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Introduction 20 

Uncertainties are often encountered in practical engineering structures and systems. In their turn, these 21 

uncertainties cause uncertainty in the corresponding performance of the structure or system. For instance, due to 22 

machining of components, uncertainties are introduced due to the limitations of the processing level, or the material 23 

preparation process. After the structural components are assembled, uncertainties such as material properties and 24 

working environment interact with each other, which can result in the occurrence of unforeseen structural failure 25 

or other serious accidents. Therefore, researchers in different fields have focused on improving the safety and 26 

robustness of structures by using uncertainty quantification (UQ) methods (Simoen et al. 2015)(Song et al. 2015). 27 

Uncertainty can be divided into aleatory uncertainty and epistemic uncertainty based on its sources and 28 

attributes (Helton 1997). Aleatory uncertainty refers to the inherent randomness of parameters that cannot be 29 

reduced or eliminated, for example, the inherent random attributes of the dimension parameters of structural 30 

components in the same batch. The aleatory uncertainty is generally characterized by a probabilistic model. 31 

Epistemic uncertainty is caused by factors such as incomplete or inaccurate information, which can be reduced or 32 

eliminated when more information becomes available. A typical example of the latter refers to the uncertainties in 33 

the estimation of distribution parameters with limited sample size. Epistemic uncertainty is generally characterized 34 

by non-probabilistic models (such as convex sets and fuzzy models) (Naskar et al. 2019)(Hanss 2002). 35 

The existence of uncertainties often may lead to deviations of the structural output response from the 36 

anticipated behaviour, and may cause reliability-related issues in structural systems. The term “reliability” usually 37 

refers to a probabilistic concept for quantifying the probability of the structure achieving the predetermined 38 

performance. Reliability analysis methods based on the rigorous axioms of probability theory have been developed 39 

in recent decades, and have been successfully applied to numerous engineering problems (Pradlwarter et al. 40 

2005)(Goller et al. 2013). However, probabilistic models often rely on considerable amounts of sample data to 41 

obtain accurate probability distribution information of variables. When these sample data are not available, one 42 

risks that the modelled aleatory uncertainty is “buried” underneath the epistemic uncertainty stemming from the 43 

estimation of the probabilistic model under insufficient data. At the same time, due to high experimental costs, 44 

data collection is often difficult, and accurate variable distribution information cannot be obtained directly. On top, 45 

the application of probabilistic models for the case where only epistemic uncertainty is considered, may be 46 

questionable (Faes and Moens 2020)(Faes et al. 2021). These arguments illustrate the need for developing also 47 

dedicated methods to deal with specifically epistemic uncertainty, such as, e.g., interval and convex set models. 48 

The interval model has been used to describe the uncertainty-but-bounded epistemic parameters encountered 49 
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in mechanical analysis processes (Ben-Haim 1993)(Elishakoff et al. 1994). Currently, the hyper-rectangular model 50 

and the hyper-ellipsoid model are the commonly used non-probabilistic convex set models (Jiang et al. 2018)(Guo 51 

and Lu 2015). Generally, the hyper-rectangular model describes variables that are bounded, while the hyper-52 

ellipsoid model describes variables that are bounded and that exhibit a dependence structure. Furthermore, Faes 53 

and Moens (Faes and Moens 2019) developed an interval-valued equivalent method to the well-known Copula 54 

pair constructions for handling the dependence case in the hyper-rectangular model. In practical engineering 55 

problems, the two aforementioned models often exist simultaneously, where some variables have the same or 56 

similar sources, resulting in dependence, while other variables have different sources and are not dependent. In 57 

addition, a multidimensional parallelepiped model proposed by Jiang et al. (Jiang et al. 2014) also provided a 58 

promising method for UQ. However, the mathematical formulation of the multidimensional parallelepiped model 59 

may be challenging for practical applications (Ni et al. 2016). Based on the concept of hyper-rectangular and 60 

hyper-ellipsoid models, Guo and Lu (Guo and Lu 2015) analogized the probabilistic reliability index and proposed 61 

a “non-probabilistic reliability index”, which provided a quantitative index to measure the ability of a structure to 62 

exhibit a certain performance under epistemic uncertainty. However, this index does not convey information about 63 

reliability, but only about the state of a system. Thus, it is impossible to attribute a “reliability” to this index and 64 

hence, in this work, we use the term “non-probabilistic limit-state measure” to evaluate the state of a structure to 65 

complete predetermined performances (Ben-Haim 1994). 66 

Analysing and quantifying the ability of a system to exhibit an acceptable performance is a central task of 67 

uncertainty quantification, irrespective of the use of probabilistic or non-probabilistic method. In addition, an 68 

equally important task is conducting sensitivity analysis. In essence, sensitivity analysis aims to measure the 69 

impact of an input variable (with its associated uncertainty) on the output response of a model (Wei et al. 70 

2015)(Zhou et al. 2021b). Common sensitivity analysis methods mainly include local sensitivity analysis (LSA) 71 

and global sensitivity analysis (GSA) (Kala 2020). LSA is usually cast in terms of the partial derivatives of the 72 

output response to the parameters of input variables, which reflects the influence of local changes in the parameters 73 

on the output response. GSA on the other hand measures the contributions of input variables to the output response 74 

by considering the whole uncertainty range. Currently, variance-based sensitivity indices, which include the first-75 

order sensitivity index and total effect sensitivity index, are widely studied and used (Saltelli 2002)(Papaioannou 76 

and Straub 2021). In addition to using variance as the definition of the sensitivity index, Borgonovo's sensitivity 77 

index defined by moment independence has also been studied (Zhou et al. 2021b)(Borgonovo 2007). To the best 78 

of our knowledge, most of the existing sensitivity indices aim at probabilistic models.  79 
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Equivalently, sensitivity analysis for interval and convex set models has attracted the attention of researchers 80 

in recent years to assess the sensitivity of the output uncertainty on the epistemic uncertainty on the input of the 81 

model (Faes and Moens 2020). Sensitivity indices for epistemic uncertainty are especially useful to answer the 82 

question “which input parameters are the most useful to collect extra data on, as to reduce our epistemic 83 

uncertainty”. Moens and Vandepitte (Moens and Vandepitte 2007) first introduced the sensitivity analysis to 84 

interval analysis and proposed a novel sensitivity index to quantify the relationship between the change in absolute 85 

interval radius on the input and the output side of the problem. Chang et al. (Chang et al. 2022) proposed a new 86 

sensitivity index to quantify the individual or joint influence of the interval variables on the output. However, 87 

above two sensitivity indices do not directly consider the influence of variables on non-probabilistic performance. 88 

