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Abstract

Active learning single-loop Kriging methods have gained significant attention for time-dependent relia-
bility analysis. However, it still remains a challenge to estimate the time-dependent failure probability
efficiently and accurately in practical engineering problems. This study proposes a new method, called
‘Error-informed Parallel Adaptive Kriging’ (EPAK) for efficient time-dependent reliability analysis. First,
a sequential variance-amplified importance sampling technique is developed to estimate the time-dependent
failure probability based on the trained global response Kriging model of the true performance function.
Then, the maximum relative error of the time-dependent failure probability is derived to facilitate the con-
struction of stopping criterion. Finally, a parallel sampling strategy is proposed through combining the
relative error contribution and an influence function, which enables parallel computing and reduces the un-
necessary limit state function evaluations caused by excessive clustering. The superior performance of the
proposed method is validated through several examples. Numerical results demonstrate that the method
can accurately estimate the time-dependent failure probability with higher efficiency than several compared

methods.
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1. Introduction

Reliability analysis aims to assess the likelihood that a structural system or component will consistently
perform the intended functions when considering multi-source uncertainties, such as material properties,
applied loads, geometry, model uncertainty, and others [1]. The traditional time-invariant reliability analysis
neglects the time-dependent factors and is limited to assessing the reliability at a specific time instant.
Considering the fact that the performance of engineered component or systems usually degrades with the
increase of service time, time-dependent reliability analysis (TRA) has drawn much attention in recent
decades [2-4]. Incorporating the time dimension adds complexity to the problem, which makes the TRA
more time-consuming than the time-invariant cases [5, 6]. The current TRA methods could be categorized
into three following groups: (1) out-crossing rate methods; (2) composite limit state methods; (3) extreme
value methods.

In the out-crossing rate methods, the time-dependent failure probability (TDFP) is approximated by in-
tegrating the instantaneous out-crossing rate over a specified time interval. The origin of this type of methods
can be tracked into the 1940s when Rice introduced the famous Rice formula [7], laying the theoretical foun-
dation for the development of the out-crossing rate methods for time-dependent reliability problems. The
out-crossing rate methods can be further classified into the two following groups. The first group consists of
the numerical methods, mainly based on the FORM or the method of moments. The representative methods
include PHI2 [8] , PHI2+ [9], and MPHI2 [10], etc. The second is the analytical methods, including but
not limited to [11-13]. Although the performance of the out-crossing rate methods have been improved in
the last several decades [14, 15], the large computation cost and the inherent assumption still restrict the
applicability of the out-crossing rate methods in TRA.

The composite limit state methods discretize the time-dependent limit state function (LSF) into a series
of instantaneous LSFs, thereby transforming the time-dependent issue into a time-invariant one with the
series system reliability concept [16]. Some studies use FORM to calculate the instantaneous reliability,
including but not limited to [17-19]. These methods may produce inaccurate results when the LSF is

highly nonlinear or contains multiple most probable points (MPPs). Simulation-based methods have also
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been developed for TRA, e.g., subset simulation [20], line sampling [21] and importance sampling [22]
etc. Despite better accuracy, the simulation-based methods still suffer from low efficiency in engineering
practices.

The extreme value methods transform the time-dependent problem into a time-invariant one, and the
TDFP is estimated by solving the extreme value distribution [23, 24]. Recent advancements in artificial
intelligence have accelerated the application of machine learning in predicting the extreme value distribu-
tion, where adaptive surrogate models have gained significant attention for their effective balance between
accuracy and efficiency [25-27]. The extreme response surrogate-based methods, as a type of double-loop
methods, need to identify the extreme response in the inner loop and build a surrogate model for the ex-
treme response in the outer loop [28]. The typical methods falling into this category include the parallel
efficient global optimization [29], confidence-based adaptive extreme response surface method [30], impor-
tance sampling-based double-loop Kriging [31], mixed EGO method [32] and so forth. The double-loop
methods may suffer from low accuracy due to the fact the accuracy of searching extreme time instant would
influence the accuracy of surrogate model. Besides, this kind of method requires a large amount LSF evalu-
ations for the problems with stochastic process with a long time interval. Instead of a double-loop scheme,
a single-loop scheme involving constructing the global response surrogate models has been extensively in-
vestigated [33, 34]. Among the various kinds of surrogates, the Kriging model is particularly prominent for
its capability to interpolate and provide a local measure of prediction uncertainty. In this regard, the most
pioneering is the single-loop Kriging surrogate modeling (SILK) method [33]. Some other representative
single-loop methods include variance reduction-guided adaptive Kriging (VARAK) method [35], real-time
estimation error-guided active learning Kriging (REAL) method [36], single-loop Gaussian process regres-
sion based-active learning (SL-GPR-AL) method [37], and several others [38, 39]. In the aforementioned
single-loop methods, the estimation of the TDFP is all based on Monte Carlo Simulation (MCS) and is
computationally challenging for small failure probability problems. To solve this problem, several meth-
ods have been developed by combining the single-loop Kriging model with importance sampling technique

[40, 41] and subset simulation [42-45], respectively. Recently, the first author and his co-authors [46] have
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extended the Bayesian active learning originally developed for time-invariant reliability analysis [47-49]
to the time-dependent counterpart, and proposed uncertainty-aware adaptive Bayesian inference combined
with hyper-ring decomposition importance sampling for TRA. As mentioned in [36], the estimation error of
TDFP is an important measure for assessing whether the TDFP is sufficiently accurate as the final result
throughout the active learning process. To the best of authors’ knowledge, however, none of existing studies
has attempt to quantify and reduce the estimation error of TDFP provided by Kriging model and impor-
tance sampling. Besides, these single-loop methods can only identify one point per iteration, hindering their
availability of the parallel computing.

