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Spatial variability of soil properties imposes a challenge for practical analysis and design in geotechnical
engineering. The latter is particularly true for slope stability assessment, where the effects of uncertainty
are synthesized in the so-called probability of failure. This probability quantifies the reliability of a slope
and its numerical calculation is usually quite involved from a numerical viewpoint. In view of this issue,
this paper proposes an approach for failure probability assessment based on Latinized partially stratified
sampling and maximum entropy distribution with fractional moments. The spatial variability of
geotechnical properties is represented by means of random fields and the Karhunen-Loève expansion.
Then, failure probabilities are estimated employing maximum entropy distribution with fractional mo-
ments. The application of the proposed approach is examined with two examples: a case study of an
undrained slope and a case study of a slope with cross-correlated random fields of strength parameters
under a drained slope. The results show that the proposed approach has excellent accuracy and high
efficiency, and it can be applied straightforwardly to similar geotechnical engineering problems.
� 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Geotechnical engineering must confront different sources of
uncertainty, which can be suitably described by random fields
(Phoon and Kulhawy, 1999; Sudret and Der Kiureghian, 2000;
Baecher, 2023). Therefore, in recent years, random field theory has
been commonly used to describe spatial variability of natural soils
(Griffiths et al., 2011; Zhao and Wang, 2020; Han et al., 2022; Jiang
et al., 2022). For example, Ji et al. (2018) estimated the failure
probability (Pf) of a slope by the first-order reliability method
(FORM). Jiang et al. (2015) developed an efficient reliability analysis
approach based on multiple stochastic response surfaces. Li and
Wang (2022) developed an efficient active learning reliability
e (C. Feng).
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
analysis method using adaptive Bayesian compressive sensing and
Monte Carlo simulation (MCS). Wang et al. (2011) performed a
reliability analysis approach for slope stability problems using
subset simulation. The main methods for the propagation of un-
certainty are direct MCSs, approximation methods, surrogate
model methods, and sampling methods (Jiang et al., 2022; Kumar
and Tiwari, 2022). The direct MCS is often used to face engineer-
ing problems with a high probability of failure (10�1�10�3) due to
its high accuracy (Cho, 2010). By surveying engineers involved in
slope stability analysis, an effort was made to determine an
acceptable probability of failure for slopes by Santamarina et al.
(1992). The results of this survey can be seen in Table 1. Accord-
ingly, low failure probabilities for slopes are expected in several
different practical applications (Salgado and Kim, 2014). It should
be noted that there are already several studies on geotechnical
engineering that involve a low probability of failure considering
spatial variability (Jiang et al., 2022). In fact, surrogate models
performverywell in terms of efficiency and accuracy for calculating
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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Table 1
Acceptable failure probability of slopes (Santamarina et al., 1992).

Condition Acceptable Pf

Temporary structures: no potential life loss 10e1

Existing large cut on interstate highway 10e2

Lives may be lost when slopes fail 10e3

Acceptable for all slopes 10e4

Unnecessarily low <10�5
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the reliability of slopes in view of spatial variability. Still, there is a
limitation regarding the underlying dimensionality of the problem
at hand (Müller et al., 2013). To overcome such limitations,
advanced simulation methods have been developed because of
their improved accuracy, efficiency, and robustness with respect to
dimensionality (Li et al., 2016a; Wang et al., 2020).

The classical MCS method is based on the calculation of a large
number of random samples to obtain the failure probability. The
results obtained with increasing sampling converge to the precise
results (Metropolis and Ulam, 1949; Rubinstein and Kroese, 2016).
However, it is challenging to calculate a low probability of failure
(<10�4) by means of simulation (Wang et al., 2011). For estimating
failure probabilities in the order of 10�2 with sufficient accuracy,
the MCS method needs to perform about 2000 sets of samples.
Latin hypercube sampling may help in reducing variance to
improve the quality of the estimates. In fact, it is perhaps one of the
most widely used random sampling methods for uncertainty
quantification and reliability analysis (Helton and Davis, 2003).
However, Latin hypercube needs to generate a significant number
of samples to calculate small failure probabilities, just like plain
Monte Carlo. Therefore, many scholars have conducted a number of
studies on efficient sampling methods. Partially stratified sampling
(PSS) is an improved method that combines the advantages of
stratified sampling and Latin hypercube sampling (Shields and
Zhang, 2016). Stratified sampling is a method in which the sam-
pling range is divided into different strata according to specific
rules. Then samples are obtained independently and randomly
from the different strata, while each dimension in the space of
random variables is stratified. Thus, PSS has been widely spread
because of its excellent properties. Nevertheless, some problems,
such as ensuring the best subspace decomposition, have not been
fully solved. Therefore, the Latinized partially stratified sampling
(LPSS) has been proposed in the literature as a solution for the
difficulties related to using the PSS methods (Shields and Zhang,
2016).

Another challenge associated with reliability analysis is esti-
mating the probability density function associated with a response
of interest based on samples. A feasible approach to characterize
such probability density function is to evaluate the information
about its moments, such as the mean and variance. Then, one can
approximate the sought distribution by means of the classical
maximum entropy distribution, which is the most likely distribu-
tion among various distributions available (Jaynes, 1957; Kapur and
Kesavan, 1992). Although conceptually feasible, there are still
several difficulties associated with the maximum entropy distri-
bution, such as the relatively large number of moments required to
achieve reasonable accuracy in modeling the tail of the distribution
(Tagliani, 1999; Zhang and Pandey, 2013). With the rise of fractional
order moments and the fact that a finite number of fractional
moments can be used to characterize the distribution of a random
variable, the maximum entropy distribution has been applied
extensively in the last few years (Zhang et al., 2019, 2020). Indeed,
Xu and Dang (2019) tackled high-dimensional reliability problems
using the fractional moments-based maximum entropy method.
Furthermore, Deng (2022) proposed an objective and unbiased
method to estimate probability distributions of a soil property us-
ing the maximum entropy method from fractional moments of
observed data. All of the aforementioned contributions suggest that
the maximum entropy distribution method based on fractional
moments is very effective, particularly for high-dimensional reli-
ability analysis.