Li et al. (Li et al. 2013) proposed two sensitivity indices based on the non-probabilistic state measure, i.e., the 89 

shape effect index and position effect index. These two sensitivity indices provide a feasible way to quantify the 90 

influence of variables on structural performance under epistemic uncertainty. However, the importance ranking of 91 

influence on structural performance often requires a combination of these two sensitivity indices. When the ranking 92 

results of the two sensitivity indices are different, ambiguity will occur. In summary, currently available sensitivity 93 

indices can only provide limited information on the impact of input uncertainty on the system’s response under 94 

non-probabilistic models. On top, they do not provide any information about the limit-state behaviour of the 95 

structure subjected to this information. This, however, is of major interest when an analyst wants to ensure the 96 

safety of their structure under the governing epistemic uncertainty. 97 

Inspired by previous works, we propose a new sensitivity index applicable to the convex set model that can 98 

additionally provide guidance for improving the performance of a system. First, this sensitivity index is defined 99 

with respect to the so-called non-probabilistic performance measure. As such, the obtained sensitivity index results 100 

directly provide guidance for improving the non-probabilistic performance. Second, to improve the generality of 101 

the proposed sensitivity index, this sensitivity index is extended such that it is applicable with both the hyper-102 

ellipsoid model and a hybrid model (in which interval and hyper-ellipsoid models co-exist simultaneously). In 103 

conclusion, the proposed sensitivity index in this work focuses on the sensitivity analysis of epistemic uncertainty, 104 

which is a common case in engineering. 105 

The remainder of this work is organized as follows. First, the basic theory of non-probabilistic convex set 106 

models and the meaning of non-probabilistic limit-state measure are reviewed. Thereafter, a new sensitivity index 107 

based on non-probabilistic limit-state measure is defined, and a method for calculating the proposed sensitivity 108 

index is presented. To illustrate the effectiveness of the proposed sensitivity index, two numerical examples and 109 
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an engineering problem involving a honeycomb sandwich radome are investigated. Finally, the conclusions are 110 

drawn. 111 

 112 

Brief review of non-probabilistic convex set models 113 

In this section, the basic theory of non-probabilistic convex set models is reviewed, and the non-probabilistic 114 

limit-state measure is explained. It should be pointed out that while the original formulations of this metric are 115 

developed by Guo and Lu (Guo and Lu 2015), in this work, we do however propose a re-classification of this 116 

metric to make it also valid under the axioms of interval theory.  117 

Hyper-rectangle model and hyper-ellipsoid model 118 

In the non-probabilistic convex set models, the hyper-rectangle model and the hyper-ellipsoid model are the 119 

commonly used approaches for characterizing variables with uncertain-but-bounded uncertainty (Faes and Moens 120 

2020)(Guo and Lu 2015). The major difference between these two models is the existence of dependence between 121 

variables. The hyper-rectangle model describes variables that are bounded, while the hyper-ellipsoid model 122 

describes variables that are bounded, and which are also dependent. In the hyper-rectangle model, the uncertainty 123 

associated with interval
1 2[ , ,..., ]I I I

nX X XI
X  is represented by 124 

  1 2 ... ,  with   I I I I c r

n i i i i iX X X X X X X X      I
X   (1) 125 

where  ( 1,..., )c

iX i n   denotes the centre value, collecting the centres of the interval variables iX   which is 126 

calculated as 
2

U L
c i i
i

X X
X


  ; r

iX   denotes the radius vector, collecting the individual interval radius 127 

2

U L
r i i
i

X X
X


 ; U

iX  and L

iX  denote the upper and lower bounds of I

iX ; and .  denotes absolute operator. 128 

It should be noted that I
X  effectively bounds a hyper-rectangular space in n

R  due to the Cartesian product in 129 

Eq.(1). This implies that all I

iX ,
I

jX  are orthogonal to each other, and hence, cannot encode any dependence. 130 

The work of Faes and Moens effectively bypasses this independence by means of the so-called Admissible Set 131 

Decomposition (Faes and Moens 2019). 132 

If dependence exists among the interval variables 1 2[ , ,..., ]nX X XX  , then that dependence can be 133 

alternatively also captured by the hyper-ellipsoid model defined as (Ben-Haim and Elishakoff 1990): 134 

  2

1 2 ... ,  with   ( ) ( )I I I c T c

nX X X        I I I
X X X X X W X X   (2) 135 
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where  R  denotes the radius of the ellipsoid and defines the magnitude of the uncertainty, and 
n nRW  is 136 

a symmetric positive-definite matrix that contains the dependence information of variables. When only two 137 

variables are dependent and W   is a diagonal matrix, Eq.(2) can be rewritten as a two-dimensional ellipse 138 

equation  139 

 

22

2 2

( )( )
1

( ) ( )

cc
j ji i

r r

i j

X XX X

X X


  , (3) 140 

The two-dimensional convex set models, including the hyper-rectangle model and hyper-ellipsoid model, are 141 

depicted in Figure 1. The blue rectangle represents the domain of the hyper-rectangle model, and the orange ellipse 142 

represents the domain of the hyper-ellipsoid model in Figure 1 (a). Due to the existence of dependence, the hyper-143 

ellipsoid model contains a smaller domain than the hyper-rectangle model under the same inequality value, as 144 

shown in Figure 1 (b) and (c). This makes sense from an epistemic uncertainty point of view. Indeed, when adding 145 

dependence to the uncertain quantities (as is the case in the ellipsoid model), one adds information to the analysis 146 

that effectively reduces the epistemic uncertainty in the system. 147 

 148 

jX

(a) Space of original interval variables

c

iX

c

jX

r

iX

r

jX
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iX

c

jX

r
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c

jX

jX
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(b) Hyper-rectangle domain

(c) Hyper-ellipsoid domain

jX

iX

r

iX

r

jX

 149 
Figure 1 Schematic illustration of the two-dimensional convex set models 150 

 151 
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For the sake of simplicity, the normalized form of the interval variables is commonly used and represented as 152 

 ( ) /c r

i i i iX X X   , (4) 153 

and 154 

 ( ) /c

j j  Q X X , (5) 155 

where 
jQ  denotes the j-th row of the matrix Q  and where n nRQ  is the upper triangular matrix satisfying 156 

the Choleski decomposition T=W Q Q . By applying the above transforms, the original interval variables turn into 157 

standardized interval variables [ 1,1]I

i i    , [ 1,1]I

j j     (Wang et al. 2018). The superscript ‘I’ denotes 158 

the interval.  159 

As shown in Figure 2, after applying standardization, the rectangular and elliptical domains are transformed 160 

into the domains illustrated by the blue square and dashed yellow circle, where the circle is circumscribed to the 161 

square. 162 

 163 

jX

(a) Space of original interval variables

c

iX

c

jX

r

iX

r

jX

iX

-1

-1

i

j

1

1

(b) Space of standard interval variables
 164 

Figure 2 Space transform of interval variables 165 

 166 

A non-probabilistic limit-state measure 167 

The performance function is a classical concept in probabilistic reliability analysis, which is helpful for 168 

monitoring one or more responses of interest of an engineering system (Bichon et al. 2008). In principle, this 169 

performance function is also useful within the context of non-probabilistic uncertainty analysis and is defined as: 170 

