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Abstract 13 

Surrogate models are extensively employed for forward and inverse uncertainty quantification in 14 

complex, computation-intensive engineering problems. Nonetheless, constructing high-accuracy surrogate 15 

models for complex dynamical systems with limited training samples continues to be a challenge, as 16 

capturing the variability in high-dimensional dynamical system responses with a small training set is 17 

inherently difficult. This study introduces an efficient Kriging modeling framework based on functional 18 

dimension reduction (KFDR) for conducting forward and inverse uncertainty quantification in dynamical 19 

systems. By treating the responses of dynamical systems as functions of time, the proposed KFDR method 20 

first projects these responses onto a functional space spanned by a set of predefined basis functions, which 21 

can deal with noisy data by adding a roughness regularization term. A few key latent functions are then 22 

identified by solving the functional eigenequation, mapping the time-variant responses into a low-23 

dimensional latent functional space. Subsequently, Kriging surrogate models with noise terms are constructed 24 

in the latent space. With an inverse mapping established from the latent space to the original output space, 25 

the proposed approach enables accurate and efficient predictions for dynamical systems. Finally, the surrogate 26 

model derived from KFDR is directly utilized for efficient forward and inverse uncertainty quantification of 27 

the dynamical system. Through three numerical examples, the proposed method demonstrates its ability to 28 

construct highly accurate surrogate models and perform uncertainty quantification for dynamical systems 29 

accurately and efficiently. 30 
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1. Introduction 32 

Dynamical systems are widely encountered in engineering and applied sciences, such as vibratory 33 

mechanical systems [1], civil infrastructure [2], and physical or chemical processes [3]. In practice, the 34 

performance of a dynamical system is influenced by various uncertainties arising from materials, 35 

manufacturing, external forces, and the environment [4-7]. Quantifying the effects of these uncertainties on 36 

the system response is crucial. Forward uncertainty quantification and inverse uncertainty quantification are 37 

two essential aspects of uncertainty quantification (UQ). Forward UQ focuses on evaluating the uncertainty 38 

in system responses caused by uncertain inputs, whereas inverse UQ aims to estimate input uncertainties 39 

using observed response data. However, forward UQ is typically conducted using the Monte Carlo sampling 40 

method, and inverse UQ often relies on Markov Chain Monte Carlo method within a Bayesian framework 41 

[8, 9], both of which require numerous dynamical system simulations. This makes forward UQ and inverse 42 

UQ highly inefficient, particularly for computationally expensive problems. 43 

Therefore, surrogate models are widely used in forward UQ and inverse UQ to create computationally 44 

efficient models for analysis. Over recent decades, various surrogate modeling approaches have been 45 

proposed for emulating dynamical systems. Based on differences in modeling forms, these approaches can 46 

be broadly classified into two categories: autoregressive model-based methods and output feature mapping-47 

based methods. Autoregressive model-based methods estimate time-variant responses using past 48 

observations or prior predictions. The autoregressive integrated moving average (ARIMA) model [10] is a 49 

well-known autoregressive approach that has achieved significant success in time series prediction. However, 50 

ARIMA assumes a linear relationship between past history and future forecasts, limiting its applicability to 51 

dynamical systems, which often exhibit nonlinearities. Therefore, nonlinear autoregressive models with 52 

exogenous input (NARX) [11] were introduced for dynamical systems. These models utilize exogenous 53 

inputs, such as time-variant excitation forces, and capture nonlinear relationships between inputs and outputs 54 

to achieve higher predictive accuracy. The NARX model enables integration with powerful and widely used 55 

surrogate models, such as support vector regression [12, 13], polynomial chaos expansion [14, 15], Kriging 56 

(or Gaussian processes) [16, 17], and neural networks [18, 19]. However, determining the optimal time lags 57 

for both exogenous and autoregressive inputs is challenging [20], and the NARX model has difficulty 58 

handling highly nonlinear dynamical problems [21]. To tackle these challenges, a manifold NARX (mNARX) 59 

model [22] was recently introduced, where the input is projected onto a problem-specific manifold that better 60 

supports the construction of the NARX model. However, the mNARX model relies on additional physical 61 

information. 62 

Output feature mapping-based models aim to map the high-dimensional, time-variant response of a 63 

dynamical system into a low-dimensional latent space and construct the surrogate model between the inputs 64 
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and the latent outputs. The most widely used dimensionality reduction technique for feature mapping is 65 

principal component analysis (PCA), also referred to as proper orthogonal decomposition or singular value 66 

decomposition in various fields of application. For example, Jacquelin et al. [23] proposed a non-intrusive 67 

method that combines PCA with polynomial chaos expansion to model random dynamical systems. 68 

Additional studies utilizing PCA to reduce the dimensionality of high-dimensional outputs can be found in 69 

[7, 24-27]. However, PCA is a linear mapping method and may not effectively extract features when dealing 70 

with highly nonlinear problems. Thus, several methods have been proposed to utilize nonlinear 71 

dimensionality reduction techniques for extracting output features. Lee and Carlberg utilized deep 72 

convolutional autoencoders to map dynamical systems onto nonlinear manifolds for the purpose of model 73 

reduction [28]. Simpson et al. [29] proposed to use autoencoders to infer a latent output space of nonlinear 74 

dynamical systems. However, accurately identifying the nonlinear latent output space requires a large number 75 

of samples, limiting its applicability to problems that involve costly experiments or simulations for generating 76 

training samples.  77 

To enhance flexibility and accuracy in inferring the latent output space under noisy conditions and with 78 

limited training data, we propose a Kriging modeling framework based on functional dimension reduction 79 

(KFDR) for constructing surrogate models for forward and inverse uncertainty quantification in dynamical 80 

systems. Fig. 1 presents an overview of the proposed KFDR method. First, instead of viewing the responses 81 

of dynamical systems as high-dimensional vectors, we reconsider them from a functional perspective and 82 

treat them as functions defined over a specific time interval. From this perspective, we project the time-83 

variant responses onto a functional space spanned by a set of predefined basis functions, which can naturally 84 

address noisy data by adding a roughness regularization term. Subsequently, by solving the functional 85 

eigenequation, we can capture the majority of variations in the response of the dynamical system through key 86 

features in the functional space. The time-variant responses can then be represented as linear combinations 87 

of these key latent functions. Thus, the response of the dynamical system is mapped into a low-dimensional 88 

latent functional space, with an inverse mapping defined from the latent space to the original output space. 89 

Furthermore, Kriging surrogate models with noise terms are constructed in the latent space to account for 90 

errors arising from limited data and feature mapping, enabling accurate and efficient predictions of dynamical 91 

systems. Finally, the surrogate model constructed using KFDR is directly employed for efficient forward and 92 

Bayesian inverse UQ of the dynamical system.  93 

The remainder of this paper is organized as follows. Section 2 introduces the fundamentals of forward 94 

and inverse UQ approaches for dynamical systems. Section 3 outlines the details of the proposed KFDR 95 

method. Section 4 presents case studies and discusses their results. Finally, Section 5 concludes the paper and 96 

suggests potential future research directions. 97 
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 98 
Fig. 1. Overview of the proposed framework. 99 
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2. Problem statement 100 

A response of interest of a dynamical system can be expressed as 𝑌(𝐗, 𝑡), 𝑡 ∈ [𝑡!, 𝑡"], where 𝐗 =101 

[𝑋#, ⋯ , 𝑋$]% ∈ ℝ$  is the input vector. The purpose of forward uncertainty quantification is to obtain 102 

statistical information about the time-variant output 𝑌 given the probability density function of the input 103 

𝐗~𝑓𝐗(𝐱). The statistics of interest typically include the mean function, 104 

𝜇'(𝑡) = 2𝑌(𝐗, 𝑡)𝑓𝐗(𝐱)d𝐱 , (1) 105 

the standard deviation function,  106 

𝜎'(𝑡) = 52(𝑌(𝐗, 𝑡) − 𝜇'(𝑡))(𝑓𝐗(𝐱)d𝐱 , (2) 107 

and the probability density function of the output at different time nodes. For reliability analysis, the 108 

distributions of the maximum or minimum values over a specified time interval are also of interest. Since 109 

𝑌(𝐗, 𝑡) often lacks an analytic expression, it is generally intractable to compute Eq. (1) and Eq. (2) directly. 110 

As a result, simulation methods are commonly used for forward UQ, with Monte Carlo simulation being one 111 

of the most widely used approaches. However, these methods require numerous evaluations of 𝑌(𝐗, 𝑡) to 112 

obtain precise results, which is computationally prohibitive especially for engineering applications that rely 113 

on costly simulations. To reduce the computational burden, a surrogate model of 𝑌(𝐗, 𝑡)  needs to be 114 

constructed. 115 

Forward UQ relies on the input uncertainty information 𝑓𝐗(𝐱) to obtain the uncertainty information of 116 

outputs. However, obtaining accurate 𝑓𝐗(𝐱) is often challenging in engineering applications, as it may 117 

require a large number of experiments. In some cases, prior knowledge can be used to determine 𝑓𝐗(𝐱), but 118 

this approach can be subjective and may lead to inaccurate forward UQ results. In this case, inverse UQ is 119 

needed to infer the uncertainty of the input based on observed response data. Inverse UQ is typically based 120 

on a Bayesian framework [30]. First, the input parameters are assumed to follow certain prior distributions, 121 

which are then updated according to the observed response data to obtain the posterior distributions, ensuring 122 

that the simulation results are consistent with the response data. Markov Chain Monte Carlo sampling is 123 

commonly used to compute the posterior distributions, which requires numerous evaluations of 𝑌(𝐗, 𝑡). 124 