According to the above paragraphs, calculating small failure
probabilities associated with slope stability problems is crucial.
There is no unified and efficientmethod to deal with this issue up to
the present time. Therefore, in this paper, LPSS is employed to es-
timate the failure probability of slopes considering spatial vari-
ability using the maximum entropy distribution with fractional
moments (MEDFM). Firstly, the autocorrelation function is
considered to describe the spatial variability of geotechnical ma-
terials, which is applied in conjunction with the Karhunen-Loève
(K-L) expansion to characterize soil properties through random
fields. The advantages of LPSS and the basics of MEDFM are pre-
sented next. Then the specific implementation procedures of the
present approach based on LPSS and MEDFM are described. Finally,
the proposed approach is used to analyze a case study of an un-
drained slope and a case study of a slope with cross-correlated
random fields of strength parameters.

The paper is structured as follows. Section 2 describes the basic
methodology used in this paper, comprising random field
modeling, LPSS and MEDFM. The implementation procedure of the
proposed LPSS-MEDFM approach is presented in Section 3. Section
4 verifies the effectiveness of the proposed approach using two
slopes as examples. The last section presents some of the conclu-
sions of this paper.

2. Methodology

2.1. Random field model

In recent years, random fields have become a commonly used
approach to represent the spatial variability of soil parameters,
whose application demands to determine random field parameters
such as distribution type, autocorrelation function, autocorrelation
distance, etc. For this reason, many scholars have been working on
this subject in recent years, such as fitting the real distribution of
geotechnical parameters with the maximum entropy distribution
method (Wang and Jiang, 2023), solutions considering in situ
testing data, such as conditional random field, Bayesian inference,
etc (Li et al., 2016b; Wang et al., 2016), or determination of the
autocorrelation function and autocorrelation distance (Cami et al.,
2020). Among the many methods available, we use the K-L
expansion method to generate random fields in this study. This is
because K-L expansion is optimal among series expansion methods
in the global mean square error concerning the number of random
variables in the representation (Dai et al., 2019).

2.1.1. Log-normal random fields
The autocorrelation function is critical in expressing the prop-

erties of the random field (Ching et al., 2019). Some of the most
commonly used autocorrelation functions are single exponential
and square exponential autocorrelation functions. In particular, the
single exponential autocorrelation function is used in this paper to
compare the results with previous works:

gðu;u0; v; v0Þ ¼ exp
�
� ju� u0j

lh
� jv� v0j

lv

�
(1)

where gðu;u0; v; v0Þ is the single exponential autocorrelation func-
tion, ðu; vÞ and ðu0; v0Þ denote the coordinates of two points in a two-
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dimensional (2D) space, exp ($) is the exponential function, lh is the
horizontal correlation distance, lv is the vertical correlation dis-
tance, and |$| denotes the absolute value. Note that the application
of the exponential autocorrelation function presented in Eq. (1) has
been discouraged in the literature (e.g. Spanos et al., 2007; Faes
et al., 2022). However, this autocorrelation function is considered
herein as it has been used in the past for several different studies
and thus, it is useful for comparisons.

The log-normal random field is a random function defined over
a domain where the function’s logarithm is a Gaussian random
field. It is one of the most commonmeans for modeling uncertainty
in soil properties, and as such, it is considered within this work.
Therefore, in this subsection, essential aspects related with these
fields are discussed. It should be noted that this paper considers
weakly stationary log-normal random fields. There are many ways
to represent random fields, in which the K-L expansion is widely
used due to its fast convergence property (Cho, 2010). The log-
normal random field can be expressed as

jðxÞ ¼ exp

0
@mg þsg

Xn
j¼1

gjðxÞzj

1
A (2)

where jðxÞ is the realization of the log-normal random field, gjðxÞ is
the basis functions, zj denotes the standard Gaussian random var-
iable, n is the order of truncation of the K-L expansion, and x¼ [u;v]
is the vector of 2D coordinates. The parameters mg and sg represent
the mean and standard deviation of the underlying Gaussian field
that is associated with the log-normal random field. The mean m

and standard deviation s of the weakly stationary log-normal
random field are related with mg and sg through the following
expressions:

mg ¼ ln

 
m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ s2
p

!
(3)

sg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln
h
1þ ðs=mÞ2

ir
(4)

The basis function gjðxÞ takes the following form:

gjðxÞ ¼
ffiffiffiffi
lj

q
fjðxÞ (5)

where lj and fj denote the j-th eigenvalue and j-th eigenfunction
associated with the autocorrelation function. They are obtained by
solving the homogeneous Fredholm equation of the second type,
which is

Z
U
gGðu;u0; v; v0Þfjðu0; v0Þdu0dv0 ¼ ljfjðu; vÞ (6)

where U is the spatial domain; and gG is the autocorrelation
function of the underlying Gaussian process, which is equal to

gGðu;u0; v; v0Þ ¼
1
s2g

ln
�
s2gðu;u0; v; v0Þ

m2
þ1
�

(7)

The error of K-L expansion associated with the underlying
Gaussian field is
εtðjðxÞÞ¼ 1�

Pn
j¼1

lj

PþN

j¼1
lj

(8)

where εt˛½0;1Þ is the error of the n-term expansions of the random
field. Clearly, the error tends to become smaller as the number of
terms n included in the K-L expansion becomes larger.

2.1.2. Cross-correlated log-normal random fields
Random field models of multiple parameters are often required

in geotechnical engineering practice. Moreover, cross-correlations
between two (or more) geotechnical parameters may exist, as
discussed in the literature. In fact, the cohesion c and the friction
angle 4 are usually employed for slope reliability analysis and are
considered as negatively correlated. As this is precisely the topic of
this contribution, the cross-correlation between the random fields
models for cohesion and the friction angle is addressed in this
subsection following the approach proposed in Vo�rechovskỳ (2008)
and Sepúlveda-García and Alvarez (2022).

