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Abstract

An efficient sampling approach ‘Adaptive Combined Line Sampling’ is proposed for evaluating

the ‘time-variant failure probability function’ (TFPF) of structures. Line Sampling is implemented

in an adaptive and iterative way, where each individual Line Sampling run is carried out based on

adaptively selected important directions, in order to ensure a sufficiently precise estimation of the

TFPF over the whole time interval of analysis. An adaptive strategy and an optimal combination

algorithm are developed for the practical implementation of the Line Sampling process. The

adaptive strategy allows to determine the optimal important direction which is then used in the

next Line Sampling run. The combination strategy allows to collect all these adaptive sampling

runs together in an optimal way, which aims at minimising the coefficient of variation (C.o.V.) of

the TFPF estimate. Due to these strategies, the proposed approach can estimate the TFPF in a

more efficient way than the traditional Line Sampling, while guaranteeing that the C.o.V. of the

estimate remains below a prescribed threshold over the whole time of analysis. Thus it can be

seen as an extended version of classical Line Sampling specially tailored for time-variant reliability

analysis. Examples are given to illustrate the performance of the proposed approach.

Keywords: Time-variant reliability analysis, Line sampling, Adaptive strategy, Cumulative

failure probability function, Composite limit state functions

1. Introduction 1

Time-variant reliability analysis considers uncertainty in the time-variant properties and load- 2

ing when assessing the level of safety of a structural system, and has attracted much attention 3

recently. This is due to the fact that engineering structures and systems usually suffer from the 4

deterioration of structural strength and stiffness with time under severe operating or environmen- 5
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tal conditions during their service life [1]. Following this framework, it is assumed that the system 6

parameters and loading are characterised as stochastic process, instead of static random variables, 7

to represent their natural variability with respect to time. In this context, a reliability analysis can 8

properly reflect and quantify the effect of time-variant factors by estimating the failure probability 9

of a system/structure over a period of time, which is termed as time-variant (or time-dependent) 10

failure probability function. Compared with traditional, static reliability analysis, more challenges 11

are faced in time-variant reliability analysis because an extra dimension (time) is involved. Due 12

to the time-dependency of structural properties, loading as well as the structural system failure 13

events, time-variant reliability analysis is even more computationally involved when compared 14

with static reliability analysis. Several numerical methods have been proposed to conduct time- 15

variant reliability analysis. These methods can be roughly classified into three groups: analytical 16

techniques, simulation-based approaches and surrogate models. Analytical methods usually in- 17

volve approximation concepts. For example, Jiang et al. [2] used the first-order reliability method 18

(FORM) to estimate the failure probability after converting the associated stochastic processes 19

into a set of random variables by time discretisation and linearisation of the performance func- 20

tion. Mourelatos et al. [3] combined FORM with the total probability theorem to evaluate the 21

time-variant reliability after transforming the target time-variant problem into one with compos- 22

ite performance functions. In [4], the time-variant reliability problem is solved using classical 23

approaches for time-invariant reliability (such as FORM) by focusing on outcrossing rates and a 24

parallel system analysis. Zhang et al. [5] propose a moment-based PHI2 (MPHI2) method for 25

time-variant reliability analysis of structures to reduce the computational cost by separating the 26

finite element analysis from the analysis cycle and estimating the statistical characteristics of the 27

associated components beforehand. 28

The second class of approaches for solving time-variant reliability problems involves simulation 29

methods. In fact, simulation-based methods for static system reliability analysis can be applied 30

in time-variant problems. In this context, namely time-invariant problems, many highly efficient 31

simulation methods have been developed. For instance, Line Sampling (LS) [6] has been developed 32

for estimating the reliability of static and dynamical systems. Further, De Angelis et al. [7] 33

developed an Advanced Line Sampling method to compute interval failure probabilities when 34

both aleatory and epistemic uncertainties are considered. Shayanfar et al. [8] introduced an 35

adaptive line sampling method for reliability analysis by updating the importance direction during 36

2



the sampling process and averaging different estimations to form a final one. Au and Beck [9] 37

proposed an efficient Importance Sampling method for linear dynamical systems. Misraji et al. 38

[10] applied a Directional Importance Sampling scheme to analyse the reliability of structural 39

systems subject to stochastic dynamic Gaussian loading. Subset simulation [11] also provides 40

an efficient and effective way to address reliability problems in high-dimensional spaces which 41

involve a large number of random variables. Recently, Li et al. [12] proposed a Generalised Subset 42

Simulation to handle high-dimensional, time-variant reliability problems. Chakraborty et al. [13] 43

introduced two innovative methods based on Subset Simulation (SS) for time-dependent system 44

reliability analysis and the space-time-variant reliability analysis, offering solutions to the challenge 45

of assessing the reliability of corroding pipelines. Similarly, Du et al. [14] adopted Parallel Subset 46