Therefore, a computationally efficient surrogate model is needed for effective inverse UQ. 125 

Forward UQ and inverse UQ are two essential components of uncertainty quantification for dynamical 126 

systems. However, both forward UQ and inverse UQ require numerous system evaluations to obtain 127 

responses, making them computationally inefficient for complex problems. To address this, this paper 128 

proposes an efficient surrogate-based forward UQ and inverse UQ framework for dynamical systems.  129 
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3. Methodology 130 

As described in Section 2, the key to efficient forward UQ and inverse UQ of a dynamical system is 131 

constructing a surrogate model of it. In this section, we first introduce how to represent the responses of 132 

dynamical systems from a functional perspective. Then, dimension reduction and surrogate modeling are 133 

performed in the functional space. Subsequently, surrogate-based forward and inverse uncertainty 134 

quantification are described at the end of this section.  135 

3.1. Dimension reduction in functional space 136 

  Since the output of a dynamical system is a function of time, treating it from a functional perspective 137 

allow us to obtain more useful information than traditional linear dimensionality reduction methods. For a 138 

square-integrable stochastic process 𝑌(𝑡), 𝑡 ∈ [𝑡!, 𝑡"], let 𝜇(𝑡) = 𝔼(𝑌(𝑡)) be the mean function of 𝑌, and 139 

let 𝑌)(𝑡) = 𝑌(𝑡) − 𝜇(𝑡) be the centered stochastic process. The covariance function of 𝑌 is defined as: 140 

𝑐(𝑠, 𝑡) = Cov=𝑌(𝑠), 𝑌(𝑡)> = 𝔼[𝑌)(𝑠)𝑌)(𝑡)]. (3) 141 

Given that the covariance function is symmetric and positive semi-definite, Mercer’s theorem [31] implies 142 

that: 143 

𝑐(𝑠, 𝑡) = @𝜆*𝜙*(𝑠)𝜙*(𝑡)
+

*,#

, (4) 144 

where 𝜆# ≥ 𝜆( ≥ ⋯ ≥ 0  are the eigenvalues and 𝜙#, 𝜙(, ⋯  are the corresponding orthonormal 145 

eigenfunctions of the covariance operator: 146 

𝐶:	𝐿(([𝑡!, 𝑡"]) → 𝐿(([𝑡!, 𝑡"]), 𝐶[𝑓](𝑡) = 2 𝑐(𝑠, 𝑡)𝑓(𝑠)𝑑𝑠
-!

-"
, (5) 147 

where 𝐿(([𝑡!, 𝑡"]) refers to the space of square-integrable functions defined on [𝑡!, 𝑡"]. Then, by Karhunen-148 

Loève expansion, we have: 149 

𝑌(𝑡) = 𝜇(𝑡) +@𝜉(*)𝜙*(𝑡)
+

*,#

, (6) 150 

where 151 

𝜉(*) = 〈𝑌) , 𝜙*〉 = 2 𝑌)(𝑡)𝜙*(𝑡)𝑑𝑡
-!

-"
, 𝑘 = 1,2, … (7) 152 

are uncorrelated random variables with zero mean and variances of 𝜆#, 𝜆(, ⋯, respectively. 𝜉(*)  is the 153 

principal component score associated with the k-th eigenfunction 𝜙* and is the projection of 𝑌)(𝑡) in the 154 

direction of the k-th eigenfunction 𝜙*. 155 

The eigen functions 𝜙#, 𝜙(, ⋯ can be obtained by solving the Fredholm integral equation of the second 156 

kind, expressed as: 157 



 

7 

 

2 𝑐(𝑠, 𝑡)𝜙(𝑡)𝑑𝑡
-!

-"
= 𝜆𝜙(𝑠). (8) 158 

In practice, the continuous eigenproblem in Eq. (8) is discretized into a matrix eigenproblem to facilitate the 159 

solution of the integral equation. This is achieved by projecting the dynamical system response 𝑌(𝑡) and 160 

the eigen function 𝜙(𝑡) onto a functional space spanned by predefined basis functions. The covariance 161 

function 𝑐(𝑠, 𝑡) is then estimated using samples of 𝑌(𝑡). Given a training data set with N samples, 𝒟 =162 

{(𝐱0 , 𝐲0), 𝑖 = 1,2,⋯ ,𝑁}, where 𝐲0 is an 𝑁- × 1 output vector, and 𝑁- is the number of discretized time 163 

nodes. Each 𝐲0 represents a response function 𝑌0(𝑡). First, the output data is centered as: 164 

𝐲0) = 𝐲0 −
1
𝑁@𝐲*

1

*,#

. (9) 165 

Then, the centered time-variant output functions {𝑌#)(𝑡), 𝑌()(𝑡),⋯ , 𝑌1)(𝑡)}  are expressed as linear 166 

combinations of predefined basis functions {𝜂#(𝑡), 𝜂((𝑡),⋯ , 𝜂1#(𝑡)} as: 167 

𝐘)(𝑡) = [𝑌#)(𝑡), 𝑌()(𝑡),⋯ , 𝑌1)(𝑡)]% = 𝐂%𝛈(𝑡). (10) 168 

where 𝑁2 is the number of basis functions, 𝐂 = [𝐜#, 𝐜(, ⋯ , 𝐜1] is the 𝑁2 × 𝑁 coefficient matrix, 𝐜0 , 𝑖 =169 

1,2,⋯ ,𝑁 are 𝑁2 × 1 coefficient vectors, and 𝛈(𝑡) = [𝜂#(𝑡), 𝜂((𝑡),⋯ , 𝜂1#(𝑡)]
%. 𝐜0  can be obtained by 170 

minimizing the sum of squared error between the observed and estimated response:  171 

𝐜0 = argmin
𝐜

@e𝑦04) − 𝑌0)=𝑡4>g
(

1$

4,#

= argmin
𝐜

(𝐲0) −𝐇𝐜)%(𝐲0) −𝐇𝐜) , (11) 172 

where  173 

𝐇 =

⎣
⎢
⎢
⎢
⎡ 𝜂#(𝑡#) 𝜂((𝑡#)
𝜂#(𝑡() 𝜂((𝑡()

… 𝜂1#(𝑡#)
… 𝜂1#(𝑡()

⋮ ⋮
𝜂#=𝑡1$> 𝜂(=𝑡1$>

⋱ ⋮
… 𝜂1#=𝑡1$>⎦

⎥
⎥
⎥
⎤

(12) 174 

is an 𝑁- × 𝑁2 matrix whose elements correspond to the values of various basis functions at different time 175 

nodes.  176 

If the dynamical system responses include noise, such as that arising from measurements, a roughness 177 

regularization term [32] can be added to Eq. (11) as follows: 178 

𝐜0 = argmin
𝐜

q(𝐲0) −𝐇𝐜)%(𝐲0) −𝐇𝐜) + 𝜏2 [𝐷(𝑌0)(𝑡)](𝑑𝑡
-!

-"
t , (13) 179 

where 𝐷(𝑌0)(𝑡) is the second derivative of 𝑌0)(𝑡), and the integrated squared second derivative measures 180 

the roughness of 𝑌0)(𝑡). 𝜏 is the smoothing parameter and is non-negative. A large 𝜏 will cause 𝑌0)(𝑡) to 181 

exhibit minimal fluctuations. As 𝜏 reaches zero, 𝑌0)(𝑡) will attempt to pass through each sample point as 182 

closely as possible, potentially leading to erratic behavior in certain regions. By substituting 𝑌0)(𝑡) =183 
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𝛈(𝑡)%𝐜0 into the roughness penalty term in Eq. (13), we obtain: 184 

𝜏2 [𝐷(𝑌0)(𝑡)](𝑑𝑡
-!

-"
= 𝜏𝐜05 u2 𝐷(𝛈(𝑡)𝐷(𝛈(𝑡)%𝑑𝑡

-!

-"
v 𝐜0 . (14) 185 

Let 𝐑 = ∫ 𝐷(𝛈(𝑡)𝐷(𝛈(𝑡)%𝑑𝑡-!
-"

, where 𝐑  is an 𝑁2 × 𝑁2  symmetric matrix with elements 𝐑04 =186 

∫ 𝐷(𝜂0(𝑡)𝐷(𝜂4(𝑡)𝑑𝑡
-!
-"

, 𝑖, 𝑗 = 1,2,⋯ ,𝑁2. The analytical solution to Eq. (13) is: 187 

𝐜0 = (𝐇%𝐇 + 𝜏𝐑)6#𝐇%𝐲0) . (15) 188 

Typically, the smoothing parameter 𝜏  can be determined through cross-validation. However, cross-189 

validation is usually computationally expensive. In this research, we employ the generalized cross-validation 190 

(GCV) measure [33], which serves as a more efficient alternative to the standard cross-validation procedure. 191 

The GCV measure is expressed as: 192 

GCV(𝜏) =
𝑁

[𝑁 − trace(𝐒(𝜏))](@
(𝐲0) −𝐇𝐜0)%(𝐲0) −𝐇𝐜0)

1

0,#

, (16) 193 

where 𝐒(𝜏) = 𝐇(𝐇%𝐇 + 𝜏𝐑)6#𝐇%. Then, the value of 𝜏 that minimizes GCV(𝜏) is selected for use in Eq. 194 

(15). In practice, it is not necessary to compute the exact minimum of GCV(𝜏). Instead, a grid search on a 195 

logarithmic scale can be performed to find the optimal 𝜏. For example, the range of log#! 𝜏 can be set to [-196 

