. 8. The elastic beam-column element is adopted to simulate the suspende

irder and arch ribs. A increasing heavy load F (t) applied in the mid-span is considered and model

n-stationary Gaussian process. Considering that the suspenders are subjected to the corrosion effe

23



Journal Pre-proof

the res he387

failure us388

written389

7)

where he390

suspen of391

inertia 6392

lists th393

The e394

instant of395

F (t). T le,396

the CP le.397

The T od398

demon th399

q = 1 r s,400

respect ng401

a large s,402

respect 8,403
 Jo
ur

na
l P

re
-p

ro
of

Table 5: TRA results of example 4.3.

Methods Nite Neva P̂f ϵP̂f
COV[P̂f ] CPU Time

MCS - 121× 105 - - - ≈ 157.0 (days)

SILK 369.5 380.5 5.28× 10−3 - 2.65% 29,962.6 (s)

REAL 191.3 202.3 5.28× 10−3 0 6.86% 8382.3 (s)

Proposed method

q = 1 110.8 121.8 5.19× 10−3 1.70% 5.41% 1121.4 (s)

q = 2 58.7 127.4 5.15× 10−3 2.46% 2.82% 1032.3 (s)

q = 3 42.2 135.6 5.36× 10−3 1.52% 4.49% 709.8 (s)

q = 4 33.3 141.2 5.33× 10−3 0.95% 6.08% 432.4 (s)

q = 5 28.9 151.5 5.28× 10−3 0 5.24% 643.2 (s)

q = 6 36.4 224.4 5.26× 10−3 0.38% 5.90% 769.4 (s)

q = 7 34.7 247.9 5.17× 10−3 2.08% 4.59% 858.8 (s)

q = 8 37.9 307.2 5.38× 10−3 1.89% 4.90% 1180.9 (s)

idual area is denoted as A(t) = A1 × (1− 0.007t), where A1 is the initial area of the suspenders. T

is defined as the maximum deflection in excess of a safety threshold ∆s = 10 cm. The LSF is th

as:

g (X, F (t) , t) = ∆s −∆(A (t) , E1, A2, E2, I, F1, F (t)) (4

the initial area of the arch ribs is denoted as A2. E1 and E2 represent the Young’s modulus for t

ders and arch ribs, respectively; The main girder’s stiffness is characterized by its area moment

I; The total applied load, including both dead and live components, is represented as F1. Table

e details of input variables.

time interval [0, 50] and the non-stationary Gaussian process F (t) are discretized with 501 tim

s and sixteen independent normal variables, respectively. Fig. 9 shows one hundred realizations

able 7 presents the obtained TDFP estimates by different methods. Similar to the third examp

U time required by MCS is approximately calculated with 10,200 LSF evaluations in this examp

DFP estimates obtained by all methods are relatively close; however, the proposed EPAK meth

strates significantly higher efficiency than the other methods. Specifically, the proposed method wi

equires 66.6 LSF evaluations on average, while SILK and REAL requires 113.8 and 88.0 evaluation

ively. Besides, the proposed method costs much less iterations than the counterparts when specifyi

value of q. As for the computation time, SILK and REAL takes 13,702.3 seconds and 6000.4 second

ively, whereas the proposed EPAK method takes 270.1 to 456.2 seconds. When q varies from 1 to
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uired computation time is minimal for the setting of q = 5. Meanwhile, the corresponding Nite a

re relatively small.

time-dependent reliability results are schematically depicted in Fig. 10, where the reliability ind

ed as β) is obtained by β = Φ−1(1 − P̂f ). The error bars show the range of the mean ± 2 standa

ons of the TDFP and the reliability index, respectively. It can be observed that as the service l

es, the failure probability increases. Correspondingly, the reliability index gradually decreases, whi

ng an approximately linear trend. Besides, the reliability index at t = 50 (β50 = 2.95) decreases

compared to the initial service status (β0 = 4.20), which reflects the necessity of performing TR

arch bridge problem.

12500

7
4
3

2
4
5
0

F(t)

arch ribs

Suspenders

main girder

Figure 7: Illustrative diagram of the arch bridge (unit: cm).

Figure 8: FEM of the arch bridge.

nclusions

s study proposed a new method termed ‘Error-informed Parallel Adaptive Kriging’ (EPAK) f

t TRA. Specifically, the VAIS was adapted in a sequential way to estimate the small TDFP bas

trained single-loop Kriging model, which could decrease the sample size and total computati
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Figure 9: Realizations of the Gaussian process of example 4.4.