Simulation to handle time-variant reliability with both deterioration in material properties and 47

dynamic load. Yuan et al. [15] proposed an efficient two-step Importance Sampling to estimate the 48

time-variant reliability where the limit state function includes structural degradation parameter 49

processes, random variables, and Gaussian stochastic load processes. Zhang et al. [16] proposed 50

a single-loop approach for time-variant reliability evaluation combined with a weighted sampling 51

strategy for moment assessment. 52

Surrogate models, especially Gaussian process (GP) or Kriging regression, have been widely 53

used in reliability analysis, as well as in time-variant reliability. Xu and Saleh [17] also reviewed 54

the use of machine learning for reliability engineering and safety applications involving time- 55

variant problems. Li et al. [18] proposed a deep learning framework for time-dependent reliability 56

analysis of dynamic systems, with local-limit state functions and global surrogate models, to 57

capture the long-term dependency of system dynamics and estimate time-dependent reliability. 58

In addition, some contributions focus on the implementation of surrogate models that cooperate 59

with simulation-based methods with the purpose of further reducing numerical costs associated 60

with time-variant reliability assessment. Wang and Wang [19] adopted a sequentially updated 61

Gaussian process model to characterise extreme system response over time, and then Monte Carlo 62

simulation is employed to assess the time-variant reliability. Depina et al. [20] used Kriging 63

within the framework of the Line Sampling. Wu et al. [21] proposed a Parallel Efficient Global 64

Optimization strategy integrated with adaptive Kriging-Monte Carlo simulation for time-variant 65

problems. Zhao et al. [22] proposed a nested single-loop Kriging model coupled with Subset 66

Simulation to evaluate time-dependent system reliability. Zhang et al. [23] proposed an active 67
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learning method based on deep neural networks and a weighted sampling method to address cases 68

involving interval processes. However, discrete representation of stochastic processes increases the 69

dimensions of the reliability problem, posing a challenge for surrogate modelling due to the so- 70

called curse of dimensionality. In this sense, to the knowledge of the authors, there is still plenty 71

of room for improvement regarding simulation-based methods for time-variant reliability. 72

In view of the aforementioned difficulty in estimating the structural time-variant reliability as 73

a function of time, an efficient approach termed as ‘Adaptive Combined Line Sampling’ (ACLS) 74

is proposed. This approach is developed by applying the composite limit state concept, which 75

first transforms the time-variant reliability problem into an equivalent problem involving a series 76

system. Then, Line Sampling is applied in an iterative and adaptive manner, and at the last 77

step, an optimal combination algorithm is developed to obtain the overall time-variant failure 78

probability function estimate. The combination is based on the principle of minimising a statistical 79

descriptor of the estimate (e.g. variance), as proposed in [8, 24, 25]. The innovative aspects of 80

this contribution with respect to the state-of-the-art are as follows. 81

• A simulation-based method which can produce satisfactory, accurate estimations of the 82

failure probability as a function of time is developed. 83

• The most salient feature of the proposed approach is that it can ensure good precision for 84

estimating the TFPF by virtue of the aforementioned adaptive strategy. 85

• The optimal combination algorithm enhances the precision and efficiency of the proposed 86

approach. 87

The remainder of this paper is organised as follows. First, the definition and the composite limit 88

states transformation associated with the time-dependent reliability problem are briefly reviewed 89

in Section 2. Then, the mathematical formulation of the proposed framework is developed in 90

Section 3. Next, Section 4 illustrates the performance of the proposed approach through three 91

examples. Finally, the paper closes with discussions and an outlook for future work in Section 5. 92
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2. Time-variant reliability 93

2.1. Definition 94

In this contribution, the quantity of interest is the corresponding failure probability over a 95

given time period which is given by: 96

PF (t) = P {g(x, τ,y(τ)) ≤ 0,∃τ ∈ [0, t]} , (1)

where x = [x1, x2, . . . , xn] is the vector of time-invariant random variables associated with the 97

structure/system with probability density function (PDF) fX(x); ∃ stands for ‘there exists at 98

least one’; τ ∈ [0, t] indicates that PF (t) is a cumulative failure probability which considers all 99

the instantaneous cases from 0 up to time instant t, and t ∈ [0, T ] where T denotes the time 100

window of analysis; y(t) = [y1(t), . . . , yny(t)] is the vector of time-dependent stochastic processes 101

describing the evolution of structural properties or loads, which are implicit with respect to time t; 102

and g(·) is the performance function. This is the most general type of time-variant problem, as it 103

encompasses random variables, explicit time-dependent properties (such as structural degradation 104

processes), and time-dependent stochastic processes (such as stochastic load processes). 105