This study aims to propose a novel method termed ‘Error-informed Parallel Adaptive Kriging’ (EPAK)
for efficient TRA. The primary contributions can be outlined as follows:

e The variance-amplified importance sampling (VAIS) proposed in [48] is adapted in a sequential way
for estimating the small TDFPs. The resulting sequential VAIS can reduce the sample size and total
computation time but also avoid the computer memory issue due to the one-shot Kriging prediction on the
large amount of samples;

e The maximum relative error of the TDFP is derived under the combination of the single-loop Kriging
model and VAIS. This allows the quantification of error in estimating TDFP, and facilitates the construction
of an effective stopping criterion. In this study, the adaptive updating of Kriging model is terminated by
judging the maximum relative error;

e A parallel sampling strategy is developed through combining the relative error contribution and an
influence function that considers the correlation between the existing training points and the candidate
points. This strategy can select multiple training points and overcome the problem of unnecessary LSF
evaluations caused by excessive clustering.

The rest of this study is structured as follows. Section 2 introduces the estimation of TDFP based on
Kriging and MCS. In section 3, the proposed EPAK method is presented in detail. Four examples are

studied in Section 4 to validate the proposed method. Section 5 concludes the present study.
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2. Background of time-dependent reliability analysis

In this section, we first give the definition of TDFP. The MCS-based TDFP estimation is then reviewed.

The Kriging-based global response surrogate method is finally introduced.

2.1. Definition of time-dependent failure probability

The key to TRA is to calculate the failure probability (denoted as P;(0,%.)) of a structural system

or component within a predefined time interval [0,%.]. A failure event is defined when the LSF is below

zero at any time instant within [0,¢.]. Let ¢(X.Y (¢),¢) denote the LSF with an n-dimensional input

vector of random variables X = [X7, Xo, ..., X;;] and an m-dimensional input vector of stochastic processes

Y (t) = [Y1(t), Ya(t), ..., Yy, (t)], where ¢ denotes the time parameter.

The TDFP P¢(0,t.) is expressed as follows:

Pr(0,t.) =P{g(X,Y (t),t) < 0,3t € [0,t.]}

where P denotes the operation of probability.

Assuming that the stochastic processes Y (t) are represented by a function of the random variables

and time parameter ¢, the TDFP can be expressed as an integral given by:

Pt = [ [ T@u(en.0) fx (@) fo (€) dod

—
=
—

(2)

where I (z,y (&,t),t) is the time-dependent indicator function; & and £ are the realizations of X and E,

respectively; fx (x) and f=z (€) are the joint probability density functions (PDFs) of the random variables

X and fz (§), respectively; I (xz,y (&,¢),t) is written as:

Iz y(&1),1) =

Lg(x,y(§t),t) <0,3t €[0,t.]

0, otherwise

(3)
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2.2. Discretization of stochastic processes

The stochastic processes Y (t) are discretized into random variables for computation purposes. The
commonly used expansion optimal linear estimation (EOLE) [50] is adopted in this study due to its high
efficiency and accuracy. One should note that it is not straightforward to simulate non-Gaussian processes
with EOLE method. For general stochastic processes, some advanced simulation methods can be used, e.g.,
[51, 52]. In this study, only Gaussian processes are considered for convenience. n; time instants are employed
to discretize the time interval [0, t¢.]. Considering a Gaussian process Y (¢) for the sake of illustration, Y ()

is written as:

i Py (1 (4)

+Z

where p(t) denotes the mean function; p denotes the number of dominated eigenvectors, which can be
determined according to [8]. & (i = 1,...,p) denote the expanded random variables; For Gaussian process
Y (t) here, & (i = 1,...,p) are the standard normal variables; A; and ¢; represent the dominated eigenvalues
and eigenvectors, respectively. py (t) = [0 (t) o (t1) p(t,t1) ..., (£) 0 (tn,) p (t,tn,)] " denotes the vector of

covariance function; o(t) denotes the standard deviation function; py (t;,t;) is the autocorrelation function.

2.3. TDFP estimation by MCS
After the stochastic processes Y (t) are discretized, the LSF is expressed as g (z,y ((€1, &2, ..-,&m) ), 1),
where &; (i = 1,...m) denote the vectors of random variables. Based on MCS, the TDFP in Eq. (2) is

estimated as:
Nmes

~ 1 ; G i
Pr(0,t) = I (2, (€7, €07, ... ) (5)
mcs i=1
where N,,.s denotes the number of samples; The indicator function I; (:c“), (él) Eéi), 5,?)) is expressed

as:

. <w(i),(§gi)7§§i) N )) Lif g (:1:(73)7y <(€§”,£§” Wy ¢ ) ) <0,3=1,..,n o

0, otherwise
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The coefficient of variation (COV) of P (0,t.) is written as:

1— Py (0,t.)
cs ]-) X Pf (Oate)

COV(Py (0,t.)) = \/ (N (7)

It should be noted that the MCS involves a double loop computation procedure. That is, the realizations
{00, €€, .. e}

at ny time instants in the inner loop, i.e., {g (w('),y ((5@, él),...7 ﬁ,ﬁ)),tj) ,tj)} ' . If the minimum
: »,

Nes
are first generated in the outer loop. For any realization, the LSF is evaluated

response is less than zero (i.e., min ({g (:c(i)7y (( Y>, éi)., ey 7(,?),1‘7-) ,tj)} ' ) < 0), the realization is
: -

regarded to be failed; otherwise, it is considered safe. A schematic representation of the MCS is given in

Fig. 1, where the failed time trajectories are denoted by the red lines. The TDFP is calculated by dividing

the number of failed time trajectories by the total number of time trajectories.

e Safe time trajectory
Failed time trajectory
|= = = -Limit state 1

Realizations of g(X, Y (t),t)

Figure 1: Illustrative diagram of MCS.