6, 6] and divided into uniform grids. The GCV value is then calculated for each grid point, and the 𝜏 197 

corresponding to the grid point with the minimum GCV value is selected for use in Eq. (15). Table 1 presents 198 

the pseudocode for determining 𝜏. 199 
Table 1 200 
Pseudocode of determining the smoothing parameter 𝜏. 201 

Algorithm 1: Determination of the smoothing parameter 𝜏 
Input: centralized time-variant output samples {𝐲!" , 𝐲#" , ⋯ , 𝐲$" } and basis functions {𝜂!(𝑡), 𝜂#(𝑡),⋯ , 𝜂$!(𝑡)} 
Output: the smoothing parameter 𝜏 

1: Generate 𝑁% values for 𝜏: 𝜏& ← 10'()!#(&'!)/($"'!), 𝑖 = 1,2,⋯ ,𝑁%  
2: Calculate the values of GCV(𝜏&) for each 𝜏&  
3: 𝜏 ← min

%#∈{%$,⋯,%%"}
GCV(𝜏&)  

 202 

It is important to note that the roughness regularization term in Eq. (13) does not explicitly assume a 203 

specific noise distribution. Instead, it acts as a smoothness constraint to control the complexity and variability 204 

of the estimated model. However, Eq. (13) primarily applies to Gaussian noise, as it relies on the standard 205 

square loss between the observed data and the functional representation. This approach may become 206 

suboptimal under significant non-Gaussian noise, such as skewed or heavy-tailed noise distributions [34]. In 207 

such cases, integrating the roughness regularization term with specialized loss functions can enhance 208 

accuracy and robustness. For instance, the Huber loss [35] is effective for handling heavy-tailed noise, while 209 
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quantile loss [36] is suitable for skewed noise distributions. To simplify the problem without loss of generality, 210 

this study adopts the standard square loss and assumes Gaussian noise. 211 

The commonly used basis functions, 𝛈(𝑡), include Fourier basis functions and spline basis functions, 212 

which are shown in Fig. 2. Among the spline basis functions, B-spline functions [37] are extensively used, 213 

particularly in applications such as computer-aided design and computer graphics. Fourier basis functions are 214 

well suited for systems with continuous, strongly periodic, or near-periodic behavior. By decomposing 215 

signals into harmonic components (sines and cosines), they effectively capture oscillatory patterns when 216 

boundaries align naturally with the data’s repeating structure. Although Fourier basis functions cannot 217 

directly represent non-periodic data, the data can be mirrored along the time axis to create periodic extensions, 218 

as illustrated in Fig. 3. Once periodicity is established, Fourier functions can then be utilized as basis functions. 219 

In contrast, B-spline basis functions provide greater flexibility for modeling aperiodic or transient behaviors 220 

due to their piecewise polynomial nature. They handle local irregularities, non-repeating trends, and boundary 221 

effects more effectively than Fourier functions. In summary, Fourier basis functions are generally preferred 222 

for dynamical systems with continuous, strongly periodic (or near-periodic) behavior. Conversely, B-splines 223 

are typically better suited for non-periodic or complex local behaviors. In practice, cross-validation is 224 

recommended to empirically determine the most appropriate basis system for a given problem. 225 

 226 
Fig. 2. Illustrations of Fourier basis functions (left) and B-spline basis functions (right) over the time interval [0, 1]. 227 

 228 
Fig. 3. Generate periodic data from non-periodic data. 229 

Determining the number of basis functions 𝑁2 is crucial, as it directly influences the representation 230 

!

"#!$

!

"#!$

!"##$#%&'()$*+',-%',".%'(/"M

N$*2P%#"$&"4'&(,( 5%#"$&"4'&(,(



 

10 

 

accuracy. In this study, we develop an error-based approach to select the appropriate 𝑁2. After obtaining the 231 

coordinates 𝐜0 of 𝐲0 in the functional space using Eq. (15), the error between 𝐲0) and 𝐇𝐜0 indicates the 232 

accuracy of the projection from the original time-variant response space to the functional space spanned by 233 

{𝜂#(𝑡), 𝜂((𝑡),⋯ , 𝜂1#(𝑡)}. To quantify the deviation between 𝐲0) and 𝐇𝐜0, we use the normalized root mean 234 

square error (NRMSE): 235 

NRMSE(𝐲0) , 𝐇𝐜0) =
‖𝐲0) −𝐇𝐜0‖(

max	𝐲0) −min	𝐲0)
. (17) 236 

The average NRMSE of the training set is utilized to quantify the overall error: 237 

𝛿 =
1
𝑁@NRMSE(𝐲0) , 𝐇𝐜0)

1

0,#

. (18) 238 

Note that, given a training set and a basis series, 𝛿 depends solely on the number of basis functions, 𝑁2. 239 

Consequently, 𝑁2 can be incrementally increased from a starting value until the relative error between two 240 

consecutive 𝛿 values falls below a specified threshold 𝛿7. 𝛿7 is set to be 0.05 in this research. The focus 241 

on the difference between two consecutive 𝛿 values, rather than 𝛿 itself, arises from the fact that when 242 

noise is present, increasing 𝑁2 causes NRMSE(𝐲0) , 𝐇𝐜0) to approach a value greater than zero instead of 243 

zero. In such cases, using 𝛿 as the convergence criterion may result in failure to converge. Table 2 provides 244 

the pseudocode for the error-based approach to determine 𝑁2. 245 
Table 2 246 
Pseudocode for the error-based approach to determine the number of basis functions 𝑁2. 247 

Algorithm 2: Error-based approach to determine the number of basis functions 𝑁2 
Input: centralized time-variant output samples {𝐲!" , 𝐲#" , ⋯ , 𝐲$" } and a basis function system {𝜂!(𝑡), 𝜂#(𝑡),⋯ }	
Output: number of basis functions 𝑁2 and the corresponding 𝜏 

1: 𝑁2 ← 𝑁23, where 𝑁23 is a given positive integer	
2: Determine 𝜏 by using Algorithm 1 
3: Compute the matrix 𝐇: 𝐇&4 ← 𝜂4(𝑡&), 𝑖 = 1,2,⋯ ,𝑁5 , 𝑗 = 1,2,⋯ ,𝑁2  
4: 𝐜& ← (𝐇6𝐇+ 𝜏𝐑)'!𝐇6𝐲&" , 𝑖 = 1,⋯ ,𝑁	 by using the basis functions {𝜂!(𝑡), 𝜂#(𝑡),⋯ , 𝜂$!(𝑡)} 
5: 𝛿! ← 𝑁'!∑ NRMSE(𝐲&" , 𝐇𝐜&)$

&7!   
6: 𝑘 ← 1  
7: While 1 
8:     𝑁2 ← 𝑁2 + 𝑘𝑁23  
9: Determine 𝜏 by using Algorithm 1 

10: Compute the matrix 𝐇: 𝐇&4 ← 𝜂4(𝑡&), 𝑖 = 1,2,⋯ ,𝑁5 , 𝑗 = 1,2,⋯ ,𝑁2  
11: 𝐜& ← (𝐇6𝐇+ 𝜏𝐑)'!𝐇6𝐲&" , 𝑖 = 1,⋯ ,𝑁	 by using the basis functions {𝜂!(𝑡), 𝜂#(𝑡),⋯ , 𝜂$!(𝑡)} 
12: 𝛿# ← 𝑁'!∑ NRMSE(𝐲&" , 𝐇𝐜&)$

&7!   
13: If |𝛿! − 𝛿#|/𝛿# < 𝛿8 
14:     Break 
15: End If 
16: 𝛿! ← 𝛿#  
17: 𝑘 ← 𝑘 + 1  
18: End While 
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 248 

After obtaining the coefficient matrix 𝐂, the covariance function 𝑐(𝑠, 𝑡) is estimated as: 249 

𝑐(𝑠, 𝑡) =
1

𝑁 − 1𝛈(𝑠)
%𝐂𝐂%𝛈(𝑡). (19) 250 

The eigenfunction 𝜙(𝑠) in Eq. (8) can also be approximated by the basis functions 𝛈(𝑠) as: 251 

𝜙(𝑠) = 𝐛%𝛈(𝑠) = 𝛈(𝑠)%𝐛, (20) 252 

where 𝐛 is an 𝑁2 × 1 vector and stands for the coordinates of 𝜙(𝑠) in the functional space spanned by 253 

𝛈(𝑠). Substituting Eq. (19) and Eq. (20) into Eq. (8), we obtain: 254 

2 𝑐(𝑠, 𝑡)𝜙(𝑡)𝑑𝑡
-!

-"
= 𝜆𝛈(𝑠)%𝐛,

2
1

𝑁 − 1𝛈
(𝑠)%𝐂𝐂%𝛈(𝑡)𝛈(𝑡)%𝐛𝑑𝑡

-!

-"
= 𝜆𝛈(𝑠)%𝐛,

1
𝑁 − 1𝛈

(𝑠)%𝐂𝐂% u2 𝛈(𝑡)𝛈(𝑡)%𝑑𝑡
-!