 1( ) ( ,..., )nM G G X X X ,  (6) 171 

where ( )G X   is the performance function, and IX X   denotes the vector of interval variables. ( ) 0G X  172 
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denotes the limit-state function (LSF), which divides the input space into the safe domain ( ) 0G X  and the 173 

failure domain ( ) 0G X  . After the normalization mentioned in last section, the performance function in the 174 

standardized variable space is represented by ( )g  . The failure domain is then denoted as ( ) 0g   (as shown 175 

in Figure 3). Because the standardization of the variables has no actual effect on the value of the performance 176 

function, the symbol M  is still used to represent the performance function in the standardized variable space, 177 

i.e., ( )M g   . Obviously, the value of ( )g    is an interval quantity because it is a continuous function of 178 

interval variables  , so the interval of performance function IM  is defined as follows:  179 

 [ , ] [min ( ),max ( )]
I I

I L UM M M g g
 

 
   

   . (7) 180 

Analogous to the reliability index in the probability model, Guo and Lu (Guo and Lu 2015) defined the “non-181 

probabilistic reliability index”   as follows: 182 

 
c

r

M

M
  , (8) 183 

where 
2

U L
c M M

M


  denotes the centre value of IM , and 
2

U L
r M M

M


  denotes the radius of IM .  184 

The minimum value of   is set as 0 because it is meaningless when 0   in practice. It should be noted 185 

that although Guo and Lu named the quantity    as a “non-probabilistic reliability index”, the name “non-186 

probabilistic limit-state measure” may reflect its properties better. To substantiate the latter assertion, consider the 187 

schematic representation in Figure 3. When a linear performance function is used to derive non-probabilistic limit-188 

state measure   considering the hyper-rectangle model, it can be seen that the value of this index is the same as 189 

the shortest distance measured by the infinite norm from the coordinate origin to the LSF in the standard variable 190 

space (Guo and Lu 2015). Thus, the definition of non-probabilistic limit-state measure for the hyper-rectangle 191 

model can be rewritten as 192 

 
= min( )    

. .  = ( )=0

HR

s t M G











 (9) 193 

where .


 denotes the infinite norm operator, and HR is the abbreviation of hyper-rectangle. When considering 194 

the hyper-ellipsoid model, the 2-norm is used to extend the definition of the non-probabilistic limit-state measure 195 

due to elliptic equation constraints on the dependence of variables (Guo and Lu 2015), 196 
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 2
= min( )    

. .  = ( )=0

HE

s t M G








 (10) 197 

where 
2

.  denotes the 2-norm operator, and HE is the abbreviation of hyper-ellipsoid. Eq.(9) and Eq.(10) reflect 198 

the geometric interpretation of HR  and HE , i.e., the shortest distance from the origin to LSF measured by 199 

infinite norm or 2-norm in the standard variable space. The above indices for the two types of convex set models 200 

are represented by solid blue lines and dotted yellow lines in Figure 3.  201 

 202 
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Failure domain
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Failure domain

( ) 0g 
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Failure domain

LSF

Failure domain

LSF

Failure domain
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Failure domain

 203 
Figure 3 Schematic illustration of the non-probabilistic limit-state measure  . 204 

 205 

Four cases of relative positions of LSF (denoted by the red line in Figure 3) and standardized two-dimensional 206 

variable space are used to further illustrate the relationship between the non-probabilistic limit-state measure   207 
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and the state of a system, and the different cases are discussed as follows. 208 

Case Ⅰ: The normalized hyper-rectangle domain and hyper-ellipsoid domain do not intersect with the failure 209 

domain, which indicates that the structure is safe and the non-probabilistic limit-state measures are such that 210 

1HE HR   . Practically speaking, this means that the structure is safe, according to the modelled epistemic 211 

uncertainty. 212 

Case Ⅱ: The normalized hyper-rectangle domain intersects with the failure domain, and the normalized 213 

hyper-ellipsoid domain does not intersect with the failure domain. Thus, the structure is safe when uncertainty is 214 

measured by the hyper-ellipsoid model but may fail when considering the hyper-rectangle model, and 215 

1HE HR   . Practically speaking, the structure might be safe when the dependence is modelled accurately, but 216 

unsafe when the dependence between the different iX  is ignored. The prudent engineering way to deal with this 217 

is to assess the trustworthiness of the modelled dependence. 218 

Case Ⅲ: The normalized hyper-rectangle and the hyper-ellipsoid domain intersect with the failure domain, 219 

which indicates that the structure is in a failure or safe state and 1HR HE   . As such, failure might occur 220 

because of certain realisations of the epistemic uncertainty. It is however impossible to assess the likelihood of 221 

such failure. The prudent way forward would be to try and reduce the epistemic uncertainty to be able to make a 222 

more precise estimate.  223 

Case Ⅳ: The two domains associated with the hyper-rectangle and hyper-ellipsoid models are fully located 224 

in the failure domain, which indicates that the structure is in a failure state for every possible realisation of the 225 

epistemic uncertainty. 226 

From the above discussions, the value of   reflects the state of the structure. Indeed, whenever 1  , the 227 

system is in a safe state. Conversely, whenever 0  , the system has failed. Since, by definition, no information 228 

on the relative likelihood of certain parameter values within the bounds of the interval/convex set are known, 229 

whenever 0 1  , it is unknown whether the system is in a safe or failure state. From the last assertion, it 230 

becomes clear that the index   does not convey information about reliability, but only about the state of a system. 231 

Hence, this justifies naming   as a non-probabilistic limit-state measure. 232 

Meanwhile, as discussed in last section, with the same lower and upper boundary values of interval variables, 233 

the value of HR  is smaller than HE , which indicates that the HE model is more optimistic than the HR model, 234 

where the potential degree of over-conservatism of the interval model depends on the dependence between the 235 
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individual quantities that is assumed to be non-existent in the interval model. Irrespective of this observation, the 236 

non-probability limit-state measure    can be used as an informative quantity characterizing the safety of a 237 

system subject to epistemic uncertainty. In addition, if an uncertain input variable has a significant impact on  , 238 

it indicates that this variable also has a significant impact on the overall behaviour of the system. In the next section, 239 

a sensitivity analysis based on the concept of   is conducted. 240 

 241 

A proposed sensitivity index and its computational strategy 242 

As discussed in last section, the non-probabilistic limit-state measure   value is informative on the state of 243 

the structure. In this section, the sensitivity analysis based on the concept of    is considered, and a new 244 

sensitivity index is proposed. The proposed sensitivity index quantifies the influence degree of each interval input 245 

variable (or a subset of interval variables) on the state of the structure. Finally, the related characteristics and a 246 

computational strategy of the proposed sensitivity index are discussed in detail. 247 