2.4. Kriging-based global response surrogate method

The MCS-based TDFP estimation requires N,,.s X ny LSF evaluations, making it prohibitive in many
practical engineering problems. To address this problem, the Kriging model is adopted to build a global
response surrogate model for the LSF, enabling efficient estimation of the TDFP. The details of Kriging
model is presented in Appendix A. The stochastic processes Y (t) are expressed using > i, p{¥) random
variables. Hence, the input dimension of LSF is equal to n + Y ., p® + 1. In order to avoid dealing with

high dimensions, the stochastic processes are directly used as inputs of the Kriging model, instead of the

7
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expanded random variables. The input dimension is thus reduced to n+m+ 1. The transformation of input

can be given as:

2 (g .gl)) e 2
w(2) (652)7 . 57(3)) t(2) w(2)
—Eq. 4) —

) (g, €h) e

where ng is the number of training points.

v

e

+(1)

+(2)

x(m0) yt("[’) t(n0)

The adaptive Kriging based TRA methods starts with constructing a rough Kriging surrogate model

with a small number of initial training points. Then, new informative training points are sequentially

selected through a learning function and the Kriging model is updated. The procedure is terminated when

a predefined stopping criterion is fulfilled. Finally, the TDFP is estimated as:

N,
) | Mg
Py (0.te) = 5 > It(w()7y§))
mcs 1:1

where I, (w(i), yi”) is denoted as:

iy (29, 47) =

0, otherwise

where 14 (w(i), yt(:), tj) is the mean prediction of the Kriging model.

3. Error-informed Parallel Adaptive Kriging

1, if (m“),yg),tj) <0,3j=1,...,ns

(10)

This section proposes a new method called EPAK, which can estimate small TDFPs and enable parallel

computing. First, the VAIS is adapted in a sequential way to reduce the sample size and computational

cost. Later, the maximum relative error of TDFP is derived under the combination of Kriging model and
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VAIS. Finally, a stopping criterion and a parallel sampling strategy are developed to adaptively enrich the

training point set.

3.1. Sequential variance-amplified importance sampling

As mentioned in the last section, MCS involves a double loop computation procedure and requires
Nopes X ny Kriging model predictions. For problems with low TDFPs, a large N,,.s should be specified to
ensure the estimation accuracy, rendering the computation cumbersome. To address this problem, the VAIS
developed in [48] is introduced and adapted in a sequential way to replace the MCS in this study, so as to
reduce the sample size and total computation time.

The TDFP Py (0,t.) in Eq. (2) is rewritten as:

Ix ()
}I,X (IIJ)

Pt = [ [ @y S (@) f= (€) dede ay

where hx(x) = fx(xr;mx,vy - ox) denotes the importance sampling density (ISD), which is established
by enlarging the vector of standard deviations ax (or enlarging the vector of variances %) of the PDF
fx(x) (maintain the means mx unchanged), where v is the amplification factor. Note that the stochastic
processes are typically represented by many random variables, and amplifying the standard deviations of
these random variables greatly increases the computational complexity. For simplicity, only the standard
deviations of input random variables in LSF are amplified.

Then, AN samples are generated from hx (x) and f= (£). Pf (0,t.) in Eq. (11) can be estimated as:

A 1 & G ) Ix (=9)
Pf(ovte)zmzft(’ﬂ 'Yy )m (12)
i=1

x (

The variance and COV of Py (0,t.) are given as:
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) v [y (0,t,)]
Cov [Pf (o,te)} o (14)

The samples are generated sequentially from the ISD and [z (£), and then predicted on the Kriging
model, which can greatly save the computation time. First, AN samples are generated. Let the number of
iteration s = 1 and the total number of samples Ny = s x AN. The TDFP is estimated by Eq. (12) and
expressed as Pf(s). A quantity w®) is introduced to efficiently store the Kriging prediction information for
AN samples, minimizing memory usage while enabling the calculation of the variance estimator. w(®) is

written as:
) 2
1 R _ , fx (w(l))
(s) — _* (@) (&)
Additional AN samples are generated and let s = s + 1. I:’}S) and w(®) are estimated by Eq. (12) and

Eq. (15), respectively. The TDFP and its variance can be re-estimated as:

Py (0,t.) Z P (16)

% {Pf (0, te)]

( Zw - (P m))) (17)

The sampling process is executed until the COV of the TDFP is lower than the target threshold, i.e.,

COV [Py (0,t)] <&

3.2. Relative error of TDFP

According to Eq. (10), I, (w(i), y,fl)) is estimated based on judging the sign of p (w(l), y,E ), t), which
is predicted by Kriging and may be wrongly estimated. The relative error of the predicted TDFP Pf (0, %)
with respect to the true result Py (0,t.) can be defined as:

| P (0,t) — Py (0,t.)
- Pf (O,te)

(18)

10
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The true result Py (0,t.) is expressed as:
) o N
fx (D) L fx (@®) K fx (@®)
Pf th ( 7yt )hx (w(i))r + }; AhX (m(h)) - ng hx (w(k)) (19)

where N, & denotes the total number of time trajectories predicted to be safe by Kriging model but misclas-
sified; N}” denotes the total number of time trajectories predicted to be failed but misclassified. Due to the

fact that the true number of misclassified time trajectories is unknown, the last two terms in Eq. (19) are

N;u fx (m(h))
h=1 hx (m(h))

k)
A5 and Zk 1 fx(=D) _ N7, the relative error § can thus be written as:

uncertain. Let ) hx (x9)
X

No 7 i fx (2
Zizol It (m( ), yt ) higw(’)%

o7 i [3 fx (1)
Zﬁ\;[t(w() ()) E<z)))+</%_</1/f

S§=11- (20)

Although the exact values of 45 and .4} are unknown, it is possible to obtain the expectation and variance
of the two quantities. To achieve this goal, Is <x(h) y(h)) = 1 is first introduced to denote that the time
trajectory predicted to be safe by Kriging is actually in a failed status. Correspondingly, fts (m(h)7 yﬁh)) =0

denotes that the time trajectory predicted to be safe is correctly classified. .45 can thus be written as:

?

N-l” 20 . (h)
N = Z ) 3 (w(h),yt(h)) M (21)
h:l

hx (a:(h))

h=1

where N is the total number of safe time trajectory predicted by Kriging.