The cohesion and friction angle are modeled as weakly-
stationary log-normal random fields. The mean values and stan-
dard deviations for each of these two fields are denoted as (mc;sc)
and (m4; s4), respectively. It is assumed that both random fields
share the same exponential correlation function shown in Eq. (1).
This is reasonable because spatial correlation is caused by the
variation of soil properties over space. Therefore, the decomposi-
tion of a given autocorrelation function is performed only once.
Furthermore, it is assumed that the cross-correlation between the
two random fields is equal to 9. Thus, following Vo�rechovskỳ
(2008), these two random fields can be represented using the K-L
expansion, i.e.

jcðxÞ ¼ exp

0
@mg;c þ sg;c

Xn
j¼1

ffiffiffiffi
lj

q
fjðxÞxcj

1
A (9)

j4ðxÞ ¼ exp

0
@mg;4 þsg;4

Xn
j¼1

ffiffiffiffi
lj

q
fjðxÞx4j

1
A (10)

where xcj and x4j denote a set of Gaussian random variables, mg;c and
sg;c are the mean and standard deviation of the underlying
Gaussian random field associated with cohesion c, and mg;4 and sg;4
are the mean and standard deviation of the underlying Gaussian
random field associated with the friction angle 4. Note that (mg;c;
sg;c) and (mg;4;sg;4) are calculated based on (mc;sc) and (m4;s4) by
means of Eqs. (3) and (4), respectively.

The random variables xcj and x4j ðj¼ 1;.;nÞ possess zero mean,
unit standard deviation and exhibit a correlation structure. The
latter is required in order to ensure that the cross-correlation be-
tween random fields is equal to 9. In order to generate samples of
these random variables, the following procedure is followed
(Vo�rechovskỳ, 2008). First, the correlation coefficient r associated
with the cross-correlation of two log-normal random fields is
projected to obtain the equivalent cross-correlation 9g between
two underlying Gaussian fields through the expression (Liu and Der
Kiureghian, 1986):

9g ¼ ln½1þ 9ðsc=mcÞðs4=m4Þ�
sg;csg;4

(11)

Then, the correlation matrix D between the two underlying
Gaussian random fields is established as



Fig. 2. Diagram of the LHS.
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D ¼
�

I 9gI
9gI I

�
(12)

where I is the unit matrix of order n and D possesses dimension
2n � 2n and 9g are the elements of the cross-correlation matrix.
After the matrix D is determined, its eigenvalues LD and eigen-
vectors FD can be calculated according to the following expression:

DFD ¼ FD
LD (13)

The eigenvalue needs to be sorted after the calculation (lD1 � lD2
� lD3 I �. � lD2n). Afterwards, it is possible to simulate the required
random variables xcj and x4j ðj¼ 1;.;nÞ by means of the following
expression:

xD ¼ FD
�
LD
�1=2

2 (14)

where 2 is a realization of a standard Gaussian distribution with
independent components of dimension 2n and xD ¼ ½xc1;.xcn;x

4
1 ;.;

x4n �.
2.2. Sampling strategy

2.2.1. Stratified sampling and partially stratified sampling
Standard stratified sampling (SS) is a method for generating

stratified samples for all dimensions involved in a problem. It di-
vides the sampling space into strata according to a certain char-
acteristic or a specific rule and then draws samples independently
and randomly from each strata. The major challenge of SS is that it
may require a large number of strata and samples for high-
dimensional problems. This is due to the fact that it is not easy to
stratify all dimensions simultaneously in a high-dimensional
sample space. PSS method can be seen as the generalization of SS
(Shields and Zhang, 2016). In essence, PSS applies SS to sampling
subspaces. It means that the random variables of a problem are
grouped into different subspaces and SS is applied only to those
subspaces. Fig. 1a and b provides schematic illustrations of SS and
PSS, respectively. Fig. 1a shows the standard SS in the space of two
random variables, where four strata and four samples are
Fig. 1. Diagrams of (a
considered. Fig. 1b represents PSS applied to a problem that in-
volves four random variables grouped into two sample subspaces.
The first subspace groups random variables x1 and x2 while the
second subspace groups random variables x3 and x4, respectively.
Then, according to the standard stratified sampling method, low-
dimensional random samples are generated within each stratum
belonging to a subspace. The low-dimensional samples generated
in each subspace are randomly grouped to obtain the complete n-
dimensional samples. This last step is represented in Fig. 1b with
arrows. Compared to the standard SS method, PSS has the advan-
tage of being applicable to high-dimensional sample spaces. The
main challenge of PSS is to select which randomvariables should be
paired in the subspace. Preferably, random variables which exhibit
strong interaction over the output of a numerical model should be
paired together. However, determining a priori which variables
interact can be challenging for cases of practical interest.
2.2.2. Latin hypercube sampling
Latin hypercube sampling (LHS) is a method for conducting

random sampling from multivariate parameter distributions
(Helton and Davis, 2003). LHS stratifies the sample space associated
) SS and (b) PSS.
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with each random variable individually. This constitutes a major
difference with stratified sampling, where the sampling space
associatedwith all randomvariables is stratified at once. LHS is well
suited for capturing additive effects of the input random variables
on the output of a numerical model and thus, it has been widely
used in recent years (Shields, 2016). Fig. 2 shows the schematic
diagram of LHS. In this figure, the yellow line represents the stra-
tum, the green symbol represents the randomly selected samples in
the strata, and the red points represent the samples generated by
LHS by random pairing.
2.2.3. Latinized partially stratified sampling
LPSS combines the features of stratified sampling, PSS and Latin

hypercube sampling. Conceptually, LPSS can be divided into three
steps. The first step is to divide the possibly high-dimensional
sample space into subspaces using PSS. Random variables are
paired in subspaces according to appropriate criteria. The second
step is to generate samples with Latinized stratified sampling (LSS)
in each generated subspace. LSS consists of generating a set of
samples that satisfy simultaneously the characteristics of the SS in
addition to the characteristics of the LHS. Fig. 3 provides a sche-
matic diagram for generating LSS samples in a 2D subspace, where
the objective is to generate a total of four samples. In this figure, the
blue lines represent the stratified sampling subspace, and the yel-
low line represents the stratification of LHS for each random vari-
able. The green symbol represents the samples in each strata of
LHS, and the red dots represent the samples in the subspace, which
are generated by pairing the samples associated with each random
variable within this subspace. It is readily observed from Fig. 3 that
the resulting samples fulfill the conditions associated with both
stratified and Latin hypercube sampling. The third and final steps of
LPSS consist of generating samples by randomly combining the
subspace samples generated by LSS.