2.2. Transformation of time-variant reliability problem by composite limit states 106

The time-variant reliability problem can be transformed into a time-invariant problem with a 107

series of instantaneous performance functions. This is a common approach for structural time- 108

variant reliability analysis which is called ‘composite limit states’ [12]. The basic idea of this ap- 109

proach is to use the concept of series system reliability of the instantaneous performance functions 110

to convert the time-dependent reliability problem into a time-invariant one. Indeed, a time-variant 111

performance function can be represented discretely as follows. First, the time interval [0, T ] is dis- 112

cretised using a time step size ∆t. Then, a time sequence [t0, . . . , tl . . . , tnt ] = [0, . . . , l∆t, . . . , nt∆t] 113

is generated, where l = 0, . . . , nt is the time index, t0 = 0 and tnt = nt∆t = T . Based on the 114

series system reliability formulation, the cumulative failure probability at a time instant tl over a 115

certain time period [0, T ] is given by: 116

PF (tl) = P

{
l⋃

i=0

Fi

}
= P

{
min

i=0,...,l
g(x, ti,y(ti)) ≤ 0

}
, l = 0. . . . , nt, (2)

where Fi = {g(x, ti,y(ti)) ≤ 0} is the instantaneous failure region associated with the limit state 117

function at the i-th time instant and tl = l∆t is the time instant at which the time-variant failure 118

probability is being calculated. 119
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For the stochastic processes y(t), spectral decomposition methods such as the Karhunen-Loève 120

(K-L) expansion [26, 27] or the Expansion Optimal Linear Estimator (EOLE) [28] can be adopted 121

to transform the random process y(t) into a function of random variables z. Note that there are 122

different kinds of random processes [29, 30]. In this work, only Gaussian processes are considered. 123

Note that the proposed approach can be applied whenever a more general stochastic process can be 124

represented as a nonlinear function of a Gaussian process. Then, the instantaneous performance 125

function g(x, ti,y(ti)) can be rewritten as gz(x, ti, z) in the coordinate space (x, z), where z is the 126

vector collecting all normal random variables associated with the representation of the random 127

process y(t). The corresponding cumulative failure probability, as defined in Eq. (2), is expressed 128

as: 129

PF (tl) =

∫∫
IFU

tl
(x, tl, z)fX(x)ϕ(z) dx dz, (3)

where FU
tl

=
⋃l

i=0 {Fi : gz(x, ti, z) ≤ 0} is the union of failure events of the series system; IFU
tl
(·) 130

is the indicator function associated with FU
tl
; and ϕ(·) is the joint PDF of i.i.d. standard normal 131

variables. Note that the computation of this failure probability function with respect to time 132

t is quite challenging, as it comprises an evolving series system with respect to time. In fact, 133

most of the existing methods for reliability analysis can handle point-wise failure probability, that 134

is, at a fixed time instant t = T . However, it may become troublesome to estimate the failure 135

probability as a function of time with classical reliability methods while maintaining the accuracy 136

and efficiency. Thus, in this work, a novel approach is proposed to solve the time-variant failure 137

probability function in an efficient and effective way. 138

3. Proposed approach 139

3.1. Overview of the proposed approach 140

This section outlines the proposed Adaptive Combined Line Sampling (ACLS) approach for 141

TFPF estimation. Although Line Sampling and Advanced Line Sampling have been proposed and 142

widely applied in many fields, its application in time-variant reliability still needs further inves- 143

tigation. The reason is that, while both approaches work well for failure probability estimation 144

in a time-invariant setting, their application to time-variant problems may be demanding, as it 145

becomes necessary to estimate all failure probabilities associated with each time instant. In other 146

words, classical Line Sampling is not suitable for estimating a failure probability function depen- 147

dent on time. Hereto, a novel variant of Line Sampling, where an adaptive learning strategy and 148
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an optimal combination algorithm are applied, is proposed to address the challenge of estimating 149

TFPF efficiently. In the proposed approach, the final TFPF estimator P̂
(m)
F (tl) is constructed 150

based on combining a number of m individual estimators, that is: 151

P̂
(m)
F (tl) =

m∑
k=1

wk(tl)P̂F,k(tl), (4)

where P̂F,k(tl) is the estimator evaluated by the k − th run of Line Sampling; m is the number 152

of runs performed with Line Sampling, which is determined on-the-fly as the stopping criterion is 153

reached (please see Section 3.5); and wk(tl) denotes a weight function. Note that
∑m

k=1wk(tl) = 1 154

is imposed for each time instant tl = l∆t(l = 0, . . . , nt). Thus, as long as P̂F,k(tl) is unbiased 155

[6], then the obtained P̂
(m)
F (tl) is also unbiased. Under the assumption that each run of Line 156