The expectation and variance of .45 can be expressed as:

E[A] =E

3 (o) S S (e )

h=1 h=1

o 25 (R, (h) fx (=) (h) . (R) fx (&™) ’
v S e a) St ) () e

h=1

where the probability of ff (m(h>7 yfh)> =0, i.e., the probability of correct sign estimate of (CIJ(M7 yfh))7 can

11
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be expressed as:

po(e0) <2 i (i) <0} <2 {

nt

h=1

g (w(h)7yt(f)7tj) > 0}

(24)

where the computation of ps . <w(h) y(h)> is quite cumbersome in practice. Instead of calculating the

exact value of the p; . (m(h) y( )>, it is possible to obtain its sub-optimal estimate without sacrificing the

estimation accuracy according to our recent study [46]. The sub-optimal estimate ps . (

expressed as [46]:

Ds, (m(h) y(h)) = min @

j=1,...,n¢

1 (w<h), yi

h)t>

(w<h>,y(

h)t)

The sub-optimal estimate of misclassification probability is written as:

Pow (2, y") =P {17 (2, y") =

min ¢

1} —1— Qi
J=1,...,ny

11 (w(h),y(h) t; )

o5 (w(h),yt(h) t )

),y

> can be

(25)

(26)

It is easy to find that I} (Cﬂ(h), yt(h)) follows the Bernoulli distribution. The expectation and variance of

N are rewritten as:

PR < S Ix (2!
S]—Zps,w( 7yt >m

h=1

N,

VLA =3 e (e f']) (L 5

h=1

h))

o) ()

Similarly, let I [/ (m(k) y(k)) = 1 denote that the time trajectory predicted to be failed by Kriging is

(27)

(28)

actually in a safe status. Correspondingly, I ; (m(k) y(k)) = 0 denotes the time trajectory predicted to be

failed is correctly classified.

The misclassification probability can be written as:

prw (20, y) =P {If (29,4 =

12

1=

s

( (k)aytk) t) 0

(29)
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According to the aforementioned discussion, the corresponding sub-optimal estimate of py ., (w(k), y,fk))

can be defined as:
. k
/'l‘@ (:E(k)v yt(] )a tj)

_ (k) (B)\ _ .
Dfw (w Yy ) = min 9 (30)
The expectation and variance of 4% can be written as:
Ny (k)
_ = (k) (k)) fx ()
BA47)= 3 ps (=0 3 (31)
k=1
A e [(fx @)
1 =S () (1 (008 (22550 62
k=1

where Ny is the total number of failed points predicted by Kriging model.
For any time trajectory predicted to be either safe or failed, the sub-optimal estimate of the misclassifi-

cation probability is expressed as:

VAP g (w”’,yg),t]—)
Pw (w(l),y?))zé —| min

, — (33)

With the VAIS technique presented in Section 3.1, the dispersedly distributed samples are generated as
the candidate samples. It is reasonable to consider that the number of safe time trajectories Ny and the
number of failed time trajectories Ny are both large enough. In this case, the confidence intervals of .4,
and 4% can be approximately obtained using the central limit theorem. Besides, .#; and .4} approximately

follow normal distributions, which are expressed as:

13
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The confidence intervals of .#; and .4} can be obtained as:
Sy € [ ML N = (852 (0/2), 05 (1 - a/2)] (36)

Ny € [ 7] = |95 (a/2), 971 (1= a/2)] (37)

where @;é () and @;% (+) denote inverse cumulative distribution functions (CDFs); « is the confidence level
(o = 0.05 is used in this study).

The maximum relative error of TDFP can thus be obtained by:

N — N — N}

e = x| | 5 0y 2] |5 TIVACD)
- @) fx (=0 “ - A @) fx(=C u .
dimn i (w()ayt )hx(m<i)) +'/Vsl*f/yf > i (a:(),yt )hx(m(i>) + A *E/Vf

(38)

It should be noted that the quantification of the relative error of TDFP can be regarded as an extension

of the study in static reliability analysis [53] and the one in time-dependent reliability analysis [36]. The
significant difference is that the estimation of relative error is based on the VAIS in this study, whereas it is

based on MCS in the two existing studies.

3.8. Stopping criterion and parallel sampling strategy

In adaptive Kriging based TRA method, a suitable stopping criterion is required to determine whether
the obtained estimate of TDFP is accurate enough as the final result. Based on the Eq. (38), the stopping
criterion can be defined by judging whether the maximum relative error of TDFP is below a prescribed
threshold:

6max <6 (39)

where €, is the specified threshold. Note that the adaptive updating of Kriging model is terminated only
when Eq. (39) is satisfied twice consecutively to prevent the potential fake convergence.
If the stopping criterion is not met, new training points need to be identified and evaluated on the true

LSF to update the Kriging model. In order to efficiently decrease the maximum relative error of TDFP,

14
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the number of misclassified time trajectories should be as small as possible. In other words, the greater the
misclassification of a time trajectory, the greater the contribution to reducing the relative error of TDFP.
That is, the py, (,y;) in Eq. (33) measures the contribution of the time trajectory to the relative error
of TDFP. Therefore, the relative error can be minimized as much as possible through evaluating the point
that maximizes the misclassification probability in Eq. (33). However, directly selecting the point with the
highest misclassification probability overlooks the distance between the newly added training point and the
existing ones, which may cause excessive clustering and lead to unnecessary LSF evaluations. To address
this problem, this paper introduces a influence function by considering the correlation between the existing
training points and all candidate points as the distance measure, and then proposes a new learning function

called improved relative error contribution (IREC):

IREC (.’B, yt) =1IF <w7 .’L'(l), .'L'(2)7 U 7m(n0)) X ﬁw (mv yt) (40)
where IF (:c; W 2@ ... 7w("O)) is the introduced influence function and denoted as [54]:
no )
1F (:c;w(l),m(2), e ,:c("")> = H {1 - R (a:, w(‘))} (41)
i=1
where (M), 23 ... x("0) are the ng existing training points; R(-) is the Gaussian correlation function of

the Kriging model in this study.