The main advantage of LPSS over PSS is as follows. Each sub-
space is sampled using LSS, which means that those samples fulfill
the conditions of SS and LHS. In other words, it is possible to cap-
ture both interaction and additive effects of the input random
variables on the output of a numerical model. Such a strategy can be
quite effective in mitigating poor pairing of random variables in a
subspace. Therefore, as discussed in SS (Shields and Zhang, 2016),
LPSS can effectively combine the best features of both stratified and
Latin hypercube sampling.

When using LPSS, it is crucial to determine the subspaces and
the number of dimensions in each subspace. The optimal subspaces
of LPSS can be determined by means of the calculation of the Sobol’
indices of the interaction effects. Previous studies concentrated on
the calculation of the Sobol’ indices to estimate the interaction ef-
fects of random variables in determining the LPSS subspaces (e.g.
Shi et al., 2018). However, this approach is limited to rigorously
Fig. 3. Diagram of the LPSS.
evaluating only interactions in a lower dimensional random space,
i.e. up to 6 dimensions in the aforementioned work. On the other
hand, in this work, a highly dimensional random input space is
taken into account. This is because a high number of random var-
iables are required to accurately represent random fields. Because
of this, a considerable computational effort renders unfeasible the
employment of Sobol’ indices to accurately identify the optimal
pair of random variables and LPSS layers. Thus, the pairs are iden-
tified by means of a trial approach. However, this trial approach is
not detrimental to the method. As a matter of fact, according to
Shields and Zhang (2016), ‘in LPSS, it is sufficient to stratify a set of
variables together simply based on the possibility that they may
interact’. Thus, as a consequence from the findings in the afore-
mentioned work, wrong pairing will not bring any harm and suc-
cessful pairing will enable better estimation of the sought
quantities of interest.
2.3. Maximum entropy distribution with fractional moments

2.3.1. Maximum entropy distribution
The probability distributions of random variables are usually

difficult to obtain, while information about their moments is usu-
ally easy to obtain. The probability distribution function of a vari-
able can be approximated by equating the moments of the random
variable with the moments of the distribution. It can be found that
there are multiple distributions whose moments agree with the
moments of measurement of these values, one of which has the
maximum entropy. In fact, the maximum entropy distribution is
actually the most probable distribution. This is because, in the case
of insufficient data, the inferred distributionmust coincidewith the
known data while making the fewest assumptions about the un-
known. Moreover, theoretically, the maximum entropy probability
distribution based on the given moments has the property of
minimum error. Therefore, the maximum entropy distribution is
widely used in different problems, such as wind engineering
(Pandey, 2002), hydrology (Pandey et al., 2001), Geotechnical en-
gineering (Deng, 2022), etc. Its good results show that it is indeed
an excellent method to deal with ill-posed problems. In this paper,
the maximum entropy distribution is used to determine the
probability distribution function associated with the safety factor
that is considered to calculate the failure probability of slopes.
2.3.2. Fractional order moments
The maximum entropy distribution still has some obstacles that

prevent its practical implementation, despite its many advantages.
A considerable number of moments are essential to accurately
characterize the tails of the maximum entropy probability distri-
bution, but in practice only a limited number of sample moments
are available (Winterstein and Kashef, 2000). As the number of
required moments increases, the problem of moments of the
maximum entropy probability distribution becomes pathological,
and the tails exhibit oscillatory behavior. Reasonable estimates of
the distribution’s tails are necessary but challenging because the
sample size is usually finite. If the distribution type is known or can
be assumed, then the distribution parameters can be estimated by
several methods. Unfortunately, in many cases, the functional form
of the probability distribution is unknown. If the chosen model is
too simple with respect to the number of free parameters or
incompatible with the data, the bias error can be significant.
Research in recent years has found that fractional-order models can
more accurately describe natural physical systems (Zhang and
Pandey, 2013). Fractional order moments are a natural generaliza-
tion of integer order moments. Thus, the sample estimate of the
fractional moment associated with a random variable X is
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EXam ¼ Xam
1 þ Xam

2 þ/þXam
N

N
(15)

where am is a real number; N is the number of the samples; and X1,
X2, ., XN are the samples of X. It can be calculated in a similar way
to the integer moments. Themain advantage of fractional moments
is their lower sampling variability compared to that of integer-
order moments. Moreover, a single low-order fractional-order
moment contains information about many central moments. Thus,
a finite number of fractional-order moments is sufficient to recover
the probability density function. In addition, the use of fractional-
order moments can accurately characterize distribution tails.
2.3.3. Construction of maximum entropy distribution
Generating an unknown probability density function from a

finite number of integer-order moments is an ill-posed problem.
This problem can be solved by using fractional moments because
fractional moments contain more probability information than
integer-order moments (Zhang et al., 2020). Therefore, in this
subsection, fractional order moments are used as constraints to
derive probability density functions for high-dimensional reli-
ability analysis using the maximum entropy distribution based on
fractional order moments. The entropy is first defined and is
denoted as

HðfXÞ¼ �
Z

fXðxÞln fXðxÞdx (16)

where fXðxÞ is the probability density function (PDF) of a contin-
uous randomvariable X. The integration domain corresponds to the
feasible range of the random variable X.