Sampling component is carried out separately, the TFPF components,that is, P̂F,k(tl), are mutually 157

independent, and the variance of P̂
(m)
F (tl) can be easily obtained as: 158

V ar
[
P̂

(m)
F (tl)

]
=

m∑
k=1

w2
k(tl)V ar

[
P̂F,k(tl)

]
, (5)

Further, if all the TFPF components, P̂F,k(tl), are unbiased estimators, i.e., E[P̂F,k(tl)] = 159

PF (tl), then the coefficient of variation (C.o.V.) of P̂
(m)
F (tl) is given by 160

Cov[P̂
(m)
F (tl)] =

√∑m
k=1wk(tl)2V ar[P̂F,k(tl)]

PF (tl)
=

√√√√ m∑
k=1

w2
k(tl)Cov2[P̂F,k(tl)], (6)

The proposed approach consist of three steps: 1) Estimate the TFPF component by Line 161

Sampling; 2) Find the next time instant to carry out Line Sampling by an active strategy; 3) 162

gather the TFPF component estimates by optimal combination. Each of these steps is discussed 163

in detail below. 164

3.2. Estimate the TFPF by Line Sampling 165

As stated in Eq.(4), the final TFPF estimator is constructed by aggregating a number of TFPF 166

components. In this subsection, Line Sampling [6, 31] is adopted to calculate the component TFPF 167

estimator P̂F,k(t). 168

For the sake of simplicity, it is assumed that the time-invariant random variables associated 169

with x follow a standard normal probability distribution. Such condition can be satisfied by 170

considering appropriate transformations, see e.g., [32]. Then, to implement Line Sampling, it is 171

necessary to identify an important direction α(k), which is a vector of unit Euclidean norm located 172
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at the origin of the standard normal space which points towards the failure region associated with 173

the component TFPF estimator P̂F,k(t). A criterion for selecting this important direction α(k) is: 174

α(k) =
(x, z)(k)∗

||(x, z)(k)∗||
, (7)

where (x, z)(k)∗ is the design point corresponding to the instantaneous performance function at 175

the time instant t
(k)
s , and β(k) = ||(x, z)(k)∗|| is the corresponding distance form the origin to 176

the design point. At this stage, it is assumed that this time instant t
(k)
s is known. A specific 177

criterion for its selection is discussed in Section 3.4. Regarding the determination of the design 178

point, it can be carried out by using any optimisation algorithm or Advanced First Order and 179

Second Moment (AFOSM) method [33], which is widely used in reliability analysis. Note that the 180

proposed approach focuses on the time-variant problem where the instantaneous failure region is 181

concentrated in one region, and only one design point exists. The treatment of problems with 182

multiple regions or design points usually requires to account for several important directions [34]. 183

However, this paper focuses on developing efficient strategy based on multiple Line sampling 184

components with different important directions to solve the composite limit state associated with 185

the time-variant problem. 186

Once the important direction has been identified, the next step of Line Sampling is exploring 187

the failure domain by means of lines which are parallel to that important direction. This process 188

is illustrated schematically in Fig. 1 in a two-dimensional problem. Suppose that a set of two- 189

dimensional samples {(x, z)(j), j = 1, 2, ..., N} is generated (where N is the number of samples) 190

according to the joint probability density function f(x, z). Then, it is necessary to explore the 191

lines that pass through each of the aforementioned samples and which are parallel to the im- 192

portant direction. In this context, to explore means that the intersection of each line with each 193

instantaneous limit state function gz(x, ti, z) (i = 0, . . . , nt) should be determined. After finding 194

the corresponding intersection points (x, z)
(j)∗
ti , i = 0, . . . , nt associated with the instantaneous 195

limit state function gz(x, ti, z) and the line passing through the sample (x, z)(j), it is necessary to 196

determine the distance value c
(j)∗
ti . Note that c

(j)∗
ti measures the Euclidean distance between the 197

hyperplane that passes through the origin of the standard normal space and which is orthogonal 198

to the important direction and the intersection point (x, z)
(j)∗
ti . In practice, the intersection points 199

can be determined by, e.g. three-point-second-order (TPSO) polynomial interpolation method 200

[35]. To do this, the three values c1, c2 and c3 that are associate with the distances along the line 201

parallel to α(k) should be properly selected. In this paper, c1 = β(k)−3, c2 = β(k) and c3 = β(k)+3 202
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are used, which is deemed as appropriate after numerical verification. One can also increase the 203

number of points on each line to improve the accuracy of estimating the intersection points. 204

Figure 1: Schematic diagram of Line Sampling for the time-variant problem.