Proposed sensitivity index based on non-probabilistic limit-state measure 248 

Taking the hyper-rectangle model as an example to illustrate the proposed sensitivity index, suppose that the 249 

variable iX  is fixed at a nominal value within its associated domain (e.g., i iX x ) and all other variables still 250 

vary within the n-1 dimensional variable space ~ ~ ~ ~{ : }c r

i i i iX X X X , where ~ i  denotes the other elements 251 

expect for the i-th element, thus 
~ 1 1 1[ ,..., , ..., ]i i i nX X X X X  denotes the interval vector associated with all 252 

variables expect iX  . According to Eq.(8), the conditional limit-state measure ( )i iX   with 
iX   fixed at its 253 

nominal value is calculated as 254 

 ( )
c

i
i i r

i

M
X

M
    (11) 255 

where c

iM   and r

iM   denote the centre value and radius of the interval of conditional state function I

iM  , 256 

respectively. Eq.(11) shows that when 
iX  takes different nominal values within its corresponding interval I

iX , 257 

the conditional non-probabilistic limit-state measure ( )i iX  will also take different values within an interval, 258 

that is, [ , ]I L U

i i i   , where L

i  denotes the lower bound and U

i  denotes the upper bound of the interval of 259 

conditional limit-state measure I

i . The illustration of this interval I

i  in the original variable space and in the 260 
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standard variable space is shown in Figure 4. 261 

 262 



i

L

iX U

iX
iX

U

i

L

i

U

i

L

i

i

(a) (b)



-1 1
i0

 263 
Figure 4 Illustration of the interval of the conditional non-probabilistic state measure in (a) the original space and 264 

in (b) the standardized space 265 

 266 

It is clear that ( )i iX  changes as 
iX  takes different nominal values, indicating that the limit-state measure 267 

of the structure changes as well. Since 
iX  is fixed at its nominal value, the effect of the uncertainty of 

iX  on 268 

the non-probabilistic limit-state measure can be evaluated. In fact, the difference between ( )i iX  and   should 269 

be able to effectively reflect the influence of 
iX   on the state of system (Chang et al. 2022). Thus, a new 270 

sensitivity index based on the non-probabilistic limit-state measure is defined as follows: 271 

 ( ( ), )i i iA X     (12) 272 

where ( , )iA    denotes the area (represented by the blue shaded area in Figure 4) enclosed by conditional limit-273 

state measure ( )i iX  and  . The proposed sensitivity index i  is defined then as: 274 

  
1

1
= ( ) di i i i    


   (13) 275 

This proposed sensitivity index i   comprehensively quantifies the difference between ( )i iX   and   , 276 

thus revealing the impact of variable iX  on the state of system. Furthermore, when we intend to determine the 277 

joint impact of two variables iX  and 
jX  on the system’s state, the proposed sensitivity index can be further 278 

extended as follows: 279 

 
, ,( , )i j i jA    (14) 280 

where 
, ( , )i j i jX X   denotes the non-probabilistic state measure when iX   and 

jX   take nominal values. 281 
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Referring to Eq.(13), an integral for calculating 
,i j  can be also obtained as follows: 282 

  
1 1

, ,
1 1

( , ) d di j i j i j i j      
 

     (15) 283 

Furthermore, the joint impact on reliability between m variables ( , , , )i j kX X X   can be obtained by 284 

considering multiple integrals as follows: 285 

  
1 1 1

, , , , , ,
1 1 1

( , , , ) d d di j k i j k i j k i j k         
  

        (16) 286 

The above definition of the proposed new sensitivity index does not involve taking into account possible 287 

dependences between variables; thus, the proposed sensitivity index can be easily extended to the hyper-ellipsoid 288 

model. 289 

Characteristics of the proposed sensitivity index 290 

According to the definition of the proposed sensitivity index, the following properties can be derived. 291 

Property 1: 0i  : The proposed sensitivity index i  is the area enclosed by a curve ( )i iX  and a straight 292 

line  . Therefore, the lower bound of i  is 0. 293 

Property 2: If 0i  , iX  has no effect on the non-probabilistic limit-state measure. 294 

Property 3: If 
i j  , iX  has a greater impact on the limit-state measure compared to 

jX . 295 

Property 4: If iX  influences state of the system but 
jX  has no influence, then 

,i j i  . 296 

The proposed sensitivity index i  measures the effect of the variables on the non-probabilistic limit-state 297 

measure by considering the difference of the interval-valued process associated with the conditional non-298 

probabilistic limit-state measure ( )i iX  with respect to  . The above characteristics will be further explained 299 

through examples in next Section. 300 

A computational strategy for calculating the proposed sensitivity index 301 

From the definition of   in Eq.(8), regardless of the interval model or hyper-ellipsoid model, the value of 302 

  can be obtained by solving the upper and lower bounds of the performance function response, i.e., 303 

 
c U L

r U L

M M M

M M M



 


  (17) 304 

Therefore, the conditional non-probabilistic limit-state measure ( )i iX  can also be obtained by solving the 305 

upper and lower bounds of the conditional performance function response, i.e., 306 
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( ) ( )

( )
( ) ( )

c U L

i i i i i
i i r U L

i i i i i

M M X M X
X

M M X M X



 


  (18) 307 

Then, the proposed sensitivity index i  can be obtained by calculating the area enclosed by   and ( )i iX . 308 

Thus, the key to calculating i  is to obtain UM , LM , ( )U

i iM X  and ( )L

i iM X . Actually, the calculation of 309 

these quantities corresponds to a classical interval analysis problem, which has been discussed in detail, for 310 

example, by Faes and Moens (Faes and Moens 2020) . In our work, the following optimization models are used to 311 

calculate these quantities: 312 

 

* * * *

1 2Find          [ , ,..., ]
to  minimize    = ( )

subject to  { }

n

c r

X X X
M G


  

X
X

X X X X

 (19) 313 

and 314 

 

** ** ** **

1 2Find          [ , ,..., ]
to  maximize    = ( )

subject to  { }

n

c r

X X X
M G


  

X
X

X X X X

  (20) 315 

By fixing variable iX  at its nominal value ix , ( )U

i iM X  and ( )L

i iM X  can be obtained by solving the 316 

following optimization problems: 317 

 

* * *

~ 1

~

~ ~ ~ ~

Find          [ ,..., ,..., ]
to  minimize    = ( , )

subject to  { }

i i n

i i i
c r

i i i i

X x X
M G x


  

X
X

X X X X

 (21) 318 

and 319 

 

** ** **

~ 1

~

~ ~ ~ ~

Find          [ ,..., ,..., ]
to  maximize    = ( , )

subject to  { }

i i n

i i i
c r

i i i i

X x X
M G x


  

X
X

X X X X

  (22) 320 

Eq.(19) and Eq.(20) provides the solution of UM and LM . By fixing the variable iX  at its nominal value 321 

ix  , ( )U

i iM X   and ( )L

i iM X   are solved by Eq.(21) and Eq.(22), respectively. In this work, a surrogate 322 

optimization algorithm is adopted to obtain these quantities (Regis and Shoemaker 2007). 323 