-"
v 𝐛 = 𝜆𝛈(𝑠)%𝐛. (21)

 255 

Let 𝐖 = ∫ 𝛈(𝑡)𝛈(𝑡)%𝑑𝑡-!
-"

, where 𝐖  is an 𝑁2 × 𝑁2  symmetric matrix with elements 𝐖04 =256 

∫ 𝜂0(𝑡)𝜂4(𝑡)𝑑𝑡
-!
-"

, 𝑖, 𝑗 = 1,2,⋯ ,𝑁2. Then the discrete form of eigenequation is obtained: 257 

1
𝑁 − 1𝛈

(𝑠)%𝐂𝐂%𝐖𝐛 = 𝜆𝛈(𝑠)%𝐛. (22) 258 

Since this equation must hold for all 𝑠, we obtain: 259 
1

𝑁 − 1𝐂𝐂
%𝐖𝐛 = 𝜆𝐛. (23) 260 

By defining 𝐮 = 𝐖#/(𝐛, we need to solve finally a symmetric eigenvalue problem: 261 
1

𝑁 − 1𝐖
#/(𝐂𝐂%𝐖#/(𝐮 = 𝜆𝐮, (24) 262 

and compute 𝐛 = 𝐖6#/(𝐮 for each eigenvector. Note that Fourier basis functions are orthogonal to each 263 

other. Consequently, the matrix 𝐖 reduces to an identity matrix for Fourier basis functions, and Eq. (23) 264 

simplifies to performing standard principal component analysis on the coefficient matrix 𝐂. In contrast, since 265 

B-spline basis functions are generally not orthogonal, it is necessary to compute 𝐖  and solve the 266 

eigenproblem in Eq. (24). 267 

In practice, only the first few eigenfunctions {𝜙1(𝑡),𝜙2(𝑡), ⋯ ,𝜙𝑚(𝑡)} are sufficient to represent 𝑌(𝑡). 268 

There are several methods to determine the value of 𝑚, including the variance proportion-based approach 269 

[38-40], the Bayesian information criterion-based approach [41], the reconstruction error-based approach 270 

[26], and the ladle estimator-based approach [42, 43]. In this study, we adopt the 99% variance proportion-271 

based approach due to its simplicity and efficiency. Specifically, 𝑚 is chosen as the smallest value that 272 
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satisfies: 273 
∑ 𝜆09
0,#

∑ 𝜆0
1#
0,#

≥ 99%, (25) 274 

where 𝜆#, 𝜆(, ⋯ , 𝜆1# are the eigenvalues of (𝑁 − 1)6#𝐖#/(𝐂𝐂%𝐖#/(. 275 

Once the eigenfunctions are obtained, the original high-dimensional time-variant response can be 276 

reduced to a low-dimensional vector, and the original response can be reconstructed from its low-dimensional 277 

representation. Let 𝐁 = [𝐛#, 𝐛(, ⋯ , 𝐛9], which is an 𝑁2 ×𝑚 matrix. For a new time-variant response 𝐲∗, 278 

its low-dimensional representation 𝛏∗ can be obtained in the same way as in Eq. (13) and Eq. (15): 279 

𝛏∗ = argmin
𝛏

{(𝐲∗ −𝐇𝐁𝛏)%(𝐲∗ −𝐇𝐁𝛏) + 𝜏𝛏%𝐁%𝐑𝐁𝛏} = 𝐁6#(𝐇%𝐇 + 𝜏𝐑)6#𝐇%𝐲∗. (26) 280 

For the training samples {𝐲#, 𝐲(, ⋯ , 𝐲1}, their low-dimensional representation can be directly obtained as 281 

𝛏0 = 𝐁6#𝐜0, for 𝑖 = 1,⋯ ,𝑁, where 𝐜0 is computed as in Eq. (15) and 𝛏0 is an 𝑚 × 1 vector. Additionally, 282 

for a low-dimensional vector 𝛏� in the latent functional space, the time-variant response is reconstructed as 283 

𝑦�(𝑡) = 𝛈(𝑡)%𝐁𝛏� . By performing dimension reduction in the functional space, we connect the high-284 

dimensional time-variant response to a low-dimensional vector in the latent functional space. Therefore, we 285 

can construct surrogate models between the inputs and the latent outputs to predict the original time-variant 286 

response. Table 3 presents the pseudocode for performing dimension reduction in the functional space. 287 
Table 3 288 
Pseudocode of dimension reduction in the functional space for the time-variant response. 289 

Algorithm 3: Dimension reduction in the functional space 
Input: time-variant output samples {𝐲!, 𝐲#, ⋯ , 𝐲$} 
Output: low-dimensional representations for the output samples {𝛏!, 𝛏", ⋯ , 𝛏#} 

1: Centralize the data 𝐲&" ← 𝐲& −𝑁'! ∑ 𝐲&$
&7! , 𝑖 = 1,2,⋯ ,𝑁 

2: Select a basis function system {𝜂!(𝑡), 𝜂#(𝑡),⋯ } and determine 𝑁2 and 𝜏 by Algorithm 2 
3: Compute the matrix 𝐇: 𝐇&4 ← 𝜂4(𝑡&), 𝑖 = 1,2,⋯ ,𝑁5 , 𝑗 = 1,2,⋯ ,𝑁2  
4: 𝐜& ← (𝐇6𝐇+ 𝜏𝐑)'!𝐇6𝐲&" , 𝑖 = 1,⋯ ,𝑁 and 𝐂 ← [𝐜!, 𝐜#, ⋯ , 𝐜$] 
5: 𝐖← ∫ 𝛈(𝑡)𝛈(𝑡)6𝑑𝑡5&

5'
  

6: Solve the symmetric eigenvalue problem (𝑁 − 1)'!𝐖!/#𝐂𝐂6𝐖!/#𝐮 = 𝜆𝐮	 
7: Determine 𝑚 with the 99% variance proportion criterion and obtain the retained eigen pairs: {𝜆!, 𝐮!},⋯ , {𝜆<, 𝐮<} 
8: 𝐛= ←𝐖'!/#𝐮= , 𝑘 = 1,2,⋯ ,𝑚 and 𝐁 ← [𝐛!, 𝐛#, ⋯ , 𝐛<] 
9: 𝛏& ← 𝐁'!𝐜& , 𝑖 = 1,⋯ ,𝑁  

 290 

3.2. Kriging-based emulator for learning dynamical systems 291 

After performing dimension reduction in the functional space, time-variant response 𝐲 is reduced to an 292 

𝑚 × 1 vector 𝛏 = [𝜉(#), 𝜉((), ⋯ , 𝜉(9)]% in the latent functional space. Since the latent functions 𝜙*(𝑡) are 293 

orthogonal to each other, all 𝜉(*), 𝑘 = 1,2,⋯ ,𝑚 are uncorrelated. Therefore, to emulate the dynamical 294 

system, we can construct a surrogate model for each 𝜉(4) with respect to the input 𝐗 and use these models 295 
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to predict the system's response. In this study, we use the Kriging surrogate modeling method due to its ability 296 

to quantify model prediction uncertainty, a highly valuable feature for assessing the surrogate model’s quality 297 

or supporting active learning. The training data 𝒟 = {(𝐱0 , 𝛏0), 𝑖 = 1,2,⋯ ,𝑁} in the latent space may contain 298 

noise due to limited data and dimensionality reduction. Therefore, the Ordinary Kriging model with noise 299 

term is used for surrogate modeling in the latent space: 300 

𝜉(𝒙) = 𝜇 + 𝑍(𝐱) + 𝜀, (27)	301 

where 𝜇 is the global mean, 𝑍(𝐱)~GP(0, 𝑘(𝐱, 𝐱′)) is a zero mean Gaussian process, 𝜀 is a zero-mean 302 

Gaussian noise with covariance matrix 𝚺<. This paper assumes homoscedastic noise, where 𝚺< = 𝜎<(𝐈 (𝐈 303 

being the identity matrix). It is worth noting that the assumption of homoscedastic noise can be relaxed to 304 

accommodate heteroscedastic noise, but such considerations are beyond the scope of this work. 𝑘(𝐱, 𝐱=) =305 

𝔼[𝑍(𝐱)𝑍(𝐱′)] is the covariance function (or kernel function) of 𝑍(𝐱). Among numerous existing kernel 306 

functions, the Gaussian kernel function is commonly used: 307 

𝑘(𝐱, 𝐱=) = 𝜎>(exp{−(𝐱 − 𝐱=)%𝚯(𝐱 − 𝐱=)}, (28) 308 

where 𝜎>(  is the variance of 𝑍(𝐱) , 𝚯 = diag(𝛉)  and 𝛉 = e𝜃#, 𝜃(, ⋯ 𝜃$g
%  are scaling parameters to 309 

characterize the variability of the Gaussian process. 310 

Given a training data set 𝒟4 = {(𝐱0 , 𝜉0
(4)), 𝑖 = 1,2,⋯ ,𝑁} for the 𝑗-th component of 𝛏, 𝜇, 𝜎>(, 𝛉 and 311 

𝜎<( are obtained by maximizing the marginal log likelihood function as follows: 312 

𝜇̂, 𝜎�>(, 𝛉 , 𝜎�<( = argmax
?,A%

&,𝛉,A'&
log	𝑝(𝜉|𝐱,𝜇, 𝜎>(, 𝛉, 𝜎<() ,

log	𝑝(𝜉|𝐱,𝜇, 𝜎>(, 𝛉, 𝜎<() = −
1
2 =𝛏

(4) − 𝟏𝜇>%(𝐾𝐱𝐱 + 𝜎<(𝐈1)6#=𝛏(4) − 𝟏𝜇> −
1
2 log

|𝐾𝐱𝐱 + 𝜎<(𝐈1| −
𝑁
2 log2𝜋, (29)