In summary, according to the reliability formula of time-variant series system, both Line Sam- 205

pling and the concept of cumulative failure probability are adopted. The TFPF can be estimated 206

as: 207

c
(j)∗
min(tl) = min(c

(j)∗
t0 , · · · , c(j)∗tl

), (8)

P̂F,k(tl) =
1

N

N∑
j=1

Φ(−c
(j)∗
min(tl)), (9)

where P̂F,k(tl) is the TFPF component estimator based on α(k) with respect to k-th instantaneous 208

LSF, c
(j)∗
min(tl) means the smallest value due to the series system property. 209

The variance and the coefficient of variation (C.o.V.) of this estimator are given as: 210

V ar[P̂F,k(tl)] ≈
1

N(N − 1)

N∑
j=1

(
Φ(−c

(j)∗
min(tl))− P̂F,k(tl)

)2
, (10)

211

Cov[P̂F,k(tl)] ≈

√
V ar[P̂F,k(tl)]

P̂F,k(tl)
, (11)
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Note that Line Sampling is carried out iteratively with a relative small number of samples N 212

each time, and the corresponding important direction is actively updated in order to reach an 213

overall convergence of the TFPF estimation. Additional details on the update of the important 214

direction are discussed later on in Section 3.4. 215

3.3. Combination algorithm 216

In order to obtain the overall TFPF estimator P̂
(m)
F (tl) in Eq. (4), an optimal combination 217

algorithm is proposed to determine the weights function, wk(tl), as introduced in Eq. (4). The 218

performance of the combination approach is highly dependent on the weights and hence on the 219

principle used to determine these weights. Since the C.o.V. of an estimator is the ratio between 220

the standard deviation of an estimator and the mean estimator, and hence a good metric for its 221

performance, it can be used to determine the weights function, that is, to find the optimal wk(tl) 222

that minimises the C.o.V. of P̂
(m)
F (tl). Note that similar algorithms have also been reported for 223

the estimation of failure probability in [8], improvement of Line sampling in [24] and also for 224

calculating the failure probability function with respect to design distribution parameters of basic 225

random variables in [25]. 226

The optimal combination algorithm determines weights for component estimators which lead 227

to the aggregate estimator P̂
(m)
F (tl) with the smallest possible C.o.V. The corresponding optimal 228

weights can be determined by: 229

wk(tl) =
Cov

[
P̂F,k(tl)

]−2

∑m
j=1Cov

[
P̂F,j(tl)

]−2 (k = 1, · · · ,m), (12)

The detailed derivation of Eq. (12) is discussed in Appendix A. Further substitution of Eq. (12) 230

into Eq. (6) leads to the final C.o.V. of the estimate of TFPF, which is equal to: 231

Cov[P̂
(m)
F (tl)] =

1√∑m
k=1 Cov−2[P̂F,k(tl)]

. (13)

When Cov[P̂F,k(tl)] ∈ [0, 1], it is easy to further deduce that: 232

Cov[P̂
(m)
F (tl)] ≤ Cov[P̂F,k(tl)], (k = 1, · · · ,m), (14)

which means that the combined estimate will own the smallest C.o.V. in theory compared with 233

the weighted components when the C.o.V.’s of TFPF components are less than 1. 234
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3.4. Adaptive strategy 235

In this subsection, an active strategy is proposed to determine the support time instants 236

t
(k)
s (k = 1, . . . ,m). For the first individual estimator k = 1, t

(1)
s can be arbitrarily selected within 237

the time interval [0, T ], e.g., t
(1)
s = 0, T/2, or T . Then, Line Sampling is carried out based on the 238

important direction associated with the instantaneous performance function at time t
(k)
s . Note 239

that the selection of t
(k)
s affects the efficiency of the proposed approach and should therefore be 240

performed with care. As such, a novel way to determine the support time instants in an active 241

learning fashion is developed in the following. 242

Since C.o.V. is a good characteristic quantity to monitor the convergence of the probability 243

estimator, it can be used as a learning function to determine the next support time instant. 244

Specifically, the time instant that has the largest value of C.o.V. should be chosen as the next 245

support time instant. Suppose the k-th estimator of the TFPF P̂F,k(t) has been calculated using 246

Line Sampling, and the C.o.V. of the estimator is obtained according to Eq. (13), then the next 247

support time instant can be obtained by solving the following optimisation problem: 248

Find tl = t
(k+1)
s

Max Cov[P̂
(k)
F (tl)] =

√∑k
i=1w

2
i (tl)Cov2[P̂F,i(tl)]

s.t. t0 ≤ tl ≤ tnt .