As defined in Eq.(13), the calculation of the proposed sensitivity index ix   requires the maximum and 324 

minimum values of the conditional performance function I

iX   at each nominal value ix   within the variable 325 

interval I

iX . If the variable interval I

iX  is directly discretized for calculation, the calculation accuracy cannot 326 

be guaranteed when there are too few discrete points. However, when there are too many discrete points, the 327 

calculation cost will be increased significantly. Thus, the Kriging surrogate model, which can approximate the 328 

relationship between the variable iX  and its corresponding maximum or minimum values of the conditional 329 
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performance function, is introduced in this work. To reduce the number of calls to the performance function while 330 

ensuring the accuracy of the Kriging surrogate model, an adaptive learning method is also introduced. 331 

 332 
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sample matrix S 
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equation
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sample matrix 
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obtain its maximum 
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 333 
Figure 5 Flow chart of the proposed computation strategy. 334 

 335 

The basic procedure of the computational strategy is depicted in Figure 5, and the details are given as follows. 336 

Part 1: Pre-treatment process 337 

Step 1.1: Construct the total sample matrix S . 338 

Apply the Latin hypercube sampling (LHS) or Sobol sampling method to obtain N samples of the uncertain 339 
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input parameters. These samples are stored in matrix 

(1) (1) (1)

1

( ) ( ) ( )

1

... ...

. . . . .

. . . . .

. . . . .

... ...

i n

N N N

i n

x x x

x x x

 
 
 
 
 
 

S  (Liu et al. 2018). Please 340 

note that in this step, none of the sample points are evaluated by calling the performance function. 341 

Step 1.2: Filter sample matrix S  in case that the hyper-ellipsoid model is considered. 342 

If dependence between variables is considered, i.e., using the hyper-ellipsoid model or a hybrid model (that 343 

is, interval and hyper-ellipsoid models co-exist simultaneously) to describe the uncertainty of the input variables, 344 

the total sample matrix S  obtained in the previous step should be filtered by the ellipsoid equation. That is, the 345 

sample points located outside the area defined by the ellipsoid equation are excluded. 346 

Part 2: Construction of the adaptive Kriging surrogate model 347 

Step 2.1: Construct the initial training sample matrix. 348 

Randomly select samples from S   to form the initial sample matrix 

0 0 0

(1) (1) (1)

1

( ) ( ) ( )

1

... ...

. . . . .

. . . . .

. . . . .

... ...

i n

N N N

i n

x x x

x x x

 
 
 
 
 
 

S  , 349 

where 0N  denotes the number of initial sample points. Based on the optimization problems shown in Eq.(21) 350 

and Eq.(22) and the i-th column sample points 0( )(1) T[ ,..., ]
N

i ix x  of 0S , obtain the corresponding maximum values 351 

0( )(1) T[ ,..., ]
U NU

i iM M   and minimum values 0( )(1) T[ ,..., ]
L NL

i iM M   of the conditional performance function 352 

~= ( , )i i iM G xX  by solving the following optimization problems for 01,...,j N , 353 

 

*( ) *( ) ( ) *( )

~ 1
( ) ( )

~

~ ~ ~ ~

~ ~ ~ ~

Find          [ ,..., ,..., ]

to  minimize    = ( , )

{ : }      in case of the HR model                               
subject to 

: ( ) (

j j j j

i i n
L j j

i i i
c r

i i i i

c T

i i i i

X x X

M G x



  

 

X

X

X X X X X

X X X X W X 2

~

 
)       in case of the HE model      c

i 





 
X

 (23) 354 

and 355 

 

**( ) **( ) ( ) **( )

~ 1
( ) ( )

~

~ ~ ~ ~

~ ~ ~

Find          [ ,..., ,..., ]

to  maximize    = ( , )

{ : }     in case of the HR model                               
subject to 

: ( ) (

j j j j

i i n
U j j

i i i
c r

i i i i

c T

i i i

X x X

M G x



  

 

X

X

X X X X X

X X X X W X 2

~ ~

 
)      in case of the HE model      c

i i 





 
X

  (24) 356 

Based on the above results, construct the initial training sample matrix 

0 0 0

(1) (1) (1)

0

( ) ( ) ( )

. . .

. . .

. . .

U L

i i i

i

N U N L N

i i i

x M M

x M M

 
 
 
 
 
 

S .  357 
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Step 2.2: Construct the Kriging surrogate models between the variable iX  and the maximum or minimum 358 

value of the conditional performance function. 359 

Two Kriging surrogate models are established based on the initial training sample matrix 
0

i
S  obtained in 360 

Step 2.1: one for the minimum value and another one for the maximum value. The Gaussian form dependence 361 

function (also known as the Gaussian form kernel function) is selected here, and this step is performed with the 362 

toolbox DACE (Lophaven et al. 2002). 363 

Step 2.3: Compute variance at test points of total sample pool S . 364 

Based on the constructed Kriging surrogate model in the last step, compute the Kriging prediction variance 365 

2

K  for each point in the i-th column of the total sample pool S .  366 

Step 2.4: Judge the convergence of the adaptive Kriging surrogate model. 367 

The convergence criterion can be implemented by setting a maximum value of the Kriging prediction variance 368 

(i.e., max 2 2*( )K i KX  ) or by setting a maximum number of model calls (Liu et al. 2018). In this work, the 369 

construction of the adaptive Kriging surrogate model is stopped when either of the two criterion is satisfied. If the 370 

convergence criterion is not met, then go to Step 2.5; otherwise, go to Step 3.1. 371 

Step 2.5: Select new point new

ix  and obtain its corresponding maximum or minimum value. 372 

The point with the maximum prediction variance value associated with the i-th column of the total sample 373 

pool S  is selected as the best new point new

ix , i.e., 374 

 2argmax ( )
i

new

i K i
X

x X



S

 (25) 375 

Based on the selected new point new

ix  by the maximum variance criterion, apply the optimization models to 376 

obtain the maximum or minimum value, and the optimization models are denoted as follows: 377 

 

* * *

~ 1
( )

~

~ ~ ~ ~

~ ~ ~ ~ ~

Find          [ ,..., ,..., ]

to  minimize    = ( , )

{ : }      in case of the HR model                               
subject to 

: ( ) ( )

new

i i n
L new new

i i i
c r

i i i i

c T c

i i i i i

X x X

M G x



  

   

X

X

X X X X X

X X X X W X X 2
 

      in case of the HE model      






  (26) 378 

and 379 

 

** ** **

~ 1
( )

~

~ ~ ~ ~

~ ~ ~ ~ ~

Find          [ ,..., ,..., ]

to  maximize    = ( , )

{ : }     in case of the HR model                               
subject to 

: ( ) (

new

i i n
U new new

i i i
c r

i i i i

c T c

i i i i i

X x X

M G x



  

  