 313 

where 𝛏(4) = [𝜉#
(4), 𝜉(

(4), ⋯ , 𝜉1
(4)]% , 𝟏 is an 𝑁 × 1 vector of ones, 𝐾𝐱𝐱  is the 𝑁 × 𝑁  covariance matrix 314 

with (𝐾𝐱𝐱)0,4 = 𝑘=𝐱0 , 𝐱4>, 𝑖, 𝑗, = 1,2,⋯ ,𝑁 , and 𝐈1  is an 𝑁 × 𝑁  identity matrix. With the estimated 315 

parameters 𝜇̂, 𝜎�>(, 𝛉  and 𝜎�<(, the predictive mean and variance at a new point 𝐱∗ are given by: 316 

𝜇̂DE((𝐱
∗) = 𝜇̂ + 𝐤𝐱𝐱∗

% (𝐾𝐱𝐱 + 𝜎<(𝐈1)6#=𝛏(4) − 𝟏𝜇>, (30) 317 

𝜎�DE(
( (𝐱∗) = 𝑘(𝐱∗, 𝐱∗) − 𝐤𝐱𝐱∗

% (𝐾𝐱𝐱 + 𝜎<(𝐈1)6#𝐤𝐱𝐱∗ , (31) 318 

where 𝐤𝐱𝐱∗ = [𝑘(𝐱#, 𝐱∗), 𝑘(𝐱(, 𝐱∗),⋯ , 𝑘(𝐱1 , 𝐱∗)]%.  319 

The mean and covariance matrix of 𝛏�(𝐱∗)  are 𝛍̈𝛏E(𝐱∗) = [𝜇̂DE*(𝐱
∗),⋯ , 𝜇̂DE+(𝐱

∗)]%  and 𝚺 𝛏E(𝐱∗) =320 

diag([𝜎�DE*
( (𝐱∗),⋯ , 𝜎�DE+

( (𝐱∗)]%). And the predicted mean and variance of time-variant response 𝑦�(𝑡) at a 321 

specified time node 𝑡∗ can be obtained as: 322 

𝜇̂FG(𝐱∗, 𝑡∗) = 𝛈(𝑡∗)%𝐁𝛍̈𝛏E(𝐱∗). (32) 323 

𝜎�FG((𝐱∗, 𝑡∗) = 𝛈(𝑡∗)%𝐁𝚺 𝛏E(𝐱∗)𝐁%𝛈(𝑡∗). (33) 324 
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Denote ℳ4 the surrogate model for the 𝑗-th component of 𝛏, then the surrogate model for the dynamical 325 

system can be denoted as ℳ = {ℳ#,ℳ(, ⋯ ,ℳ9}. 326 

3.3. Surrogate-based forward and inverse UQ for dynamical systems 327 

Once the surrogate model for the dynamical system is constructed, it can be directly combined with 328 

Monte Carlo simulation for forward UQ. Given a set of Monte Carlo samples 𝐱#, 𝐱(, ⋯ , 𝐱1,-. according to 329 

𝑓𝐗(𝐱), 𝜇'(𝑡) in Eq. (1) and 𝜎'(𝑡) in Eq. (2) can be estimated as follows: 330 

𝜇̂'(𝑡) =
1

𝑁HIJ
@ 𝛈(𝑡)%𝐁𝛍̈𝛏E(𝐱0)
1,-.

0,#

=
1

𝑁HIJ
𝛈(𝑡)%𝐁 @ 𝛍̈𝛏E(𝐱0)

1,-.

0,#

. (34) 331 

𝜎�'(𝑡) = ª 1
𝑁HIJ

@ «𝛈(𝑡)%𝐁𝛍̈𝛏E(𝐱0) − 𝜇̂'(𝑡)¬
(

1,-.

0,#

, (35) 332 

where 𝛍̈𝛏E(𝐱0) = [𝜇̂DE*(𝐱0),⋯ , 𝜇̂DE+(𝐱0)]
%. 333 

For inverse UQ, a Bayesian framework is utilized in this research. The surrogate model ℳ can be 334 

viewed as a function of input parameters 𝐗 mapping to the high-dimensional output 𝐘. In the Bayesian 335 

framework, a discrepancy term can be added to link predictions ℳ(𝐗) with observations 𝐘 as follows: 336 

𝐘 = ℳ(𝐗) + 𝛜, (36) 337 

where 𝛜  is an 𝑁- -dimensional vector. For simplicity, we assume 𝛜  follows a zero mean multivariate 338 

Gaussian distribution with covariance matrix 𝜎(𝐈, where 𝐈 is an 𝑁- -dimensional identity matrix. This 339 

assumption makes sense because, for an observed time-variant response, we can consider that zero-mean 340 

Gaussian noise with variance 𝜎( is added at each time node due to measurement error. Note that other 341 

assumptions about the discrepancy term can also be incorporated into the Bayesian inverse UQ framework.  342 

The posterior distribution of (𝐗, 𝜎(), under the assumption that 𝐗 and 𝜎( are independent, can be 343 

written by Bayes’ theorem as: 344 

p(𝐗, 𝜎(|𝐘) ∝ p(𝐗)p(𝜎()p(𝐘|𝐗, 𝜎(), (37) 345 

where p(𝐗)  and p(𝜎()  are the prior distributions of 𝐗  and 𝜎(  respectively, and p(𝐘|𝐗, 𝜎()  is the 346 

likelihood function. When 𝑁KLMNOPN observations are available, p(𝐘|𝐗, 𝜎() has the following form: 347 

p(𝐘|𝐗, 𝜎() = ¯
1

(2𝜋𝜎()1/012342/(
exp °−

1
2𝜎( =𝐲0 −ℳ

(𝐗)>%=𝐲0 −ℳ(𝐗)>±
1/012342

0,#

. (38) 348 

In this research, the affine invariant ensemble algorithm [44] is used to calculate the posterior distribution. In 349 

the implementation, 100 parallel chains are generated, with initial points randomly sampled from the prior 350 

distributions. Each chain is set to run for 300 MCMC iterations. The proportion of samples discarded as burn-351 
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in is set to 50%. This MCMC approach is efficiently executed using the UQLab toolbox [45, 46]. 352 

4. Examples and discussions 353 

In this section, we evaluate the performance of the proposed method alongside several comparative 354 

methods on both mathematical and engineering examples. We compare the modeling accuracy of the 355 

proposed KFDR with Kriging models that incorporate PCA (KPCA), independent component analysis 356 

(KICA), and autoencoders (KAE). Each method follows a similar procedure to KFDR: first performing 357 

dimension reduction on the time-variant response, then constructing Kriging models between the inputs and 358 

each low-dimensional representation of the response. The primary difference lies in the dimension reduction 359 

technique employed by each method. KPCA treats the responses of dynamical systems as vectors and applies 360 

standard PCA to reduce response dimensionality. The number of retained principal components is chosen so 361 

that they explain more than 99% of the total variance. KICA uses independent component analysis (ICA), a 362 

blind source separation technique, for dimension reduction, decomposing a signal into a linear combination 363 

of independent component signals. KAE employs an autoencoder for dimension reduction, which is a 364 

nonlinear technique with a natural framework for encoding (dimension reduction) and decoding 365 

(reconstruction). The transfer functions for both the encoder and decoder are configured as logistic sigmoid 366 

functions. The maximum number of training epochs for the autoencoder is set to 1000, and the 𝐿( weight 367 

regularization coefficient is set to 0.001. The number of neurons in the hidden layer is set to 20. For the 368 

proposed KFDR, we represent the time-variant responses using both Fourier basis functions and B-spline 369 

basis functions, referred to as KFDR-F and KFDR-B, respectively. Normalized root mean square error 370 

(NRMSE) is used to quantify the modeling error: 371 

NRMSE =
1

𝑁QNMQ
@

⎣
⎢
⎢
⎡² #

1$
∑ «𝑦0=𝑡4> − 𝑦�0=𝑡4>¬

(1$
4,#

max
4
e𝑦0=𝑡4>g − min4 e𝑦0=𝑡4>g

⎦
⎥
⎥
⎤15215

0,#

, (39) 372 

where 𝑁QNMQ denotes the size of test set, 𝑁- is the number of discretized time nodes, 𝑦0(𝑡4) and 𝑦�0(𝑡4) are 373 

the true and predicted values of the i-th time-variant response at 𝑡4, respectively. Besides, the performances 374 

of different methods on forward and inverse uncertainty quantification tasks are investigated. 375 

For the comparison methods, we selected PCA as it is a widely used classical linear dimension reduction 376 

technique that has been extensively applied in dynamical system analysis [23-26]. ICA was chosen as another 377 

major linear dimension reduction method, often employed to extract statistically independent features from 378 

complex signals. Autoencoders represent a widely used nonlinear dimension reduction approach, 379 

successfully applied across various fields, including recent applications to dynamical systems, as shown in 380 

references [28, 29]. It is worth noting that other nonlinear dimension reduction methods, such as kernel PCA, 381 
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isometric feature mapping, and locally linear embedding, also exist. However, these methods typically lack 382 

a direct inverse mapping from the latent space back to the original data space, which is essential for 383 

reconstructing the response of dynamical systems. Consequently, we selected PCA, ICA, and autoencoders 384 

to represent mainstream feature extraction approaches that are well-suited for surrogate modeling of 385 

dynamical systems, ensuring both relevance and practical applicability. 386 

4.1. Example 1: The Duffing oscillator 387 

The Duffing oscillator adopted from [17] is used as the first example. The governing ordinary differential 388 

equation for the Duffing oscillator is as follows: 389 

𝑚𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘𝑦(𝑡) + 𝑘(𝑦((𝑡) + 𝑘R𝑦R(𝑡) = 𝑓(𝑡), (40) 390 

where 𝑚 = 1, 𝑘 = 1 × 10S , 𝑘( = 1 × 10T , 𝑘R = 5 × 10U , 𝑦(𝑡) is the displacement of oscillator with 391 

initial conditions 𝑦̇(0) = 0 and 𝑦(0) = 𝑦!, and 𝑓(𝑡) is the excitation force given by: 392 