(15)

Inspection of Eq. (15) reveals that the next support time instant t
(k+1)
s should be the one 249

having the largest C.o.V. value. It is expected that the identified time instant has the largest 250

potential for improving the convergence of the estimates of TFPF by carrying out a component 251

Line Sampling according to the importance direction associated with t
(k+1)
s . Note that this opti- 252

misation problem does not involve any evaluation of the performance function, and it is actually 253

just a single-dimensional optimisation problem. Thus it can be readily solved by adopting any 254

appropriate optimisation algorithm. Moreover, it is not necessary to obtain the exact solution 255

of the optimisation problem in Eq. (15), as the time t
(k+1)
s that is being identified is just used 256

to establish an important direction and in several cases, Line Sampling is not so sensitive with 257

respect to that important direction. As the optimisation problem in Eq. (15) can be solved with 258

negligible numerical cost, it is solved using random search with Monte Carlo simulation. 259

The adaptive strategy for selecting time instants t
(k)
s is repeated until a convergence criterion 260

is fulfilled. This convergence criterion is established as Maxl=0,...,nt{Cov[P̂
(k)
F (tl)]} ≤ Ctol, where 261

Ctol is a predefined threshold value, e.g, Ctol = 0.1 can be chosen for general cases. 262
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In conclusion, the proposed approach utilises the information of C.o.V. at each step to adap- 263

tively select the time instant for which Line Sampling is run (with its corresponding important 264

direction). As the probability estimator is simulation-based, the accuracy can be guaranteed as 265

the simulation proceeds until satisfying the convergence condition. In the following numerical 266

applications, it is shown that the proposed approach exhibits excellent efficiency, and that the 267

proposed Adaptive Combined Line Sampling (ACLS) is highly rewarding. 268

3.5. Summary of the proposed approach 269

The proposed approach for estimating the time-variant failure probability function (TFPF) is 270

summarized as follows, as well as shown in Fig. 2. 271

1. Choose the initial support time instant t
(1)
s . Generally, the midpoint of the time interval 272

[0, T ] can be chosen, i.e., t
(1)
s = T/2. 273

2. Stochastic processes are represented by spectral decomposition, and the equivalent composite 274

performance functions are obtained. 275

3. Based on the current support time instant t
(k)
s , identify the design point (x, z)∗(k) and set 276

the important direction α(k) by means of Eq. (7). Generate samples (x, z)(j), j = 1, . . . , N . 277

Calculate the component probability estimator given in Eq. (9) and its C.o.V. with Eq. (11). 278

4. Apply the combination algorithm to produce an updated estimator of TFPF as given by 279

Eqs. (4) and (12), as well as its C.o.V. in Eq. (13). 280

5. Determine the next support time instant t
(k+1)
s by solving the optimisation problem given 281

in Eq. (15). 282

6. Repeat steps 3 to 5 until the convergence criterion, max{Cov[P̂
(k)
F (t)]} ≤ Ctol, is reached. 283

4. Examples 284

In this section, examples are given to illustrate the performance of the proposed Adaptive 285

Combination Line Sampling (ACLS) method in terms of accuracy and efficiency. Direct Monte 286

Carlo simulation (MCS), Importance Sampling (IS)[36], Line Sampling (LS) [6] and Advanced 287

Line Sampling (ALS) [7] are used for comparison. The unit coefficient of variation ∆ is calculated 288

in all examples considered [9]. This unit coefficient of variation is – in theory – invariant to the 289

accuracy achieved and the computational effort spent, where smaller values of ∆ correspond to 290
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Initialise the time instant t
(k)
s (k = 1) and convergence criterion Ctol

Discretise the original time-variant problem

into a problem with composite performance functions

Obtain the k-th component of the TFPF estimator by Line Sampling

with importance direction α(k) related to performance function at t
(k)
s

Calculate the TFPF by the optimal combination algorithm

Convergence?
Determine the next

support time instant t
(k+1)
s

Obtain the final estimate of TFPF

No

Yes

Figure 2: Procedure of the proposed ACLS method

a higher computational efficiency. Note that the three-point quadratic interpolation is used to 291

obtain the intersections for LS, ALS and ACLS in this contribution. 292

For Examples 1 and 2, a time period of [0, 20] years is considered, and a time interval ∆t = 2 293

year is adopted to discretise the time interval in the calculation. For example 3, a time period 294

of [0, 10] years with the time interval ∆t = 1 years is considered. Also, the number of identified 295

dominating eigenfunctions in K-L expansion is chosen as nkl = 5, which has been found to be 296

reasonable for all these examples. 297

4.1. Example 1: Test example 298

The following performance function with two random variables and a stochastic process is 299

considered in this example: 300

g(x, t,y(t)) = 17− x2
1 + 2x2 exp(−0.1t)− 5F (t) (16)

where x = [x1, x2] is the vector of random variables; y(t) = F (t) is a stochastic load which is 301

modelled as a stationary Gaussian random process, and the auto-correlation coefficient function 302
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is of the squared exponential type, which is given as: 303

ρF (t1, tl+1) = exp
{
−0.05(tl+1 − tl)

2
}
. (17)