X

X

X X X X X

X X X X W X X 2
 

)      in case of the HE model      







  (27) 380 
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Step 2.6: Update the training sample matrix 
0

i
S . 381 

Based on the adaptively selected new point and its corresponding maximum and minimum value, i.e., 382 

( )[ , ]new L new

i ix M  and ( )[ , ]new U new

i ix M , respectively, update the training sample matrix 
0

i
S . Then, return to Step 2.2 383 

to reconstruct the Kriging surrogate model with the updated sample matrix 
0

i
S .  384 

Part 3: Sensitivity index calculation 385 

Step 3.1: Export the final Kriging surrogate models. 386 

The Kriging surrogate models of the variable iX   with lower and upper bounds of the conditional 387 

performance function are exported for further sensitivity index calculation. 388 

Step 3.2: Calculate the proposed sensitivity index i . 389 

As discussed in previous section, an integral form of the proposed sensitivity index is denoted by Eq.(13). 390 

Thus, based on the obtained Kriging surrogate model of the lower and upper bounds of the conditional performance 391 

function, a numerical integration method of approximating an integral using the sum of a series of rectangles is 392 

selected to calculate the proposed sensitivity index i  which can be easily derived as follows, 393 

 
0

1 1

= lim ( ) ( )
k

m m

i i k k i k
h

k k

h h      


 

       (28) 394 

where 1k kh      denotes the width of a rectangle and 0.001h   is selected in this paper. The integrand 395 

part ( )i k    denotes the length of a rectangle which can be estimated based on the Kriging surrogate model. 396 

The algorithm described above consists of a double-loop strategy to solve the proposed sensitivity index i . 397 

To calculate all sensitivity indexes, the strategy must be repeated for each iX  . The proposed algorithm is 398 

composed of three parts, i.e., Part 1: pre-treatment process, Part 2: construction of the adaptive Kriging surrogate 399 

model and optimization and Part 3: sensitivity index calculation. The computational cost of the proposed index 400 

mainly comes from Part 2, which needs multiple calls to the original performance function. And in the construction 401 

process of Kriging model, because both the dimension of input and output are one-dimensional variables, generally, 402 

a reduced number of samples can meet the convergence criterion of the adaptive learning process. By filtering 403 

samples and introducing the hyper-ellipsoid model in the optimization problems, the universality of the proposed 404 

algorithm has been enhanced. The proposed algorithm is applicable not only to the hyper-rectangular model but 405 

also to the hyper-ellipsoid model or a more general hybrid model. 406 

 407 
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Numerical examples 408 

To illustrate the effectiveness of the proposed sensitivity index associated with the non-probabilistic state 409 

measure, two numerical examples are considered in this section. For comparison, two sensitivity indices proposed 410 

by Li et al. (Li et al. 2013) are also considered in this work. These indexes are defined based on the conditional 411 

non-probabilistic limit-state measure ( )i iX  (see Eq.(18)) as: 412 

 
r

i
i





 , (29) 413 

and 414 

 
c

i
i

 





  , (30) 415 

where 
( ) ( )

( )
2

U L
r i i i i
i i

X X
X

 



  denotes the radius of ( )i iX  and 

( ) ( )
( )

2

U L
c i i i i
i i

X X
X

 



  denotes the 416 

centre value of ( )i iX . The above two indices are called the shape effect index i  and the position effect index 417 

i  , respectively. From the above definitions, note that the radius ( )r

i iX   reflects the shape of the interval 418 

associated with ( )i iX ; thus, the index i  is called the shape effect index. The centre value ( )c

i iX  reflects 419 

the position of the interval of ( )i iX ; thus, the index i  is called the position effect index. The geometrical 420 

illustrations of i   and i   are shown in Figure 6. The proposed computational strategy can also be used to 421 

calculate these two indices. 422 

 423 
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i  424 
(a) The shape effect index i               (b) The position effect index i           425 

Figure 6 The geometric meaning of the two sensitivity indices i  and i   426 

 427 

Example 1: Linear numerical example 428 

The performance function is defined as (Li et al. 2013) 429 

 1 2 3( ) 1 2G X X X  X , (31) 430 

where 
1 2 3=[ , , ]I I I IX X XX X   are the interval variables with centre value [200,300,200]c X   and radius 431 
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[20,30,40]r X . The lower and upper bounds are [180,270,160]L X  and [220,330,240]U X , respectively. 432 

When the variables in X  are independent, only the lower and upper bounds are given. When 1X  and 2X  are 433 

dependent, the elliptic model characterizing the relationship between 1X  and 2X  is further described as 434 

 
2 2

1 1 2 2

2 2

1 2

( ) ( )
1

( ) ( )

c c

r r

X X X X

X X

 
    (32) 435 

Based on the above contents, the conditional (denoted by the green line) and unconditional (denoted by the 436 

red line) non-probabilistic limit-state measures for the two cases are depicted in Figure 7 错误!未找到引用源。. 437 
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Figure 7 The change trend of the conditional non-probabilistic limit-state measure for Example 1 440 

 441 

Table 1 The results of three types of indices of Example 1 with independent variables 442 

Variables L

i  U

i  
Sensitivity indices 

i  i  i  

1X  3.139 3.792 0.327(3) 0.125(3) 1.707(3) 

2X  3.182 3.889 0.354(2) 0.135(2) 1.847(2) 

3X  4.177 6.118 0.971(1) 0.372(1) 5.070(1) 

aThe superscripts of index results are the sensitivity ranking from highest to lowest. 443 

 444 

In the case of independent variables in Figure 7 (a), the relationship between the conditional performance 445 
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measure ( )i iX  and the variables is monotonic. In the case of dependent variables shown in Figure 7 (b), there 446 

is a nonmonotonic situation related to 1X  and 2X  due to the existence of dependence. Meanwhile, the blue 447 

area enclosed by conditional and unconditional non-probabilistic probabilistic measures is changed compared with 448 

the case of independent variables. The reason for this situation is that the uncertainty space of 1X  and 2X  has 449 

changed from a rectangle to an ellipse. For the same reason, for 3X , the monotonic relationship still exists, but 450 

the value of ( )i iX  in the dependent case is larger than the value in the independent case for different nominal 451 

values. To quantify the above changes, further sensitivity analysis was applied. 452 

 453 

Table 2 The results of three types of indices of Example 1 with dependent variables 454 

Variables L

i  U

i  
Sensitivity indices 

i  i  i  

1X  3.502 5.048 0.394(2) 0.278(2) 1.400(3) 

2X  3.475 5.021 0.385(3) 0.252(3) 1.507(2) 

3X  5.895 8.649 1.371(1) 0.449(1) 8.411(1) 

 455 

By applying the proposed computational strategy, the results of three types of sensitivity indices are obtained 456 

in Table 1 and Table 2. In the case of independent variables, the values of the three types of sensitivity indices of 457 