The TREC function can be further extended to parallel sampling case by exploiting the advantages of
the introduced influence function. In an active learning iteration, ¢ training points are sequentially selected
and simultaneously enriched to the dataset D, which is elaborated as follows. First, the time trajectory
maximizing the IREC function is selected and then the time instant with the largest prediction uncertainty is

chosen. Herein, the commonly used U function is used to determine the optimal time instant [55]. Therefore,
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the selection strategy of the first added training point v,(fé?fl) is expressed as follows:

oot = {m(i*),yt(j:)ij*]

. ; ‘#@ (m(i*>,y§f*),tj)| (42)
¥ = argmax [F (m;m(l),m@), e ,m("ﬂ))ﬁw (m(’),yt(z)) , J¥ = argmin *—(j:)
i=1,...,No j=1,...ny Oa (w“ )Y ,tj)

Sequentially, after ¢ — 1 updated training points have been identified, the ¢-th training point can be

obtained as:

ol = [20, ) 15

. () ) 4 (43)
i* = argmax IF (m;m(l),m@), o ’m(n0+q—1))ﬁw (w(i)’ygl)) , j* = argmin ‘Hg( Y ,tg)‘

) ()
i=1,...,No G=1,...me Ug(w(l*)7yt;* ;tj)

It is evident from Eqs. (42)-(43) that ¢ training points are sequentially identified through considering
the relative error contribution and the correlation between all training points and candidate points. After
g training points are selected within an iteration, the Kriging model is updated. Note that the developed
parallel sampling strategy may be similar to the idea that multiple informative points are sequentially gener-
ated by maximizing the product of the learning function and influence function, which is recently introduced
in the field of time-invariant reliability analysis [56, 57] and time-dependent system reliability analysis [58].
The difference lies mainly in two aspects. First, this study develops a new IREC learning function based on
the concept of minimizing the relative error of TDFP. Second, the several existing researches have only con-
sidered the correlation between the current and previously selected points within an iteration, ignoring the

correlation of the training points prior to the current iteration, whereas this study addresses this problem.

3.4. Implementation of the proposed method

The flowchart of the proposed method is shown in Fig. 2. The implementation procedures are summa-
rized as follows:

Step 1: Discretize the time interval [0, ¢.] and the stochastic processes Y () (if involved).

Step 2: Generate ng initial training points by Sobol sequence. The sampling domain of these initial

points is set to [u — 30, u + 30, where p and o are the mean and standard deviation of the input random
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variables, respectively. The corresponding responses are calculated by evaluating the LSF g (-). Establish
the initial dataset D = {[@, y” 1,], ¢} with the EOLE method. Let the number of LSF evaluations
Neya = ng and the number of iterations Ny = 1.

Step 3: Construct the candidate sample pool S = [z, (€7, ... ¢{)]AN  where AN is the number of
initial candidate samples. Let s = 1 and the the number of total candidate samples Ny = s X AN.

Step 4: Build the Kriging model based on the dataset D.

Step 5: Estimate the TDFP Py (0,t.) and its variance V [f’f (0, te)] based on Egs. (16)-(17). Calculate
the maximum relative error dpax in Eq. (38).

Step 6: If the stopping criterion in Eq. (39) is fulfilled twice consecutively, turn to Step 8; else, turn to
Step 7.

Step 7: Identify ¢ points D, = [m(i), yg), t;]7_, using the developed parallel sampling strategy. Evaluate
the LSF on the ¢ selected points to obtain the responses {g<i)};-1:1. Enrich the points and responses into the
dataset D. Let Neyg = Newa + ¢ and Njze = Nige + 1, and return to Step 4.

Step 8: Check if the COV of the TDFP is below the target threshold, i.e, COV [ﬁf (O,te)} < If
satisfied, go to Step 9; else, generate additional AN candidate samples and enrich the candidate sample

pool S, let s = s+ 1 and return to Step 5.

Step 9: Return the estimated TDFP Pf (0,t.) and end the proposed method.

4. Examples and results

The effectiveness of the proposed EPAK method is validated by comparing it with several existing non-
parallel TRA methods. The two compared methods, SILK [33] and REAL [36], are implemented in all
examples and the number of initial training points is set to be 12. Other implementation details follow the
default settings in the original studies. The results for the remaining compared methods, including eSPT
[59], STRA [60], SLK-co-SS [45], etc., are taken from the respective publications unless otherwise stated.
The parameter settings for the proposed method are as follows: ng = 12, v = 1.5, AN = 10%, ¢, = 5%,

€ = 5%. Different values are specified for ¢ to investigate the impact on the results. The reported results are
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Discretize the time interval [¢ty, t.] with n; time instants and the
stochastic processes Y (t).

v
Generate n, initial training points and construct the initial dataset D =
Mo

{[x(i)v y(tf)r ti] ’g(i)}i=1‘ let Nean = ng and Nyger = 1

v
Construct the candidate sample pool S, let s = 1 and Ny = s X AN

v
Construct the Kriging model based on the dataset D

A

A J

Estimate the P (to, t.) and its variance V[P (ty, t,)],
calculate the maximum relative error &,,.

Generate additional
AN candidate samples
and enrich the sample

pool S, lets =s+ 1
]

Identify g points, evaluate on the
LSF, and enrich the dataset D,
let Ncall = Ncall + ny and
Niter = Nier +1

6max <é€r
twice in succession

No

COV[Pr(to te)] < €,?

Yes

Return the time-dependent failure probability ﬁf(to, te)

Figure 2: Flowchart of the proposed method.

s averaged over 10 independent runs in MATLAB R2019(b) under the environment (CPU of Intel i5-13400F,

20 RAM of 16 GB) unless otherwise stated.

o 4.1. Mathematical example

2 A mathematical model is investigated is this section [45, 59, 60]. The LSF is expressed as:

g( X, Y(t),t) = X{Xo + (Xo+ 1)#? = 5X; (1 + Y (2))t — 20 (44)

»3  where the input variables X; and X5 both follow a normal distribution with the mean of 3.5 and the standard

24 deviation of 0.25; Y'(t) denotes a Gaussian process, where the mean and standard deviation are 0 and 1,
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respectively. The autocorrelation function of the Gaussian process is defined as & (¢1,t2) = exp {— (t1 — t2)2} ;

t € [0, 1] represents the time parameter.