Table 6: Distributions of inputs of example 4.4.

ut variable Distribution Mean Standard deviation Autocorrelation function

A1(m2) Lognormal 3× 10−3 3× 10−4 -

E1(Pa) Normal 2× 1011 2× 1010 -

A2(m2) Lognormal 2.8 0.28 -

E2(Pa) Normal 2.1× 1011 2.1× 1010 -

I(m4) Lognormal 5.6× 10−2 8.4× 10−3 -

1(N/m) Gumbel 5.5× 107 1.1×107 -

(t)(kN) Gaussian process 180 + 180 ln
(
1 + t

20

)
18 + 18 ln

(
1 + t

20

)
κ (t1, t2) = exp

[
− 1

16
(t1 − t2)

2
]

Besides, the maximum relative error of TDFP estimation was derived, based on which a stoppi

n was developed by judging whether the maximum relative error was below a predefined thresho

, a parallel sampling strategy was proposed through combining the relative error contribution and

ced influence function, which could not only select multiple training points but also overcome t

of unnecessary LSF evaluations caused by excessive clustering. Several examples were studied

e the applicability of proposed EPAK method. Results demonstrated that the proposed method c

te small TDFPs with satisfactory accuracy. More importantly, the proposed EPAK method requir

ess LSF evaluations, iterations and CPU time when compared to other TRA methods, demonstrati

erior efficiency. Besides, numerical results showed that selecting too many training points in ea

n did not necessarily result in a reduction in the number of iterations and the total computati

ccording to the investigated examples, four or five points was sufficient and effective to select, a

erefore suggested for the proposed method.
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Table 7: TRA results of example 4.4.

Methods Nite Neva P̂f ϵP̂f
COV[P̂f ] CPU Time

MCS - 501× 106 - - - ≈ 6543.1 (days)

SILK 102.8 113.8 1.57× 10−3 - 3.55% 13,702.2 (s)

REAL 77.0 88.0 1.60× 10−3 1.91% 4.29% 6000.4 (s)

Proposed method

q = 1 55.6 66.6 1.61× 10−3 2.55% 2.84% 456.2 (s)

q = 2 29.4 68.8 1.60× 10−3 1.91% 6.05% 282.3 (s)

q = 3 22.3 75.9 1.61× 10−3 2.55% 4.12% 279.0 (s)

q = 4 17.0 76.0 1.58× 10−3 0.64% 4.14% 354.9 (s)

q = 5 15.3 83.5 1.59× 10−3 1.27% 3.33% 270.1 (s)

q = 6 15.8 100.8 1.62× 10−3 3.18% 4.56% 355.8 (s)

q = 7 15.2 111.4 1.61× 10−3 2.55% 5.91% 389.1 (s)

q = 8 13.8 114.4 1.59× 10−3 1.27% 4.96% 340.0 (s)

Figure 10: TDFP and reliability index of example 4.4.

proposed EPAK method may perform weakly in high dimensions owing to the inherent limitatio

Kriging model. Further research is still required to address this problem. Besides, the propos

could be adapted for time-dependent reliability-based design optimization.
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authors declare that they have no known competing financial interests or personal relationships th
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dix A. Kriging model

ging model is an interpolation-based regression method including linear regression and stochas

, which is written as [55]:

ĝ(x) = fT (x)ζ + ϵ(x) (A.

ĝ(x) denotes the predicted response; f(x) is the basis function vector; ζ represents the regressi

ents vector; ϵ(x) denotes a Gaussian process with the mean of zero and the covariance of κ(x(i),x(j))

(i),x(j)), where R(x(i),x(j)) is the correlation function and denoted as:

R(x(i),x(j)) = exp

[
−

n∑

k=1

θk

(
x
(i)
k − x

(j)
k

)2
]

(A.

θk (k = 1, 2, ..., n) are correlation parameters and estimated using the maximum likelihood meth

iven n0 training points X = [x(1),x(2), ...,x(n0)] and the responses G = [g(x(1)), g(x(2)), ..., g(x(n0)

σ2 are estimated as:

ζ̂ =
(
F TR−1F

)−1
F TR−1G (A.

σ̂2 =
(G− ζ)TR−1(G− ζF )

n0
(A.

F is the regression matrix with Fi,j = fj(x
(i)), i = 1, ..., n0, j = 1, ..., n; R = [R(x(i),x(j))] (i, j

0) is the correlation matrix.
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mean prediction µĝ(x) and the variance prediction σ2
ĝ(x) are obtained as follows:

µĝ(x) = fT (x)ζ̂ + rT (x)R−1(G− F ζ̂) (A.

σ2
ĝ(x) = σ̂2

[
1 + uT (x)

(
F TR−1F T

)−1
u(x)− rT (x)R−1r(x)

]
(A.

(x) = F TR−1r(x)−f(x); r(x) =
[
R
(
x,x(1)

)
, ..., R

(
x,x(n0)

)]T
is the correlation coefficient vect

n the predicted point and the training set. Note that the construction and prediction of the Krigi

can be easily performed with DACE toolbox. More details may refer to [62].
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