The form of the maximum entropy distribution obtained using
the Euler-Lagrange equation is written as

fXðxÞ ¼ exp

"
� k0 �

XM
m¼1

kmðx� bÞam

#
(17)

where b is a location parameter, M is the number of fractional
moment constraints, am is a real number representing the m-th
fractional moment considered, km is them-th Lagrange’s multiplier,
and exp ($) is the exponential function. Parameters am,M, b and km
are selected according to an optimization strategy with respect to a
certain objective function described in detail below (see Eq. (20)).
Note that M is a positive integer, am is a real number, and km is
another real number related to the value of am. In this paper, the
values ofM range from 1 to 6, and the values of am range from�4 to
4. Numerical validation indicates that these ranges of values for M
and am are appropriate within the context of the applications
studied in this contribution. The process for identifying the afore-
mentioned parameters proceeds as follows. The value of M is first
chosen, then the values of the remaining parameters are obtained
using an optimization algorithm. Then, the results for different
values of M are compared to determine the optimal M according to
the principle of minimizing the objective function. The difference
from the standard maximum entropy distribution is that am is a
real number rather than an integer. The rules for its calculation are
the same. The normalization constant k0 is given as follows:

k0 ¼ ln
Z þN

b
exp

"
�
XM
m¼1

kmðx� bÞam

#
dx (18)

Maximum likelihood estimation is used to estimate the model
parameters of MED. The likelihood function of Eq. (17) is defined as
Lða; kjxÞ ¼
YN
n¼1

exp

"
� k0 �

XM
m¼1

kmðxn � bÞam

#
(19)

where xn is the safety factor fs calculated from the LPSS samples,
and N is the sample size associated with LPSS as explained in
Section 2.2. According to the principle of maximum entropy dis-
tribution, themaximumvalue of the likelihood function needs to be
identified. The problem of calculating themaximum entropy can be
converted into an unconstrained minimization problem. It is
important to note that fractional moments are only defined in the
positive domain, which means that x�b must be positive. There-
fore, the domain of x is defined from b to positive infinity (Zhang
et al., 2020). The objective function for identifying this optimal
minimum is expressed as

Qða; k; b;MÞ ¼ k0 þ
XM
m¼1

kmEðX � bÞam þ 2Mþ1
N

(20)

where N is the size of the sample data to be post-processed, and X is
the sample datum.

MEDFM can characterize the maximum entropy distribution
using information from small amounts of fractional moments.
However, the optimization problem is challenging to solve effi-
ciently because the objective function is nonconvex and discon-
tinuous. Heuristic optimization algorithms can find globally
optimal solutions that cannot be achieved using traditional
methods because they do not require the derivatives of the objec-
tive function. In this paper, Genetic algorithms are adopted because
they are robust for finding fractional-order global optimal solutions
(Whitley, 1994). The Genetic algorithm follows a set of steps, which
starts with an initial population of individuals. The algorithm se-
lects the most fit individuals as parents using a selection operator
and then generates new offsprings using a crossover operator. The
offsprings are then subjected to a mutation operator to introduce
some level of randomness to avoid getting stuck in local optimal
solutions. Finally, the offsprings are added to the population and
updated through a replacement strategy. This process is repeated
over multiple generations until the optimal solution is found. The
fractional order of MEDFM can be obtained according to the steps of
the Genetic algorithm. It is important to note that the result of the
fractional order is always different for different cases because it is
optimized according to the Genetic algorithm and the latter pos-
sesses a random component. Nonetheless, practical numerical
experience indicates that differences between parameters identi-
fied with independent runs of Genetic algorithms are minimal.
Finally, the failure probability can be obtained from the PDF, which
also allows to calculate the cumulative distribution function (CDF).
3. Implementation procedure

This section presents the procedure of an efficient approach for
the reliability calculation of slopes, as shown in Fig. 4. This
approach is flexible because the deterministic computation is
decoupled from the stochastic analysis. Therefore, different deter-
ministic methods can be used for the analysis. This procedure
consists of seven main steps as follows:

(1) When a random field is used to characterize the spatial
variability of the soil, the first step is to determine the type of
autocorrelation function. The correlation of soils at different
locations in the space needs to be considered. The selection
of different autocorrelation functions and their parameters
significantly impacts the probability of failure, so it should be



Fig. 4. Flowchart of the proposed approach.
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chosen reasonably. In this paper, a single exponential auto-
correlation function is used to generate the random field for
comparison with existing examples.

(2) The second step is to generate the random field. In this paper,
the K-L expansion method is used. The error resulting from
the random field generated by K-L is calculated according to
the error equation of the random field. An accuracy of 95% is
enough for most engineering scenarios when generating the
random field. Therefore, the number of K-L expansion terms
required to generate the random field is determined based
on its 95% accuracy. In this paper, a random field requires
80 K-L expansion terms, i.e. an 80-dimensional random
variable space is required to generate a random field.

(3) The third step is to generate samples of the random variables
associated with the description of the random field. These
samples are generated following the LPSS method. The
dimensionality of the random variable needs to be deter-
mined by the number of expansion terms in the random
field. The specific steps of LPSS are described in detail in
Section 2.2. According to the analysis in the previous step,
generating a random field requires an 80-dimensional
random variable. This means that when we consider two
correlated random fields, 160-dimensional random variables
are considered. The specific number of samples to imple-
ment the proposed approach was determined based on
specific cases. For the large failure probability (>10�3) of
example 1, at least 900 samples are required to obtain reli-
able results. For small failure probability (10�3�10�5) of
example 2, at least 3600 samples are required to obtain
reliable results.

(4) Samples of the random field are generated according to the
K-L expansion method in this step. In this paper, a discrete
approach is used to generate random fields. Specifically, the
centre points of the mesh are used as discrete points. The
problem of random field expansion is first converted into a
problem of the second type of integral equation. Then the
eigenvalues and eigenvectors of the covariance function are
solved. Finally, the random variables are multiplied by the
eigenvalues and eigenvectors to obtain the random field. For
the case of the undrained slope in the first example, the
random field of the shear strength parameter only needs to
be considered. For the case of the c-4 slope in the second
example, the c and 4 are considered to generate cross-
correlated random fields.

(5) The generated material parameters of the random field are
brought into the calculation file associated with the numer-
ical solution of the slope stability problem according to their
corresponding position. In this step, the emphasis is on
assigning material parameters to specific locations in the
geometric model. A MATLAB program is used to input the
random field material parameters into the finite element
calculation file. In this work, we have used GeoStudio soft-
ware for solving finite element method (FEM) models.