3X  are the maximum, as shown in Table 1. According to the discussions in previous section, 3X  has the most 458 

impact on performance. In the case of dependent variables, 3X   still holds the first place of impact on 459 

performance according to the results of three sensitivity indices, as shown in Table 2. It can be seen from the degree 460 

of change in the value of the three indices that the impact on the performance of 3X  has been further increased. 461 

Thus, when the dependence between 1X  and 2X  is considered, 3X  still has the greatest impact on reliability, 462 

and its importance is further increased compared with the independent case. The remaining variables 1X  and 463 

2X   have no significant difference in the impact on the state of performance function. In addition, from the 464 

comparison of three sensitivity indices results from Table 1 and Table 2, after the dependence is considered, the 465 
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increase in the value of the proposed sensitivity index is greater than other two indices. Based on the definitions 466 

of these three sensitivity indices, we can draw a conclusion that the proposed sensitivity index can effectively 467 

identify an important input variable not only from radius or median value of non-probabilistic limit-state measure, 468 

but also from the interval areas that cannot be covered by Li’s sensitivity indices (Li et al. 2013). Thus, the 469 

proposed sensitivity index can provide more comprehensive results especially after the dependence is considered. 470 

Example 2: Ishigami function 471 

The Ishigami function is frequently used to study uncertainty quantification, and the performance function is 472 

defined as (Chang et al. 2022) 473 

 2 4

1 2 3 1( ) sin( ) sin ( ) sin( )G X a X bX X  X   (33) 474 

where 
1 2 3=[ , , ]I I I IX X XX X   are interval variables with centre value [ 2, 2, 2]c   X   and radius 475 

[ 4 4 4]r   X ， ， , and 5a  , 0.1b  . When the variables X  are independent, only the lower and upper 476 

bounds are given. When 1X  and 3X  are dependent, the elliptic function that describes the relationship between 477 

1X  and 3X  is further denoted as 478 

 
22

3 31 1

2 2

1 3

( )( )
1

( ) ( )

cc

r r

X XX X

X X


    (34) 479 

Based on the above contents, the conditional (denoted by the green line) and unconditional (denoted by the 480 

red line) non-probabilistic limit-state measure for the two cases are depicted in Figure 8. 481 
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Figure 8 The change trend of the conditional non-probabilistic limit-state measure for Example 2 484 
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In the case of independent variables (shown in Figure 8 (a)), the nonlinearity of the performance function 486 

induces nonlinearity between the conditional non-probabilistic limit-state measure ( )i iX  and the variable. In 487 

the case of dependent variables (shown in Figure 8 (b)), the curves of conditional non-probabilistic limit-state 488 

measure ( )i iX  of 1X  and 3X  are concave due to the existence of dependence. When the relevant variable 489 

takes the interval boundary value (e.g., 1=1  or 
1 1

UX X ), the dependence causes the variable space to decrease 490 

and the uncertainty to be reduced, resulting in an increase in the non-probabilistic limit-state measure value. For 491 

the independent variable 2X  , the curve of the conditional non-probabilistic limit-state measure 2 2( )X  492 

becomes more prominent when the dependence between 1X   and 3X   is considered. To quantify the above 493 

changes, further sensitivity analysis was applied. 494 

 495 

Table 3 The results of three types indices of Example 2 with independent variables 496 

Variables L

i  U

i  
Sensitivity indices 

i  i  i  

X1 2.276 2.390 0.108(3) 0.027(3) 0.413(3) 

X2 2.932 4.425 0.747(1) 0.355(1) 3.553(1) 

X3 3.307 3.915 0.715(2) 0.144(2) 2.798(2) 

 497 

Table 4 The results of three types indices of Example 2 with dependent variables 498 

Variables L

i  U

i  
Sensitivity indices 

i  i  i  

X1 2.279 3.417 0.288(3) 0.257(3) 0.699(3) 

X2 3.170 4.754 0.792(2) 0.358(2) 3.935(1) 

X3 3.422 6.237 1.184(1) 0.637(1) 3.285(2) 

 499 

By applying the proposed computational strategy, the results of three types of sensitivity indices are obtained 500 

in Table 3 and Table 4. In the case of independent variables, the values of three types of sensitivity indices 501 
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associated with 2X   contain the maximum value, as shown in Table 3. The three sensitivity index rankings 502 

obtained are consistent with each other, that is, 2 3 1    , 2 3 1    , and 2 3 1    . According to the 503 

previous discussion, 2X  has the greatest impact on structural reliability. By comparing the calculation results of 504 

the lower and upper bounds of conditional non-probabilistic limit-state measure ( )i iX  in Table 3 and Table 4, 505 

it is clear that there are significant differences due to the existence of a dependence between 1X   and 3X  . 506 

Especially the value of 
3

U  has a significant change. As we discussed in Example 1, these two sensitivity indices 507 

proposed by Li et al (Li et al. 2013) rely on radius or median values, which are determined by the lower and upper 508 

bounds of ( )i iX  . Thus, the importance ranking measured by the two sensitivity indices has changed to 509 

3 2 1    , 3 2 1    . But 2X  still holds the first place of impact on structure performance according to the 510 

results of the proposed sensitivity index i , as shown in Table 4. The proposed sensitivity index i  is more 511 

inclined to quantify the changes of non-probabilistic state measure from the perspective of the entire interval space 512 

and may conclude different sensitivity analysis results compared with the existing sensitivity indices. 513 

 514 

Application to the honeycomb sandwich radome structure 515 

The radome structure can provide protection for aircraft radar antenna systems in harsh environments, 516 

preventing radar system failures caused by lightning strikes, hail, wind pressure, and other environmental factors, 517 

as well as serious flight accidents (Zhou et al. 2021a). Therefore, ensuring the stability and reliability of radome 518 

structures is of great significance. 519 

 520 

Ply1: Material #1 

Ply3: Material #1
Ply2: Material #2

Ply1: Material #1 

Ply3: Material #1
Ply2: Material #3

Ply1: Material #1 
Ply2: Material #1

 521 
Figure 9 Radome parts and their material assembly  522 
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 523 

The honeycomb sandwich radome structure studied in this work is composed of three parts (divided by red 524 

line): Parts #1, #2 and #3. Three types of materials are used: Material #1 denotes a type of composite laminate, 525 

Material #2 denotes the flexible honeycomb core, and Material #3 denotes the hexagonal honeycomb core. The 526 

finite element model of the radome structure and the materials used in each ply are shown in Figure 9. Three types 527 

of variables (i.e., elastic modulus, density, and thickness) are considered interval variables, and the corresponding 528 

information is shown in Table 5. Based on two structure response outputs, including the maximum displacement 529 

Y  and total strain energy E , two performance functions are constructed as 530 

 *( ) ( )DG D D X X   (35) 531 

 *( ) ( )EG E E X X  (36) 532 

where *D   and *E   represent the threshold of the maximum displacement and the total strain energy, 533 

respectively. 534 

 535 

Table 5 Information on the variables of the radome structure 536 

Variables Symbol Meaning of the variables Intervals of the variables 

1X  Mat1E11 Elastic modulus in 11 direction of material #1 [1.241010, 1.861010] Pa 