𝑓(𝑡) = 𝛼 cos(𝛽𝑡) + sin=(𝛽 + 3)𝑡> + sin(2𝛽𝑡) . (41) 393 

Physical units have been dropped intentionally for simplicity. The quantity of interest is the oscillator 394 

displacement 𝑦(𝑡) over the time interval [0, 2]. Runge-Kutta method is used to solve Eq. (40) to obtain 395 

𝑦(𝑡), and the time interval is uniformly discretized into 401 time nodes. The parameters 𝛼, 𝛽, 𝑐, and 𝑦! 396 

are set as input variables, with their lower and upper bounds listed in Table 4. Fig. 4 shows 100 different 397 

realizations for this problem. 398 
Table 4 399 
Lower and upper bounds of inputs of the Duffing oscillator. 400 
Variables Lower bounds Upper bounds 
𝛼	 	 0.6 1.4 
𝛽  1.5 2.5 
𝑐	 	 0.6 1.4 
𝑦3  -1×10-4 0 

 401 

 402 
Fig. 4. 100 realizations of the responses for the Duffing oscillator problem. 403 
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The number of basis functions (𝑁2) for KFDR-F and KFDR-B is 201 and 405, respectively, while the 404 

number of retained latent functions (𝑚) for both KFDR-F and KFDR-B is 14. Fig. 5 illustrates the modeling 405 

error of different methods across different training sample sizes. In the left panel of Fig. 5, each box displays 406 

the median as the central mark, with the bottom and top edges representing the 25th and 75th percentiles, 407 

respectively. The solid lines extend to the most extreme data points that are not considered outliers, while 408 

outliers are indicated separately using diamond markers. The error is evaluated using an additional test set of 409 

1000 samples, with both training and test samples generated through Latin hypercube sampling. To mitigate 410 

randomness effects, each experiment is repeated ten times. In each trial, identical training samples are used 411 

to construct surrogate models for all methods.  412 

 413 
Fig. 5. Boxplots (left) and means (right) of the normalized root mean square errors of different methods across different 414 
training sample sizes for the Duffing oscillator problem. 415 

Fig. 5 demonstrates a clear downward trend in NRMSE across all methods as the number of training 416 

samples increases. However, the proposed KFDR-F and KFDR-B yield a smaller NRMSE compared to 417 

KPCA, KICA, and KAE across all training sample sizes, indicating higher modeling accuracy. The proposed 418 

approach outperforms KPCA and KICA because KPCA and KICA are based on linear dimensionality 419 

reduction techniques, while KFDR-F and KFDR-B can capture nonlinear features in the response through 420 

basis expansion in the functional space. As a result, the proposed method offers a more flexible representation 421 

than the linear methods. Although the autoencoder is a powerful nonlinear dimensionality reduction method, 422 

it may lose effectiveness with a small sample size. Consequently, the modeling accuracy of KAE is not as 423 

high as that of KFDR-F and KFDR-B. An interesting phenomenon is that as the number of training samples 424 

increases, the modeling error of KAE becomes smaller than that of KPCA and KICA. This is because the 425 

autoencoder can extract nonlinear features more effectively with a large sample size, highlighting the 426 

potential of neural network-based approaches when handling large datasets. Since the modeling accuracy of 427 

KFDR-F and KFDR-B are close, we focus on KFDR-F in the subsequent UQ and inverse UQ analyses. Also, 428 

from a practical perspective, B-spline basis functions have broader applicability. Unlike Fourier basis 429 

functions, which mainly excel for periodic responses, B-spline basis functions can effectively represent 430 
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periodic, non-periodic, or locally varying system responses.  431 

In addition, we investigate the influence of noise level 𝜎 and training sample size on the modeling 432 

accuracy of the proposed KFDR method. Zero-mean Gaussian noise with varying standard deviations (𝜎) is 433 

added to the training output data. The results based on KFDR-B are presented in Fig. 6, which depicts the 434 

NRMSE as a function of the training set size for 𝜎 = 1×10-5, 5×10-5, and 1×10-4. Additionally, we compare 435 

the proposed method to the approach that does not include the roughness regularization term in Eq. (13). It 436 

is observed that NRMSE decreases as the number of training samples increases across all noise levels and 437 

methods. For all training sample size, larger 𝜎 values result in higher NRMSE, indicating the increased 438 

challenge of accurate modeling under noisy conditions. Methods with regularization (solid lines) exhibit 439 

consistently lower NRMSE compared to those without regularization (dashed lines), demonstrating the 440 

effectiveness of the roughness regularization term in enhancing model robustness, particularly in noisy 441 

scenarios. Furthermore, for smaller 𝜎 values (1×10-5), the performance gap between methods with and 442 

without regularization is less significant. However, at higher noise levels (1×10-4), the benefit of 443 

regularization becomes more evident, highlighting its importance in handling noisy data effectively. 444 

 445 
Fig. 6. Normalized root mean square errors for different noise levels with and without regularization as a function of the 446 
number of training samples for the Duffing oscillator problem. 447 

For the forward uncertainty quantification, the uncertainty information of the input parameters is 448 

provided in Table 5. Forward UQ is conducted using the real model and surrogate models trained on 100 449 

samples with different methods. The number of Monte Carlo simulation samples for forward UQ is 1×105. 450 

Since the modeling accuracy of KPCA and KICA are close, only KPCA is used for forward UQ. Fig. 7 451 

illustrates the forward UQ results. From the upper left panel, we can see that all methods provide accurate 452 

predictions of the mean function of the dynamical system’s response. While KFDR-B can obtain a more 453 

accurate estimation of the standard deviation function than other methods. The lower two panels of Fig. 6 454 

show the probability density functions of the maximum and minimum time-variant responses, fitted using 455 

the kernel density estimation method. The probability density function obtained by KFDR-B is closer to the 456 
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true probability density function than those obtained by other methods, indicating that the proposed approach 457 

can achieve higher accuracy in the forward UQ task.  458 
Table 5 459 
Uncertainty information of the parameters of the Duffing oscillator. 460 
Variables Distribution Mean Standard deviation 
𝛼	 	 Normal 1.0 0.05 
𝛽  Normal 2.0 0.1 
𝑐	 	 Normal 1.0 0.05 
𝑦3  Normal -5×10-5 5×10-6 

 461 

 462 
Fig. 7. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value 463 
distributions (lower left), and minimum value distributions (lower right) of real and predicted time-variant responses for the 464 
Duffing oscillator problem. 465 

For inverse uncertainty quantification, the four parameters 𝛼, 𝛽, 𝑐, and 𝑦! are assumed to follow 466 

uniform prior distributions, with their lower and upper bounds provided in Table 4. The data for inverse UQ 467 

consists of three observations at [𝛼, 𝛽, 𝑐, 𝑦!]	=	[1.19, 1.82, 0.94, -3.3×10-5], with zero-mean Gaussian noise 468 

having a standard deviation of 1×10-5 added at each time node. Table 6 presents the inverse UQ results, 469 

showing the mean values and 95% credible intervals of the calibration parameters. Fig. 8 shows the posterior 470 

distributions of the calibration parameters. The results indicate that the posterior distributions of 𝑐 and 𝑦! 471 
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obtained using the KPCA method exhibit a significant deviation from those of the real model. Similarly, the 472 

posterior distribution of 𝑐  obtained using the KAE method shows a notable deviation. In contrast, the 473 

posterior distributions obtained using the KFDR-B method are closer to those of the real model than those 474 

from KPCA and KAE, effectively inferring the correct distributions of the calibration parameters. This 475 

demonstrates that the proposed approach can achieve higher accuracy in the inverse UQ task. 476 

 477 
Table 6 478 
Inverse uncertainty quantification results of the Duffing oscillator. 479 
Variables Methods Mean values 95% credible intervals 

𝛼	 	

Real 1.1927 [1.1894, 1.1958] 
KPCA 1.1850 [1.1782, 1.1916] 
KAE 1.1964 [1.1917, 1.2011] 
KFDR-B 1.1878 [1.1847, 1.1910] 

𝛽  

Real 1.8200 [1.8190, 1.8210] 
KPCA 1.8172 [1.8152, 1.8192] 
KAE 1.8140 [1.8119, 1.8163] 
KFDR-B 1.8191 [1.8180, 1.8202] 

𝑐  

Real 9.4627 × 10-1 [9.1448, 9.8181] × 10-1 
KPCA 7.5348 × 10-1 [6.8398, 8.1570] × 10-1 
KAE 7.7070 × 10-1 [7.0421, 8.5689] × 10-1 
KFDR-B 9.8347 × 10-1 [9.4824, 10.179] × 10-1 

𝑦3	 	

Real -3.2712 × 10-5 [-3.4977, -3.0616] × 10-5 
KPCA -2.2209 × 10-5 [-2.5622, -1.8702] × 10-5 
KAE -3.0564 × 10-5 [-3.3123, -2.8259] × 10-5 
KFDR-B -3.3765 × 10-5 [-3.5846, -3.1583] × 10-5 