(6) The safety factor fs is calculated for slopes considering the
samples of the random fields. In this step, calculations can be
performed with commercial software for geotechnical engi-
neering or in-house code. The solver is called to perform
calculations on the finite element calculation file with the
samples of material parameters of the random field. After
each calculation, a MATLAB program extracts fs from the
output results file.

(7) The last step is to use MEDFM to calculate the failure prob-
ability of the slope. The fractional order moments of fs are
calculated with the samples generated in the previous step,
and then the PDF and CDF of fs are fitted according to the
maximum entropy distributionmethod. Then the probability
that fs is less than 1, which is the failure probability of the
slope, is obtained according to the CDF. The specific steps of
MEDFM are described in detail in Section 2.3.

In this work, the number of samples generated with LPSS needs
special consideration. The minimum value of the required samples
can be determined depending on the value of the failure proba-
bility. For real cases, the exact number of calculations needs to be
determined based on the results of the analysis.

4. Examples

In this section, two examples are given to illustrate the effi-
ciency and accuracy of the presented approach. For this purpose,
the K-L method was implemented using MATLAB to simulate the
random field. Furthermore, GeoStudio was used for the determin-
istic finite element analysis. In addition, a routine for MATLAB was
developed to perform LPSS. Finally, the MEDFM is coupled with the
LPSS to analyze the slope reliability.

4.1. Example 1: application to a saturated clay slope

For comparison purposes, the undrained clay slope studied by
Jiang et al. (2014) and Cho (2010) is investigated in the first



Table 2
Material parameters in Example 1.

Parameter Mean value Coefficient of variation (COV)

Unit weight (kN/m3) 20 Quantity is deterministic
Young’s modulus (MPa) 100 Quantity is deterministic
Poisson’s ratio 0.3 Quantity is deterministic
Cohesion (kPa) 23 0.3
Friction angle (�) Quantity is deterministic

Fig. 6. The error of the K-L expansion.
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example. The geometry of the scenario considered is given in Fig. 5.
The total slope height in this example is 10 m, and the length is
30 m. In the analysis, only the cohesive force is considered as a
random field, while the angle of internal friction is assumed to be 0.
The mesh types are 4-node quadrilateral meshes and 3-node
triangular meshes. Most of the finite elements are square, and
some degenerate into triangles. In Fig. 5, the finite element mesh
consists of 910 elements and 981 nodes. For illustrative purposes, a
conventional elastic and perfect plastic model based on the Mohr-
Coulomb failure criterion is used to represent the stress-strain
behavior of the soil. The boundary conditions are fully fixed on
the vertical ends of the bottom and left sides of the model.

Undrained shear strength cohesion is considered a random field
with a log-normal distribution. Table 2 summarizes the statistical
properties of the soil parameters for the slope considered. Young’s
modulus, Poisson’s ratio, and the soil unit weight in this example
are considered deterministic quantities because their influence is
relatively small compared to cohesion. Based on the average value
of the undrained shear strength, a minimum slope fs of 1.366 was
obtained using a finite element method based on a critical surface
search algorithm, which is implemented in SIGMA/W and SLOPE/
W. For comparison, the safety factor of this slope model using the
limit equilibrium method was also calculated. The fs is 1.354 using
the Morgenstern-Price method, which is consistent with 1.356
calculated using the Bishop simplified method. These results indi-
cate that the finite element-based method used in this study
effectively assesses slope stability problems.

The widespread K-L expansion is used to discretize the random
field of the 2D log-normal distribution of the cohesion for
computational efficiency. The accuracy of the random field dis-
cretization depends strongly on the number of terms in the
eigenvalue expansion. Usually, increasing the number of terms
improves accuracy. However, it also increases computational effort.
A compromise between accuracy and computational cost is ach-
ieved by accepting a certain error level. Fig. 6 shows the decaying
trend of the eigenvalues obtained by solving the integral eigenvalue
problem; and Fig. 7 shows the eigenvectors corresponding to each
eigenvalue, respectively. In this figure, the eigenvalues decay
sharply with the number of K-L terms. In addition, the decay rate
increases with increasing autocorrelation distance. In this paper,
the accuracy rate 95% is used to determine the number of eigen-
value terms for the K-L expansion. The K-L expansion of 80 terms is
a solution that achieves a balance between accuracy and efficiency
when the horizontal and vertical autocorrelation distances are 20
and 2 m, respectively. When considering spatial variability, the size
of the finite element is an important parameter that affects the
accuracy of the reliability results. The element size of the random
field is related to the correlation length of the autocorrelation
function (Sudret and Der Kiureghian, 2000). Although finer meshes
allow better estimation of the slope’s safety factors and failure
probabilities, the resulting computational time increases signifi-
cantly. According to Jiang et al. (2014), this study used a 4-node
Fig. 5. Finite element model for slope in example 1.
quadrilateral mesh with a size of 0.5 m and a 3-node triangular
mesh to balance precision and computational cost.

Three main steps are performed to obtain a random field real-
ization of the undrained shear strength with spatial variability.
First, an independent standard normal sample matrix of dimension
80 � 900 is generated using LPSS. This is because 900 sets of
random samples are sufficient for convergence for slope engi-
neering with that failure probability. The 80-dimensional random
variables of LPSS are generated by creating 40 groups of two
random variables each. Then, the parameter matrix of the un-
drained shear strength in the physical space is obtained by K-L
expansion. Finally, the sampled values of cohesion are assigned to
each element separately. After deterministic analysis, the LPSS-
MEDFM method was used to calculate the probability of failure of
this slope engineering problem. Table 3 shows the failure proba-
bility results using the proposed approach for an undrained clay
slope with an autocorrelation distance of lh ¼ 20 m and lv ¼ 2 m. In
this table, some results from the literature are also shown for
comparison. Among them, there are results obtained by LHS and
MCS with MEDFM. For MCS-MEDFM and LHS-MEDFM, it requires
2000 and 1600 calculations, respectively. For LPSS-MEDFM, the
results were calculated for 400, 900, 1600, 2500 and 3600 samples,
respectively. It was found that only 900 deterministic calculations
were needed to obtain reliable failure probability results. It is
obvious that LPSS-MEDFM requires fewer deterministic analyses
than LHS and MCS. These results indicate that the proposed
approach can produce sufficiently accurate failure probability for
smaller samples. The resulting PDF and CDF of fs are shown in
Figs. 8 and 9, respectively. The PDFs and CDFs calculated by the
proposed approach in this paper are also consistent with Cho
(2010), which shows that the proposed approach is efficient and
trustworthy.