The time interval and Gaussian process Y (¢) are discretized with 101 time instants and three independent

standard normal variables, respectively. Fig. 3 depicts one hundred realizations of Y (¢). The TDFP results

provided by different methods are listed in Table 1. The TDFP P; = 0.3079 by MCS is considered as

the reference result. It is observed that all methods can produce results close to the reference result. In

terms of efficiency, the proposed method requires fewer iterations with the help of the developed parallel

sampling strategy. When ¢ = 1 (indicating that the parallel computing is unavailable), the proposed method

costs less LSF evaluations than other compared methods though it produces slightly larger COVs. Through

comparing the computation time between different methods, it can be found that the proposed method

typically requires less CPU time than other active learning TRA methods.

Table 1: TRA results of example 4.1.

Methods Nite Neva Py p, COV[P;] CPU Time (s)
MCS - 101 x 108 0.3079 e 0.15% 1.9
eSPT! - 139 0.2986  3.02% - -
STRA?2 16.4 27.4 0.3041  1.23% - -

SLK-co-SS3 35.8 46.8 0.3072  0.23% - -
SILK 12.5 23.5 0.3075  0.13% 2.95% 31.1
REAL 10.8 21.8 0.3070  0.29% 3.56% 29.5

g=1 66 17.6 0.3059  0.65% 6.58% 2.5
g=2 43 18.6 0.2995 2.73% 7.02% 2.0
g=3 4.1 21.3 0.3014 2.11% 5.16% 2.2
Proposed method ¢ = 4 3.7 22.8 0.3062  0.55% 4.16% 2.2
gq=5 38 23.2 0.3031  1.56% 4.95% 2.3
g=6 35 27.0 0.3093  0.45% 3.14% 2.6
q=7 28 24.6 0.3086  0.23% 2.57% 2.2
g=8 28 26.4 0.3081  0.07% 3.51% 2.4

L The results are taken from research [59];
? The results are taken from research [60];
3 The results are taken from research [45].

4.2. Corroded simply supported beam

In this section, we consider the TRA of a corroded beam [60] shown in Fig 4. The span of the beam

is 5m. The bending loads include the concentrated load F(t) and the uniformly distributed load p =
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Realizations of Y (t)

Figure 3: Realizations of Y (t) of example 4.1.

7.85 x 10*bgho(N/m). The LSF is defined as follows:

g(va(t)vt) =

(bo — 24t) [ho — 2nt]2 £, - <F (t) L N 7.85 x 104b0h0L2) (45)

4 4 8
where k = 3 x 10~5m//year control the corrosion rate and ¢ € [0, 20] years represents time parameter; bg, ho
and f, are the initial width and height of the cross section, and the yield strength, respectively. Table 2
lists the details of the random parameters.

The time interval [0,12] and Gaussian process F(t) are discretized with 241 time instants and six inde-
pendent standard normal variables, respectively. The TRA results provided by different methods are listed
in Table 3. One can observe that all investigated methods can yield the results close to the reference value
provided by MCS. In terms of the efficiency, however, the proposed method requires much less iterations and
LSF evaluations than other methods. The comparison of computation time shows that the proposed method
requires less CPU time than both REAL and SILK methods. When ¢ varies from 1 to 8 in the proposed
method, the number of LSF evaluations gradually increases. Besides, the proposed method requires the
least number of iterations and computation time for the setting of ¢ = 5. This observation indicates that
selecting too many training points per iteration does not necessarily result in a reduction in the the number
of iterations and the total computation time.

Fig. 5 schematically presents the TDFP within the time interval [0, 20] years, where the error bar indicate

20



354

355

356

357

358

359

the range of the mean + 2 standard deviations of the TDFP. It is found that the TDFP estimates obtained

by the proposed method are similar to the reference values provided by MCS. These results confirm that

the proposed EPAK method is capable of estimating the TDFP across varied subintervals with satisfactory

accuracy. As shown in Fig. 5, the failure probability is rather low (e.g., around 10~%) within small time

intervals. The proposed method still maintains high estimation accuracy, which indicates the effectiveness

of the proposed method in small TDFP problems.

F(1)

N Residual area b(t)h(t)

Kt x i _CC’I

by |

Figure 4: Schematic diagram of the corroded beam.

Table 2: Distributions of inputs of example 4.2.

Input variable Distribution Mean  Standard deviation Autocorrelation function
fy (MPa) Lognormal 240 24 -
bo (m) Lognormal 0.2 0.01 -
ho (m) Lognormal 0.03 0.003 -
. 2
F(t) (kN) Gaussian process 3.5 0.7 K (t1,t2) = exp [7% (t1 — t2) ]
0.05
2 0.041+
=
8 0032
s
g
= 0023t
©
iy
00141 o-MCS
—o— Proposed method

0.005
0

8 12 16 20
Time (years)

Figure 5: TDFP of example 4.2 (¢ = 1).
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Table 3: TRA results of example 4.2.

Methods Nite Newva Py p, COV[P;] CPU Time (s)
MCS - 201 x 106 4.74 x 10~2 - 0.45% 2.0
t-IRS?! - 171.4 471 x 1072 0.63% - -
eSPT! - 113.4 488 x 1072 2.95% - -
STRA! 45.4 56.4 478 x 1072 0.84% - -
SILK 40.4 51.4 473 x 1072 0.21% 2.51% 432.8
REAL 31.1 42.1 475 x 1072 0.21% 3.29% 183.9

g=1 87 19.7 478 x 1072 0.84% 4.50% 6.1
g=2 7.3 24.6 4.74 x 1072 0 8.12% 7.2
g=3 6.1 27.3 4.69 x 1072 1.05% 6.63% 6.8
Proposed method ¢ = 4 49 27.6 462 x 1072 2.53% 4.91% 6.5
g=5 4.2 28.0 4.74 x 1072 0 3.98% 6.0
g=6 52 37.2 479 x 1072 1.05% 3.14% 6.9
qg=7 46 37.2 4.76 x 1072 0.42% 5.85% 6.3
q=8 45 40.0 4.60 x 1072 2.95% 3.51% 7.1

! The results are taken from research [60].