 480 
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 481 
Fig. 8. Posterior distributions of the four calibration parameters for the Duffing oscillator problem: real model (upper left), 482 
KPCA model (upper right), KAE model (lower left), and proposed KFDR-B model (lower right). 483 
 484 

4.2. Example 2: The Bouc-Wen hysteretic oscillator 485 

In this example, the forward and inverse UQ of a nonlinear Bouc-Wen oscillator [15] are investigated. 486 

The Bouc-Wen model is described by the following differential equation: 487 

º
𝑚𝑦̈(𝑡) + 𝑐𝑦̇(𝑡) + 𝑘[𝛼𝑦(𝑡) + (1 − 𝛼)𝑧(𝑡)] = 𝑓(𝑡),
𝑧̇(𝑡) = 𝐴𝑦̇(𝑡) − 𝛽|𝑦̇(𝑡)||𝑧(𝑡)|<6#𝑧(𝑡) − 𝛾𝑦̇(𝑡)|𝑧(𝑡)|<, (42) 488 

where 𝑚 is the mass, 𝑦(𝑡) is the displacement of oscillator with initial conditions 𝑦̇(0) = 0 and 𝑦(0) =489 

𝑦! , 𝑐 the viscous damping coefficient, 𝑘 the stiffness, 𝛼 the degree of hysteresis, 𝑧(𝑡) the hysteretic 490 

displacement with zero initial condition, 𝑓(𝑡) the excitation force, and 𝐴, 𝛽, 𝛾, 𝑛 are parameters controlling 491 

the behavior of hysteresis and are set 𝐴 = 1, 𝛽 = 𝛾 = 7.8 × 10R, 𝑛 = 3. In this example, the excitation 492 
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force is fixed in the following form: 493 

𝑓(𝑡) = −√0.006𝜋𝑚@[𝜗* cos(0.1𝜋𝑘𝑡) + 𝜗#V!W* sin(0.1𝜋𝑘𝑡)],
#V!

*,#

(43) 494 

where 𝜗*  is a realization of the standard normal distribution. The quantity of interest is the oscillator 495 

displacement 𝑦(𝑡) over the time interval [0, 16]. Runge-Kutta method is used to solve Eq. (42) to obtain 496 

𝑦(𝑡), and the time interval is uniformly discretized into 401 time nodes. The parameters 𝑚, 𝑐, 𝑘, 𝛼 and 497 

𝑦! are set as input variables, with their lower and upper bounds listed in Table 7. Fig. 9 shows 100 realizations 498 

of the responses for this problem. 499 
Table 7 500 
Lower and upper bounds of inputs of the Bouc-Wen oscillator. 501 
Variables Lower bounds Upper bounds 
𝑚 (kg) 4×104 8×104 
𝑐 (kg/s) 8×104 1.2×105 
𝑘 (N/m) 4×106 6×106 
𝛼	 	 0.1 0.3 
𝑦3 (m) -0.02 0.02 

 502 

 503 
Fig. 9. 100 realizations of the responses for the Bouc-Wen oscillator problem. 504 

The number of basis functions (𝑁2) for KFDR-F and KFDR-B is 201 and 405, respectively, while the 505 

number of retained latent functions (𝑚) for both KFDR-F and KFDR-B is 7. Fig. 10 shows the modeling 506 

error of various methods across different training sample sizes, evaluated on a test set of 1000 samples 507 

generated with Latin hypercube sampling. Each experiment is repeated ten times to reduce randomness 508 

effects. Fig. 10 demonstrates the proposed KFDR-B yield a smaller NRMSE compared to other methods 509 

across all training sample sizes, indicating higher modeling accuracy. However, KFDR-F performs poorly in 510 

this example, likely because Fourier basis systems are not well-suited for capturing the motion of the Bouc-511 

Wen oscillator. This indicates that the B-spline basis system is more flexible than Fourier basis systems and 512 

can represent a broader range of functions. Again, as the number of training samples increases, the modeling 513 
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error of KAE becomes smaller than that of KPCA and KICA but remains larger than that of KFDR-B, 514 

demonstrating the advantage of the proposed approach when faced with a small dataset. 515 

 516 
Fig. 10. Boxplots (left) and means (right) of the normalized root mean square errors of different methods across different 517 
training sample sizes for the Bouc-Wen oscillator problem. 518 

In addition, we investigate the influence of noise level 𝜎 and training sample size on the modeling 519 

accuracy of the proposed KFDR method. Zero-mean Gaussian noise with varying standard deviations (𝜎 = 520 

1×10-3, 5×10-3, and 1×10-2) is added to the training output data. The results based on KFDR-B are presented 521 

in Fig. 11, which depicts the NRMSE as a function of the training sample size for different 𝜎. Additionally, 522 

we compare the proposed method to the approach that does not include the roughness regularization. It is 523 

observed that NRMSE decreases as the number of training samples increases across all noise levels and 524 

methods. For all training sample size, larger 𝜎 values result in higher NRMSE, indicating the increased 525 

challenge of accurate modeling under noisy conditions. For smaller 𝜎 values (1×10-3), the performance gap 526 

between methods with and without regularization is less significant. However, at higher noise levels (1×10-527 
2), the benefit of regularization becomes more evident, demonstrating the effectiveness of the roughness 528 

regularization term in enhancing model robustness, particularly in large noisy scenarios. 529 

 530 
Fig. 11. Normalized root mean square errors for different noise levels with and without regularization as a function of the 531 
number of training samples for the Bouc-Wen oscillator problem. 532 
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For the forward UQ, the uncertainty information of the input parameters is provided in Table 8. Forward 533 

UQ is conducted using the real model and surrogate models trained on 110 samples with KPCA, KAE, and 534 

KFDR-B. The number of Monte Carlo simulation samples for forward UQ is 1×105. Fig. 12 shows the 535 

forward UQ results. Again, all methods provide accurate predictions of the mean function of the dynamical 536 

system’s response. While KFDR-B obtains a more accurate estimation of the standard deviation function than 537 

other methods. The lower two panels of Fig. 12 show that the extreme value distributions obtained by KFDR-538 

B are closer to the true probability density function than those from other methods, indicating that the 539 

proposed approach achieves higher accuracy in the forward UQ task.  540 
Table 8 541 
Uncertainty information of the parameters of the Bouc-Wen oscillator. 542 
Variables Distribution Mean Standard deviation 
𝑚 (kg) Lognormal 6×104 3×103 
𝑐 (kg/s) Lognormal 1×105 3×103 

𝑘 (N/m) Lognormal 5×106 1×105 
𝛼	 	 Normal 0.2 0.01 
𝑦3 (m) Normal 0 0.002 

 543 

 544 
Fig. 12. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value 545 
distributions (lower left), and minimum value distributions (lower right) of real and predicted time-variant responses for the 546 
Bouc-Wen oscillator problem. 547 
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For inverse uncertainty quantification, the mass of oscillator is fixed at 7×104, the other four parameters 548 

𝑐 , 𝑘, 𝛼 and 𝑦!  are assumed to follow uniform prior distributions, with their lower and upper bounds 549 

provided in Table 7. The data for inverse UQ consists of three observations at [𝑐, 𝑘, 𝛼, 𝑦!] =550 

[1.05×105,	4.77×106, 0.21,	0.01], with zero-mean Gaussian noise having a standard deviation of 5×10-3 added 551 

at each time node. Table 9 presents the inverse UQ results, showing the mean values and 95% credible 552 

intervals of the calibration parameters. Fig. 13 shows the posterior distributions of the calibration parameters. 553 

The results indicate that all methods provide relatively accurate posterior distributions for 𝑐  and 𝑘 . 554 

However, the posterior distributions of 𝛼 obtained using the KPCA and KAE methods show a significant 555 

deviation from those of the real model. Additionally, KPCA and KAE produce wider 95% credible intervals 556 

for 𝑦!  compared to the real model and the KFDR-B method. Moreover, methods KPCA and KAE 557 

erroneously infer a strong positive correlation between 𝛼 and 𝑦!. In contrast, the KFDR-B method yields 558 

posterior distributions for 𝛼 and 𝑦! that are very close to those of the real model, once again demonstrating 559 

the high accuracy of the proposed method in inverse UQ. 560 

 561 
Table 9 562 
Inverse uncertainty quantification results of the Bouc-Wen oscillator. 563 
Variables Methods Mean values 95% credible intervals 

𝑐  

Real 1.0679 × 105 [1.0415, 1.0922] × 105 
KPCA 1.0999 × 105 [1.0661, 1.1325] × 105 
KAE 1.0968 × 105 [1.0550, 1.1349] × 105 
KFDR-B 1.0722 × 105 [1.0468, 1.0971] × 105 

𝑘  

Real 4.7655 × 106 [4.7510, 4.7812] × 106 
KPCA 4.7438 × 106 [4.7254, 4.7614] × 106 
KAE 4.7529 × 106 [4.7324, 4.7741] × 106 
KFDR-B 4.7638 × 106 [4.7487, 4.7788] × 106 

𝛼	 	

Real 2.1378 × 10-1 [2.0790, 2.1993] × 10-1 
KPCA 2.2865 × 10-1 [1.9450, 2.6527] × 10-1 
KAE 2.2429 × 10-1 [2.1517, 2.3361] × 10-1 
KFDR-B 2.1250 × 10-1 [2.0689, 2.1788] × 10-1 

𝑦3	 	

Real 0.9854 × 10-2 [0.9001, 1.0740] × 10-2 
KPCA 1.1253 × 10-2 [0.7830, 1.5239] × 10-2 
KAE 1.0353 × 10-2 [0.8838, 1.2022] × 10-2 
KFDR-B 0.9757 × 10-2 [0.8903, 1.0618] × 10-2 