2X  Mat1E22 Elastic modulus in 22 direction of material #1 [1.241010, 1.861010] Pa 

3X  Mat1G12 Elastic modulus in 12 direction of material #1 [5.84109, 8.76109] Pa 

4X  Mat1G13 Elastic modulus in 13 direction of material #1 [2.88109, 4.32109] Pa 

5X  Mat1G23 Elastic modulus in 23 direction of material #1 [2.88109, 4.32109] Pa 

6X  Mat1Rho Density of material #1 [1462.4, 2193.6] kg/m3 

7X  Mat2E11 Elastic modulus in 11 direction of material #1 [3.6104, 5.4104] Pa 

8X  Mat2E22 Elastic modulus in 11 direction of material #1 [3.6104, 5.4104] Pa 

9X  Mat2G12 Elastic modulus in 11 direction of material #1 [1.68104, 2.52104] Pa 

10X  Mat2G13 Elastic modulus in 11 direction of material #1 [3.06107, 4.6107] Pa 
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11X  Mat2G23 Elastic modulus in 11 direction of material #1 [1.5107, 2.24107] Pa 

12X  Mat2Rho Density of material #2 [52, 78] kg/m3 

13X  Mat3E11 Elastic modulus in 11 direction of material #1 [3.6106, 5.4106] Pa 

14X  Mat3E22 Elastic modulus in 11 direction of material #1 [3.6106, 5.4106] Pa 

15X  Mat3G12 Elastic modulus in 11 direction of material #1 [3.6106, 5.4106] Pa 

16X  Mat3G13 Elastic modulus in 11 direction of material #1 [1.2107, 1.8107] Pa 

17X  Mat3G23 Elastic modulus in 11 direction of material #1 [2.02107, 3.04107] Pa 

18X  Mat3Rho Density of material #3 [52, 78] kg/m3 

19X  Th1 Thickness of Ply 1 and 3 of Part #1 and #2 [6.410-4, 9.610-4] m 

20X  Th2 Thickness of Ply 2 of Part #1 and #2 [4.810-3, 7.210-3] m 

21X  Th3 Thickness of Ply 1 and 2 of Part #3 [2.410-3, 3.610-3] m 

 537 

The strain energy is the comprehensive embodiment of the mechanical performance of the radome structure. 538 

If the displacement exceeds the threshold or the total strain energy is larger than the threshold, the structure will 539 

fail. Based on the above assumptions, the proposed solution method is applied to acquire the proposed sensitivity 540 

index; meanwhile, the shape effect index and the position effect index (Li et al. 2013) can also be obtained 541 

simultaneously. 542 

First, the sensitivity analysis based on the maximum displacement reliability model is discussed. The Kriging 543 

surrogate model is applied to estimate the conditional non-probabilistic state measure, as shown in Figure 10. The 544 

value of non-probabilistic limit-state measure   is located between 0 and 1 (0.4084, denoted by the red line). 545 

According to the discussion about non-probabilistic limit-state measure  , there is a possibility of failure of the 546 

radome structure, so it is necessary to identify important variables to improve the performance of the radome 547 

structure. 548 

According to the changes in conditional reliability indices in Figure 10, it is evident that except for 1X , 2X  549 

and 21X , all other variables have no significant relationship with the changes in reliability indices. The three 550 

sensitivity indices are further obtained and shown in Figure 11, which also reveals that under the failure mode of 551 
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maximum displacement, 2X  has the most significant impact on the limit-state measure of the composite radome 552 

structure. 553 

 554 
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Figure 10 The change trend of the conditional non-probabilistic limit-state measure for maximum displacement 556 
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Figure 11 Results of the sensitivity indices of the radome structure in the maximum displacement case 559 
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 560 

We now discuss the sensitivity analysis based on the total strain energy reliability model. The Kriging 561 

surrogate model is applied to estimate the conditional non-probabilistic limit-state measure, as shown in Figure 562 

12. The value of non-probabilistic reliability index   is larger than 1 (2.1087, denoted by the red line). Thus, the 563 

radome structure is in a safe state. 564 

However, from the dispersion of the processes of the conditional non-probabilistic limit-state measure 565 

( )i iX , as shown in Figure 12, there are significant fluctuations in the state measure. To quantify these fluctuations, 566 

the three sensitivity indices are obtained by the proposed method based on Kriging in Figure 13. Three variables 567 

are naturally selected as important variables for the radome structure: 1X  (the elastic modulus in the 11 direction 568 

of material #1), 2X  (the elastic modulus in the 22 direction of material #1) and 19X  (the thickness of Ply1 and 569 

3 of Parts #1 and #2). The identified influential variables can provide design guidance for improving the 570 

performance of composite radome structures. 571 
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Figure 12 The change trend of the conditional non-probabilistic state measure for total strain energy 574 



29 

 

 

0.05

0.10

0.15

0.20

0.25

0.30

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ii i

iX iX iX

In
d
ex

 v
al

u
e

In
d
ex

 v
al

u
e

In
d
ex

 v
al

u
e

 575 
Figure 13 Results of the sensitivity indices of the radome structure in the total strain energy case 576 

 577 

Conclusion 578 

To address the uncertainty analysis of the non-probabilistic models, a novel sensitivity index based on non-579 

probabilistic limit-state measure is proposed in this work. The classical non-probabilistic limit-state measure is 580 

reviewed, and the proposed sensitivity index can quantify the influence of variables on that limit-state measure. 581 

Meanwhile, the proposed sensitivity index is applicable not only for independent cases but also for dependent 582 

cases in which the interval variables contain dependences. Furthermore, an efficient computational strategy based 583 

on an adaptive Kriging surrogate model is introduced for calculation of the proposed index. 584 

To illustrate the usefulness and validity of the proposed sensitivity index, two numerical examples involving 585 

linear and nonlinear performance functions are investigated. By comparing with the existing two sensitivity indices, 586 

the proposed index is easier to interpret and more comprehensive, and it can directly pinpoint the most influential 587 

variable on the structural limit-state measure. Moreover, the proposed sensitivity index is more inclined to quantify 588 

the changes of non-probabilistic limit-state measure from the perspective of the entire interval space and conclude 589 

different sensitivity analysis results compared with existing sensitivity indices. Finally, the proposed sensitivity 590 

index is applied to the sensitivity analysis of the composite radome to obtain the influence of variables such as 591 

different ply material performance parameters, ply angles, and ply thicknesses on the non-probabilistic limit-state 592 

measure, which are based on the structural maximum deformation and total strain energy. The identified sensitivity 593 

index ranking can provide design guidance for improving the composite radome structures from a failure state or 594 

an uncertain state towards to the safe state. In summary, the proposed sensitivity index provides an alternative for 595 
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performing the sensitivity analysis of non-probabilistic models. 596 
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