The information of these inputs is listed in Table 1. 304

Table 1: Information of variables and parameters for two-dimension nonlinear example (Example 1)

Parameter Distribution Mean Standard deviation Auto-correlation coefficient function

x1 Normal 2.6 0.26 −

x2 Normal 5 0.5 −

F (t) Gaussian process 2 0.2 Eq. (17)

In this example, the number of variables representing F (t) in K-L expansion is 5, thus the 305

final total dimension of the reliability problem (x, z) is 7. The proposed approach is applied with 306

N = 100 samples (lines) in each individual run of Line Sampling for calculating the component 307

probability, and the convergence criterion Ctol = 0.2 is selected. In this context, the adaptive 308

strategy is carried out form = 3 rounds until convergence is achieved, and thus a total of NT = 300 309

samples are used. The traditional LS, IS and ALS are also applied with the same sampling number 310

NT = 300. And IS and LS are carried out based on the design point and the important direction 311

corresponding to the instantaneous LSF at time instant tmid = T/2, respectively. In addition, 312

Direct MCS is also applied with N = 107 samples, and its results are seen as the reference values. 313

Fig. 3 plots the curves of TFPF and C.o.V. with respect to time t during the intermediate 314

process of the proposed approach. It can be seen that, in the initial round k = 1 of proposed 315

method, the corresponding TFPF result owns considerable error when t ∈ [0, 5], the C.o.V over 316

these time instants exceeds 0.2. When including new support time instants, however, the accuracy 317

of TFPF estimator is improved and the C.o.V curve becomes smoother and smaller. At the third 318

iteration, the C.o.V is less than 0.2 and the result obtained from ACLS method is consistent with 319

the exact value from MCS. This illustrates the effectiveness and accuracy of the proposed method. 320

The results of TFPF obtained by different methods (LS, IS, ALS and ACLS) with the same 321

total number of samples NT =300 are plotted in Fig. 4. It can be seen that the results that are 322

obtained by these methods agree very well with each other. Also the corresponding C.o.V. of 323

the proposed ACLS is smaller than those of LS, IS and ALS over most parts of the considered 324

time period, especially in t ∈ [0, 5]. This means that the proposed approach seems to reasonably 325
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Figure 3: Evolution of TFPF result obtained by the proposed approach (Example 1).

allocate samples in order to obtain satisfactory results over the whole time domain, due to the 326

adaptive strategy adopted in the proposed approach. 327

To investigate the performance of the proposed method more clearly, the same stopping cri- 328

terion is used for ACLS, ALS, IS, and LS. Fig. 5 shows the total number of samples NT , and 329

total number of function calls Ncall (including the interpolation calculation in line sampling, as 330

well as the design point solving) used by different methods under the same Ctol = 0.2. It can be 331

seen from the figure that, while the proposed approach required only N = 300 simulated samples 332

(lines) to achieve max{Cov[P̂
(k)
F (t)]} ≤ Ctol = 0.2, far more samples are needed by LS (about 120 333

times of that by ACLS) and by ALS (about 20 times), respectively. In terms of total number of 334

calls, the proposed ACLS method is more efficient than other methods (about only 1/104 of that 335

by LS, 1/274 of that by IS and 1/18 of that by ALS). Hence, it can be drawn that the proposed 336

approach can produce a satisfactory TFPF estimate in a more efficient way. 337

For further comparison, the numbers of samples used by different methods with respect to the 338

stopping criterion value Ctol are shown in Fig. 6. It is apparent from the figure that the numbers 339

of samples decrease for these methods as the Ctol increases. Moreover, LS, IS and ALS demand 340

more samples than ACLS to meet the same convergence criterion. It can be concluded that, in 341

terms of efficiency, the proposed ACLS method is certainly superior to the LS, IS and the ALS. 342

However, this last conclusion must be weighed against the fact that ACLS is specifically developed 343
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Figure 4: TFPF results obtained by different methods using the same number of samples NT = 300 (Example 1).

Figure 5: TFPF results obtained by different methods using the same convergence criterion Ctol value (Example

1).
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to address time-variant reliability problems. 344

Figure 6: Total number of samples used by different methods with respect to the convergence criterion Ctol value

(Example 1).