 564 
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 565 
Fig. 13. Posterior distributions of the four calibration parameters for the Bouc-Wen oscillator problem: real model (upper 566 
left), KPCA model (upper right), KAE model (lower left), and proposed KFDR-B model (lower right). 567 

 568 

4.3. Example 3: A crane structure 569 

This example considers the transient analysis of a crane structure under a sudden load. Fig. 14 shows a 570 

schematic and Fig 15 shows the dimensions of the crane. The crane is composed of steel box beams with two 571 

different cross-sections for the main beams and bracing beams. One end of the main beams is fixed at points 572 

A, B, C, and D, while the other end (point E) is subjected to an instantaneous impact force with a magnitude 573 
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of 𝐹 and a duration of 𝑇X. All beams are made of the same steel material, with density 𝜌, Young's modulus 574 

𝐸, and shear modulus 𝐺 treated as varying parameters. In addition, 𝐹 and 𝑇X are also treated as varying 575 

parameters. Table 10 presents the lower and upper bounds for these five input parameters. The quantity of 576 

interest is the force in the Y-direction at point A over the specified time interval [0, 0.5s], which is obtained 577 

through finite element analysis (FEA). The time interval is uniformly discretized into 201 time nodes.  578 

 579 

 580 
Fig. 14. The crane structure subjected to an instantaneous impact force. 581 

 582 

 583 
Fig. 15. Dimensions of the crane structure (unit: meters). 584 

 585 

 586 

 587 

 588 

 589 
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Table 10 590 
Lower and upper bounds of inputs of the crane structure. 591 
Variables Lower bounds Upper bounds 
𝜌 (kg/m3) 7600 8000 
𝐸 (Pa) 1.8×1011 2.2×1011 
𝐺 (Pa) 7.8×1010 8.2×1010 
𝐹	 (N)	 -12×103 -6×103 
𝑇> (s) 0.17 0.23 

 592 

We collected 100 samples using FEA, with input samples generated through Latin hypercube sampling. 593 

Fig. 16 illustrates the 100 realizations of responses. Ten-fold cross-validation was employed to evaluate the 594 

modeling accuracy of the various methods in this example, and the process was repeated ten times to mitigate 595 

the impact of randomness. The number of basis functions (𝑁2) for KFDR-F and KFDR-B is 151 and 205, 596 

respectively, while the number of retained latent functions (𝑚) for both KFDR-F and KFDR-B is 11. Fig. 17 597 

illustrates the modeling errors of the different methods. The proposed methods, KFDR-F and KFDR-B, show 598 

lower NRMSE values compared to the comparative methods (KPCA, KICA, and KAE), indicating better 599 

modeling accuracy. Additionally, their narrower boxplots suggest more consistent performance across 600 

different trials. Among the comparative methods, KPCA and KICA have higher NRMSE values with larger 601 

variability, reflecting lower accuracy and stability. While KAE achieves lower median NRMSE than KPCA 602 

and KICA. 603 

 604 
Fig. 16. 100 realizations of the responses for the crane structure problem. 605 
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 606 
Fig. 17. Boxplots of the normalized root mean square errors of different methods for the crane structure problem. 607 

 608 
For the forward UQ, the uncertainty information of the input parameters is provided in Table 11. Forward 609 

UQ is conducted using the surrogate models trained on all 100 samples with KPCA, KAE, and KFDR-B. 610 

The number of Monte Carlo simulation samples for forward UQ is 1×105. Fig. 18 presents the forward UQ 611 

results, showing that the mean functions predicted by the three methods are consistent, while the standard 612 

deviation functions exhibit differences among the methods. All standard deviation functions exhibit higher 613 

values around 0.2s, as the external force is removed at this point, causing the crane to transition from forced 614 

vibration to free vibration. For the extreme value distributions, the three methods predict different modes for 615 

the maximum value distribution, with KAE even producing a multimodal PDF. In contrast, all three methods 616 

predict the same mode for the minimum value distribution, although the PDF obtained by KAE differs from 617 

those of KPCA and KFDR-B. 618 

 619 
Table 11 620 
Uncertainty information of the parameters of the crane structure. 621 
Variables Distribution Mean Standard deviation 
𝜌 (kg/m3) Lognormal 7800 20 
𝐸 (Pa) Lognormal 2×1011 2.5×109 

𝐺 (Pa) Lognormal 8×1010 2×108 
𝐹	 (N)	 Normal -9×103 500 
𝑇> (s) Lognormal 0.2 0.005 

 622 
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 623 
Fig. 18. Mean functions over time (upper left), standard deviation functions over time (upper right), maximum value 624 
distributions (lower left), and minimum value distributions (lower right) of predicted time-variant responses for the crane 625 
structure problem. 626 

For inverse uncertainty quantification, 𝜌, 𝐸, and 𝐺 are fixed at 7800, 2×1011, and 8×1010, respectively. 627 

𝐹  and 𝑇X  are assumed to follow uniform prior distributions in [-11×103, -9×103] and [0.19, 0.23], 628 

respectively. The data for inverse UQ consists of three observations at [𝐹, 𝑇X] = [-9.8×103, 0.21], with zero-629 

mean Gaussian noise having a standard deviation of 100 added at each time node. Table 12 presents the 630 

inverse UQ results, showing the mean values and 95% credible intervals of the calibration parameters. Fig. 631 

19 shows the posterior distributions of the calibration parameters. The results show that the proposed KFDR-632 

B method generates posterior distributions that are very close to the true values, whereas the KPCA and KAE 633 

methods exhibit slight deviations from the true values.  634 
Table 12 635 
Inverse uncertainty quantification results of the Bouc-Wen oscillator. 636 
Variables Methods Mean values 95% credible intervals 

𝐹	  
KPCA -9.7510×103 [-9.7997, -9.7036] ×103 
KAE -9.8694×103 [-9.9484, -9.7885] ×103 
KFDR-B -9.8083×103 [-9.8772, -9.7422] ×103 

𝑇> 	
KPCA 0.2094 [0.2093, 0.2096] 
KAE 0.2105 [0.2103, 0.2106] 
KFDR-B 0.2100 [0.2098, 0.2101] 
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 637 

 638 
Fig. 19. Posterior distributions of the two calibration parameters for the crane structure problem: KPCA model (left), KAE 639 
model (middle), and proposed KFDR-B model (right). 640 

5. Conclusions and outlook 641 

In this research, we propose a method, referred to as KFDR, that integrates dimension reduction and 642 

Kriging surrogate modeling in functional space to perform forward and inverse uncertainty quantification 643 

accurately and efficiently for dynamical systems. The proposed KFDR begins by projecting the responses of 644 

dynamical systems onto a functional space spanned by a set of predefined basis functions. Next, the functional 645 

eigenequation is solved to identify key latent functions, mapping the response of the dynamical system into 646 

a low-dimensional latent functional space. Subsequently, Kriging surrogate models with noise terms are 647 

constructed in the latent space, enabling accurate and efficient predictions of dynamical systems. Finally, the 648 

surrogate model derived from KFDR is directly employed for efficient forward and Bayesian inverse UQ of 649 

the dynamical system. Three numerical examples were investigated, leading to the following conclusions: 650 

� By treating the responses of dynamical systems from a functional perspective, they can be represented as 651 

linear combinations of a few key latent functions. This functional approach effectively handles noisy data 652 

and captures the nonlinear characteristics of the responses. Additionally, an inverse mapping can be 653 

directly established from the latent space to the original output space, enabling efficient predictions. 654 

� Kriging surrogate models with noise terms are constructed in the latent functional space to account for 655 

errors arising from limited data and feature mapping. Additionally, the probabilistic predictions provided 656 

by Kriging models enable the estimation of prediction uncertainty in the time-variant response, allowing 657 

metamodeling uncertainty to be considered during uncertainty quantification. 658 

� The illustrative examples demonstrate that the proposed KFDR approach achieves significantly smaller 659 

errors in surrogate modeling. Additionally, the forward UQ and inverse UQ results obtained using KFDR 660 

show closer agreement with those of the real model compared to the results from the comparative methods, 661 
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highlighting the accuracy of the proposed approach. Furthermore, the results indicate that B-spline basis 662 

functions exhibit greater applicability than Fourier basis functions, making them the recommended choice 663 

for the KFDR method. 664 

In the current framework, the Kriging technique is employed to train surrogate models in the latent 665 

functional space. Consequently, the proposed method may not be well-suited for high-dimensional inputs. A 666 

promising direction for future research is to integrate the proposed method with input dimension reduction 667 

techniques to enhance its practical applicability. Additionally, like other surrogate modeling methods, the 668 

accuracy of KFDR depends on both the quality and quantity of training samples. When data is scarce or 669 

insufficient, reliably estimating the underlying functional relationships between parameters and responses 670 

becomes challenging. Although KFDR partially mitigates data scarcity issues through effective dimension 671 

reduction, it still requires an adequate amount of data to capture essential system behavior. In practice, since 672 

KFDR provides probabilistic predictions of dynamical system responses, incorporating adaptive sampling or 673 

active learning techniques into the KFDR framework could help address this limitation effectively. Moreover, 674 

the proposed approach can be further improved by integrating advanced inverse UQ techniques to achieve 675 

more accurate and robust inverse analysis. Furthermore, the proposed KFDR method is not limited to 676 

uncertainty quantification but can also be extended to reliability analysis and design optimization for 677 

dynamical systems. 678 
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