Fig. 7. Eigenfunctions of the autocorrelation function: (a) The first eigenfunction, (b) The second eigenfunction, (c) The third eigenfunction, (d) The fourth eigenfunction, (e) The
fifth eigenfunction, and (f) The sixth eigenfunction.
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To investigate the applicability of the method for small failure
probabilities, we considered a scenario of undrained clay slope for a
coefficient of variation of 0.15 (Jiang et al., 2015). The other pa-
rameters are the same as in the above case. The CDF results for this
case are shown in Fig. 10. Table 4 shows the reliability results using
the proposed approach for an undrained clay slope with a COV of
0.15. The result of the probability of failure calculated using the
proposed approach in this paper is 1.5 �10�4. For this example, the
results were calculated for 900, 1600, 2500, 3600, 4900 and 6400
samples, respectively. It was found that 3600 deterministic calcu-
lations were needed to obtain the failure probability results. This
means that 3600 is the minimum number of samples to obtain
accurate results, and the same results are obtained when the
number of samples is larger than 3600. This is very close to the
results in the literature. However, the sample size required by the
method in this paper is significantly reduced compared to the
literature (Liu et al., 2018). This result shows that themethod is very
effective for small failure probabilities. By comparing the results
with those of integer order moments, it is found that the maximum
entropy distribution with fractional order moments has apparent
Table 3
Results in example 1 (COV ¼ 0.3).

Deterministic
analysis

Stochastic analysis Ns Pf Source

LEM LHS 1000 8.3 � 10�2 Jiang et al. (2015)
LEM MCS 100,000 7.6 � 10�2 Cho (2010)
FEM EQP þ MRSM þ MCS 10,000 7.4 � 10�2 Liu et al. (2018)
FEM MCS þ MEDFM 2000 7.1 � 10�2 This study
FEM LHS þ MEDFM 1600 7.2 � 10�2 This study
FEM LPSS þ MEDIM 900 7.2 � 10�2 This study
FEM LPSS þ MEDFM 900 7.4 � 10�2 This study

Note: Ns is the number of deterministic finite element calculations performed, and
its value in this paper is also the number of samples; LEM denotes the limit equi-
librium method; MEDIM denotes the maximum entropy distribution with integer
moments; EQP denotes the equivalent parameter; MRSM denotes the multiple
response surface method.
advantages for slopes with small failure probabilities considering
spatial variability.

4.2. Example 2: application to a c-4 slope

This example illustrates the applicability of the proposed
approach to random fields with cross-correlation. Therefore, the
same geometric model and computational conditions as in the first
example are used, as shown in Fig. 5. The cohesion and friction
angles are considered random fields with a log-normal distribution.
Table 5 summarizes the statistical properties of the soil parameters
for the slope considered. Young’s modulus, Poisson’s ratio, and the
soil unit weight in this example are considered to be deterministic
because their influence is relatively small compared to cohesion.
Fig. 8. PDF result in Example 1 (COV ¼ 0.3).



Fig. 9. CDF result in Example 1 (COV ¼ 0.3).

Fig. 10. CDF result in Example 1 (COV ¼ 0.15).

Table 5
Material parameters in Example 2.

Parameter Mean value Coefficient of variation (COV)

Unit weight (kN/m3) 20 Quantity is deterministic
Young’s modulus (MPa) 100 Quantity is deterministic
Poisson’s ratio 0.3 Quantity is deterministic
Cohesion (kPa) 10 0.3
Friction angle (�) 20 0.2

Fig. 11. The realization of the random field of cohesion in Example 2.
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The random field is first generated using the K-L method. Since
we need to generate random fields separately for the cohesion and
friction angle, we have a 160-dimensional random variable for this
example. The generation of each random field is the same as in the
first example. Then the method in Section 2.1 is used to generate
the cross-correlated random fields. The realization of a random
field of cohesion in this example is shown in Fig. 11.
Table 4
Results in example 1 (COV ¼ 0.15).

Deterministic
analysis

Stochastic analysis Ns Pf Source

LEM SRSM þ RSSs þ MCS 40,000 2.8 � 10�4 Jiang et al. (2015)
FEM EQP þ LHS 40,000 1.25 � 10�4 Liu et al. (2018)
FEM EQP þ MRSM þ MCS 500,000 1.4 � 10�4 Liu et al. (2018)
FEM LPSS þ MEDIM 3600 5.5 � 10�4 This study
FEM LPSS þ MEDFM 3600 1.5 � 10�4 This study

Note: SRSM denotes the stochastic response surfaces method; RSSs denotes the
representative slip surfaces.
Table 6 shows the reliability results for a c-4 slope with an
autocorrelation distance of lh ¼ 25 m and lv ¼ 2.5 m. The results in
this example are shown in Figs.12 and 13. The results of CDF for this
case can be shown in Fig. 13. According to it, Pf of the slope can be
obtained directly. The result of the probability of failure calculated
using the approach proposed in this paper is 1.12� 10�4. Compared
to Jiang et al. (2014), the results are of the same order of magnitude.
The error can be accepted for slope engineering with a small failure
probability. These results indicate that the proposed approach can
produce sufficiently accurate failure probabilities.

Fig. 14 shows the results of calculating the reliability index for
slopes with different cross-correlation coefficients using the pro-
posed approach. The range of the cross-correlation coefficient is
from �0.5 to 0.5. The reliability index of the slope decreases from
5.049 to 3.279. The results show that the cross-correlation coeffi-
cient has a considerable influence on the results of the probability
of failure of the slope.
5. Discussion

This section provides a thorough discussion of the proposed
approach in the paper. First, an application of the random field
method in geotechnical engineering is discussed. Then the analysis
of the proposed approach for calculating failure probability in
geotechnical engineering is presented. Finally, the advantages and
disadvantages of the proposed approach are compared with similar
methods.