4.8. Turbine blade

A turbine blade model adapted from Matlab PDE toolbox is investigated as the third example, whose
finite element model (FEM) and von Mises stress distribution are shown in Fig. 6. The Young’s modulus,
Poisson’s ratio, coefficient of thermal expansion and the thermal conductivity are denoted as E, A, a and
T., respectively. The temperature of the interior cooling air and the suction sides are denoted as T; and
Ty, respectively. In this example, failure is defined as the maximum von Mises stress exceeding an allowable
threshold. Taking into account that the allowable threshold decreases with the time ¢, the LSF is defined
as:

g (IE, F (t) ’t) = Uateiolozt —0m (CB, F (t)) (46)

where 0,4 = 1.5GPa represents the initial allowable threshold; o, (x, F'(t)) denotes the maximum stress
provided by FEM; F;(t) and F5(t) in F(t)) represent the pressure loads at the pressure side and suction
side, respectively. Table 4 lists the details of the input variables.

The time interval [0, 12] and the Gaussian processes Fi (t) and F»(t) are discretized with 121 time instants,
five and eight independent normal variables, respectively. Table 5 presents the TRA results using different
methods. For MCS, 121 x 10° LSF evaluations are required to ensure the accuracy of TDFP estimate,

which is computationally prohibitive. Instead, a simplified simulation with 12,100 LSF evaluations (taking
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approximately 3.76 hours) is performed to provide an approximate assessment of the computational time.
The proposed method, SILK and REAL provide similar TDFP estimates, while the proposed method exhibits
higher efficiency in terms of N and computation time than the counterparts. When ¢ varies from 1 to
8, the proposed method requires minimal N for the setting of ¢ = 5. As for the computation time, the

setting of ¢ = 4 would minimize the computation time in this example.

x108

s

[VAVAVAVAVAVAVAVAVAY

16

12

%)

0.8

0.4

Figure 6: FEM and stress distribution of the turbine blade (unit: Pa).

Table 4: Distributions of inputs of example 4.3.

Variable Distribution Parameter 1  Parameter 2 Autocorrelation function
E Normal 220 22 -
a Normal 1.27x 1072 1.27 x 1076 -
A Lognormal 0.27 0.0216 -
Te Lognormal 11.5 1.38 -
Ty Uniform 130 170 -
Ts Uniform 950 1050 -
Fi(t) Gaussian process 500 100 K (t1,t2) = exp —% (t1 — t2)?
Fy(t) Gaussian process 450 90 K (t1,t2) = exp —% (t1 — t2)2

Note: For the uniform distributions, parameter 1 and 2 respectively represent the lower and upper-
bounds; for other distributions, they denote the mean and standard deviation, respectively.

4.4. Arch bridge

In this section, a lower-bearing arch bridge with the calculated span of 150m and the rise-to-span ratio
of 1:5 is considered [61], as shown in Fig. 7. The arch bridge features 34 suspenders, each spaced 6.8m
apart. A three-dimensional FEM model is built on the OpenSEES platform, consisting of 241 nodes and
439 elements, as shown in Fig. 8. The elastic beam-column element is adopted to simulate the suspenders,
main girder and arch ribs. A increasing heavy load F(t) applied in the mid-span is considered and modeled

as a non-stationary Gaussian process. Considering that the suspenders are subjected to the corrosion effect,
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Table 5: TRA results of example 4.3.

Methods Nite Neva Py p, COV[P;]  CPU Time
MCS - 121 x 10° - - - ~ 157.0 (days)
SILK 369.5 380.5 5.28 x 1073 - 2.65% 29,962.6 (s)
REAL 191.3 202.3 5.28 x 1073 0 6.86% 8382.3 (s)

¢g=1 1108 121.8 519 x 1073 1.70%  5.41% 1121.4 (s)
¢g=2 587 127.4 515 x 1073 2.46%  2.82% 1032.3 (s)
g=3 422 135.6 5.36 x 1073 1.52%  4.49% 709.8 (s)
g=4 333 141.2 533x 1073 095%  6.08% 432.4 (s)
Proposed method
g=5 289 151.5 5.28 x 1073 0 5.24% 643.2 (s)
g=6 364 224.4 526 x 1073 0.38%  5.90% 769.4 (s)
q=7 347 247.9 517x 1073 2.08%  4.59% 858.8 (s)
¢g=8 379 307.2 538 x 1073 1.89%  4.90% 1180.9 (s)

the residual area is denoted as A(t) = A; x (1 —0.007t), where A; is the initial area of the suspenders. The
failure is defined as the maximum deflection in excess of a safety threshold Ay = 10 cm. The LSF is thus

written as:

g(X,F(t),t)=As —A(A(t),E1,As, Eo, I, F1, F (1)) (47)

where the initial area of the arch ribs is denoted as As. F; and Fs represent the Young’s modulus for the
suspenders and arch ribs, respectively; The main girder’s stiffness is characterized by its area moment of
inertia I; The total applied load, including both dead and live components, is represented as F;. Table 6
lists the details of input variables.

The time interval [0,50] and the non-stationary Gaussian process F(t) are discretized with 501 time
instants and sixteen independent normal variables, respectively. Fig. 9 shows one hundred realizations of
F(t). Table 7 presents the obtained TDFP estimates by different methods. Similar to the third example,
the CPU time required by MCS is approximately calculated with 10,200 LSF evaluations in this example.
The TDFP estimates obtained by all methods are relatively close; however, the proposed EPAK method
demonstrates significantly higher efficiency than the other methods. Specifically, the proposed method with

= 1 requires 66.6 LSF evaluations on average, while SILK and REAL requires 113.8 and 88.0 evaluations,
respectively. Besides, the proposed method costs much less iterations than the counterparts when specifying
a large value of ¢q. As for the computation time, SILK and REAL takes 13,702.3 seconds and 6000.4 seconds,

respectively, whereas the proposed EPAK method takes 270.1 to 456.2 seconds. When ¢ varies from 1 to 8,
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the required computation time is minimal for the setting of ¢ = 5. Meanwhile, the corresponding N;;. and
COV are relatively small.

The time-dependent reliability results are schematically depicted in Fig. 10, where the reliability index
(denoted as 3) is obtained by 8 = ®~1(1 — Pf) The error bars show the range of the mean £ 2 standard
deviations of the TDFP and the reliability index, respectively. It can be observed that as the service life
increases, the failure probability increases. Correspondingly, the reliability index gradually decreases, which
following an approximately linear trend. Besides, the reliability index at t = 50 (850 = 2.95) decreases by
29.76% compared to the initial service status (Sp = 4.20), which reflects the necessity of performing TRA

for this arch bridge problem.

arch ribs

Suspenders F(t)

2450

&’I [ main girder/

1o}

12500

Figure 7: Illustrative diagram of the arch bridge (unit: cm).

Figure 8: FEM of the arch bridge.

5. Conclusions

This study proposed a new method termed ‘Error-informed Parallel Adaptive Kriging’ (EPAK) for
efficient TRA. Specifically, the VAIS was adapted in a sequential way to estimate the small TDFP based

on the trained single-loop Kriging model, which could decrease the sample size and total computation
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Figure 9: Realizations of the Gaussian process of example 4.4.

Table 6: Distributions of inputs of example 4.4.

Input variable Distribution Mean Standard deviation Autocorrelation function
Aq(m?) Lognormal 3x 1073 3x 1074 -
E1(Pa) Normal 2 x 1011 2 x 1010 -
Az (m?) Lognormal 2.8 0.28 -
E>(Pa) Normal 2.1 x 1011 2.1 x 1010 -
I(m%) Lognormal 5.6 x 1072 8.4 x 1073 -
F1(N/m) Gumbel 5.5 x 107 1.1x107 -
F(t)(kN) Gaussian process 180 + 1801n (1 + %) 18 4+ 181n (1 + %) K (t1,t2) = exp [—%6 (t1 — t2)2]

time. Besides, the maximum relative error of TDFP estimation was derived, based on which a stopping
criterion was developed by judging whether the maximum relative error was below a predefined threshold.
Finally, a parallel sampling strategy was proposed through combining the relative error contribution and an
introduced influence function, which could not only select multiple training points but also overcome the
problem of unnecessary LSF evaluations caused by excessive clustering. Several examples were studied to
validate the applicability of proposed EPAK method. Results demonstrated that the proposed method can
estimate small TDFPs with satisfactory accuracy. More importantly, the proposed EPAK method required
much less LSF evaluations, iterations and CPU time when compared to other TRA methods, demonstrating
its superior efficiency. Besides, numerical results showed that selecting too many training points in each
iteration did not necessarily result in a reduction in the number of iterations and the total computation
time. According to the investigated examples, four or five points was sufficient and effective to select, and

was therefore suggested for the proposed method.
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Table 7: TRA results of example 4.4.

Methods Nite Neva Py €p, COV[Py] CPU Time
MCS - 501 x 106 - - - ~ 6543.1 (days)
SILK 102.8 113.8 1.57 x 1073 - 3.55% 13,702.2 (s)
REAL 77.0 88.0 1.60 x 1072 1.91% 4.29% 6000.4 (s)

g=1 556 66.6 1.61 x 1073 2.55% 2.84% 456.2 (s)
gq=2 294 68.8 1.60 x 1073 1.91% 6.05% 282.3 (s)
g=3 223 75.9 1.61 x 1073 2.55% 4.12% 279.0 (s)
Proposed method 1= 4 170 76.0 1.58 x 1073 0.64% 4.14% 354.9 (s)
g=5 153 83.5 1.59 x 1073 1.27% 3.33% 270.1 (s)
g=6 158 100.8 1.62 x 1073 3.18% 4.56% 355.8 (s)
g=7 152 111.4 1.61 x 1072 2.55% 5.91% 389.1 (s)
g=8 138 114.4 1.59 x 1073 1.27% 4.96% 340.0 (s)
107 ‘ ' , ; 44

The proposed EPAK method may perform weakly in high dimensions owing to the inherent limitations
of the Kriging model. Further research is still required to address this problem. Besides, the proposed

method could be adapted for time-dependent reliability-based design optimization.

_.
o
&

104

Failure probability

L —O— Failure probability —-0---Reliability indexl

Reliability index

20 30
Time (years)

Figure 10: TDFP and reliability index of example 4.4.
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Appendix A. Kriging model

Kriging model is an interpolation-based regression method including linear regression and stochastic

process, which is written as [55]:

(@) = £ (x)¢ + e(x) (A1)

where g(x) denotes the predicted response; f(x) is the basis function vector; ¢ represents the regression
coefficients vector; e(x) denotes a Gaussian process with the mean of zero and the covariance of k(z(, (7)) =

o?R(x@,2)), where R(x® 2()) is the correlation function and denoted as:
N , N2
Rz, 29)) = exp [— Zek (xl(;) - x,(j)) :| (A.2)

where 0 (k = 1,2,...,n) are correlation parameters and estimated using the maximum likelihood method
[55]. Given ng training points X = [z, &) . 2] and the responses G = [g(z), g(z?), ..., g(x(™))],

¢ and o? are estimated as:

(= (F'TR'F) ' F'R™'G (A.3)
2 (G- QTRNG -~ ¢F) "

o

where F is the regression matrix with F; ; = fj(x®), i = 1,...,n0, j = 1,...,n; R = [R(zW,20))] (i,j =

1,...,mg) is the correlation matrix.
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The mean prediction p;(x) and the variance prediction Ug(il}) are obtained as follows:

py(x) = 1 (@)¢ +r" (@) R (G - F) (A.5)
o2 (x) = 6 [1 +u”(z) (FTR'FT) " u(z) — rT(x)Rflr(m)] (A.6)
where u(z) = FT R 'r(z)— f(x); r(z) = [R (z,2V), ..., R (x, :c("o))]T is the correlation coefficient vector

between the predicted point and the training set. Note that the construction and prediction of the Kriging

model can be easily performed with DACE toolbox. More details may refer to [62].
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Highlights

Error-informed parallel adaptive Kriging is proposed for time-dependent reliability analysis
A sequential variance amplified importance sampling technique is developed

The maximum relative error of time-dependent failure probability is derived

A parallel sampling strategy is proposed to enable parallel computing

The superior efficiency and accuracy of the proposed method is verified
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