In the stochastic analysis of geotechnical engineering, the pa-
rameters of the random field are crucial. According to the results of
this paper and existing studies, the mean value, COV, autocorrela-
tion function and distance and cross-correlation coefficient may
significantly influence the failure probability of geotechnical
Table 6
Results in example 2.

Deterministic
analysis

Stochastic
analysis

Ns Pf Source

FEM 2nd order PCE 462 6.26 � 10�4 Jiang et al. (2014)
FEM 2nd order PCE 2500 4.32 � 10�4 Jiang et al. (2014)
FEM 3rd order PCE 2500 3.55 � 10�4 Jiang et al. (2014)
FEM MCS 500,000 1.03 � 10�4 This study
FEM LPSS þ MEDFM 3600 1.12 � 10�4 This study

Note: PCE denotes the polynomial chaos expansion.



Fig. 12. PDF result in Example 2.

Fig. 14. The effect of the cross-correlation coefficient on the probability of failure.

C. Feng et al. / Journal of Rock Mechanics and Geotechnical Engineering 16 (2024) 1140e11521150
engineering. While the topic holds significant importance, it must
be noted that it is outside the scope of this paper.

Up to now, reliability methods have been developed rapidly.
Nonetheless, the development has been less in geotechnical engi-
neering reliability. Some of the reliability methods can be used in
geotechnical engineering directly. However, geotechnical random
field analysis has some unique characteristics, such as the
complexity of materials, the large amount of single finite element
calculations, and the high dimensionality of random variables.
Therefore it is necessary to compare different methods to deter-
mine a better solution for geotechnical engineering needs. Through
extensive literature research and calculations, it has been found
that MEDFM is an excellent method for describing probability
distributions. Unfortunately, it still requires a larger sample size
when calculated with existing sampling methods such as MCS. So
we investigated and calculated the existing sampling methods and
found the advantages of the LPSS method and its ability to reduce
the sample numbers significantly. Therefore, in this paper, an LPSS-
MEDFM method is presented to solve the problem of calculating
the failure probability of random fields in geotechnical engineering.
In this method, the role of LPSS is to pull representative samples.
Fig. 13. CDF result in Example 2.
Specifically, LPSS generates samples using LSS after stratification,
providing superior variance reductionwhen low-order interactions
and main effects are present for many high-dimensional applica-
tions. The role of MEDFM is to describe the distribution of the
sample, where the fractional moments are used to describe the
statistical characteristics of the samples. LPSS and MEDFM must be
coupled to be a complete and effective method, and it will not work
without either part. It is emphasized that this combination takes
advantage of the strengths of the different methods, the efficiency
of which will be reduced without either. In example 1 of this paper,
we have thoroughly compared the different methods. As shown,
LPSS has a clear advantage over LHS and MCS due to the fewer
samples required for reliable failure probability estimation.

The main advantage of the proposed approach is that it is effi-
cient and steady compared with the existing reliability calculation
methods for geotechnical random fields. In example 1 of this paper,
for geotechnical engineering with a high failure probability
(>10�3), the number of finite element calculations required is 900.
Compared with the existing literature, its computational efficiency
has been significantly improved. Meanwhile, we compared the PDF
and CDF of the safety factor with Cho (2010) and proved the
method’s accuracy. For geotechnical engineering with low failure
probability (<10�3), 3600 samples are required for our test case
while we verify the accuracy of the results with MCS.

The approach presented in this paper is quite advantageous for
dealing with geotechnical problems involving random fields, as it is
possible to cope with high dimensional random variable spaces.
However, this advantage may vanish in case that a particular
problem involves a small number of random variables. For such
cases, it may bemore convenient to apply reliability methods based
on surrogate models.

6. Conclusions

This work has presented an LPSS-MEDFM-based slope reliability
analysis approach that accounts for the spatial variability of shear
strength parameters. Log-normal random fields are considered for
representing spatial variability, where the K-L expansion is imple-
mented along a model for describing cross-autocorrelated random
fields. The advantages of LPSS and its role in this study are then
explained in detail. LPSS has a clear advantage relative to LHS for
high-dimensional problems found when considering random
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fields. Finally, the use of maximum entropy distribution to char-
acterize complex distributions is described. We find that fractional
moments can accurately analyze the statistical information of the
data. Therefore, MEDFM was used to analyze the statistical infor-
mation of the safety factor and to obtain the probability of failure of
the slope. Two case studies were used as examples to demonstrate
the capability and effectiveness of the presented approach for small
failure probabilities. The presented approach is shown to provide a
practical tool for calculating reliability problems even when com-
plex finite element analysis is involved. The latter is due to the fact
that the finite element analysis and probabilistic analysis are
decoupled in this framework. Several conclusions can be drawn
from this study:

(1) The proposed approach has high efficiency for geotechnical
engineering problems with spatial variability. This is because
the LPSS method has good efficiency and applicability for
high-dimensional sampling problems compared to other
methods. In fact, the random field models considered in this
work comprise 80 and 160 random variables.

(2) The proposed approach is suitable for geotechnical engi-
neering problems with a low probability of failure because
the MEDFM method can obtain PDFs of safety factors from
data with statistical information. This is because moments of
fractional order include more information than moments of
integer order. Combining fractional order moments with
maximum entropy distribution makes the approach more
efficient. For slope engineering with a high probability of
failure, 900 samples are required, and for a very low proba-
bility of failure, only 1600 samples are needed.

(3) The coefficient of variation and cross-correlation coefficient
of random fields significantly influence the failure probabil-
ity of the slope. Failure probabilities may vary over orders of
magnitude due to changes in them. Therefore, these pa-
rameters should be determined with careful consideration.
The cross-correlation coefficient between cohesion and
friction angle is generally negative and the resulting failure
probability is much smaller than the case where they are
independent. Thus, independent random fields should be
generated when the cross-correlation coefficient between
cohesion and friction angle is difficult to determine because
it is a conservative scenario.

The presented approach has shown considerable potential for
the problems considered in this work. However, due to their
importance, the random field parameters of geotechnical engi-
neering materials are required to be investigated in the future.
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