The TFPF results obtained by the proposed method with different stopping criteria Ctol and 345

a fixed N = 100 are depicted in Fig. 7. It shows that, the results from Ctol = 0.05 to Ctol = 0.2 346

all match well with the reference value obtained by MCS. However, it should also be noted that 347

the smaller Ctol is, the higher computational effort the method demands. 348

The performance of ACLS method under different initial settings (i.e. initial support time 349

instant) is depicted in Fig. 8. Three initial support time instants t
(1)
s = t0, t

(1)
s = tmid = T/2, 350

and t
(1)
s = tmax = T are considered, respectively. Note that NT represents the total number of 351

sampling lines used in all iterations, while Ncall represents the number of performance function 352

evaluations. The results show that, the number of iterations decreases as N increases for each 353

initial setting, however NT as well as Ncall have an increasing trend, though fluctuations exist. 354

Thus, the selection of N clearly affects the efficiency of proposed method and hence, N should be 355

properly selected. Generally, N could be selected such that Cov[P̂
(1)
F (t

(1)
s )] ≤ Ctol is achieved at 356

least. 357

4.2. Example 2: A steel beam in bending 358

A steel beam in bending shown in Fig. 9 is considered in this example, which is taken (in 359

revised form) from [4]. The size of this beam is 5 m (length) × 0.2 m (width b0) × 0.04 m (height 360

17



Figure 7: TFPF results obtained by the proposed approach with different Ctol (Example 1).

Figure 8: Performance of proposed method starting for different initial support time instants (Example 1).
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h0). It is assumed that the beam corrodes in time, and the dependency of the dimensions to time 361

can be expressed as 362

b(t) = b0 − 2κt;h(t) = h0 − 2κt (18)

where parameter κ = 0.03 mm/ year controls the corrosion kinetics. This beam is subjected to a 363

dead load p = ρstb0h0 where ρst = 78.5kN/m3 is the steel force density, as well as a point load 364

F (t) applied at the mid span. The bending moment at mid-span associated with dead- and point 365

loads reads: 366

M(t) =
F (t)L

4
+

ρstb0h0L
2

8
(19)

Considering that the bending moment should be less than the ultimate bending moment corre- 367

sponding to the appearing of a plastic hinge in the section, the performance function of the beam 368

is given by: 369

G(x, t, F (t)) =
b(t)h2(t)fy

4
−
(
F (t)L

4
+

ρstb0h0L
2

8

)
(20)

where x = [fy, b0, h0] is the vector of random variables; fy is the steel yield stress; F (t) is the load 370

which is modelled as a stationary Gaussian random process, and the auto-correlation coefficient 371

function is of exponential squared type, which is given as: 372

ρF (t1, tl+1) = exp
{
−0.05(tl+1 − tl)

2
}

(21)

The information of these inputs are listed in Table 2. The time interval under consideration is 373

[0, 20] years. 374

Figure 9: Corroded bending beam

In this example, the proposed approach is applied with N = 100, and the convergence criterion 375

Ctol = 0.2 is selected. In this context, the adaptive strategy is carried out for m = 4 rounds to 376

achieve convergence, and thus a total of NT = 400 samples are used. The traditional LS, IS 377

and ALS are also applied with the same number of samples. In addition, MCS is applied for 378

comparison which is seen as the exact value. 379
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Table 2: Information of random variables and parameters of corroded steel beam in bending (Example 2)

Parameter Distribution Mean Standard deviation Autocorrelation coefficient function

fy/MPa Lognormal 240 24 −

b0/m Lognormal 0.2 0.01 −

h0/m Lognormal 0.04 0.004 −

F (t)/N Gaussian process 3500 700 Eq. (21)

Figure 10: Intermediate TFPF results of the proposed ACLS approach (Example 2).
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Fig. 10 shows the intermediate TFPF results of the proposed approach. It can be seen that, 380

in the first round k = 1, the TFPF result obtained has considerable error, e.g., when t ∈ [16, 20] 381

years and the corresponding C.o.V. is also bigger than 0.2. However, after the fourth iteration, 382

the C.o.V. is always smaller than 0.2, leading to an estimate of the time-variant failure probability 383

that compares very well with the reference. This demonstrates the effectiveness of the ACLS 384

method proposed in this paper. 385

The results of ACLS with different settings of N and fixed Ctol = 0.2 are shown in Fig. 11 to 386

investigate the effect of the number of samples N on the accuracy. The proposed method was run 387

repeatedly and independently for 100 times. The corresponding mean values of TFPF estimates, 388

the relative errors and N are shown in the figure. From a statistical viewpoint, it can be seen 389

that the accuracy of the proposed ACLS increases with the increasing of N . However, the gain 390

in accuracy partly comes at the expense of an increase of computational cost which can be seen 391

from the growing of Ncall. 392

Figure 11: TFPF result obtained by the proposed approach with different N and a fixed Ctol = 0.2 (Example 2).

Fig. 12 depicts the TFPF results by traditional LS, IS, ALS and ACLS when the same number 393

of samples is considered. As it can be seen from the figure, traditional LS and IS produces a 394

TFPF estimate with considerable error, and the corresponding C.o.V.’s for LS, IS and ALS are 395

greater than 0.2 when t ∈ [0, 5] year. In contrast, the proposed ACLS can produce an accurate 396

estimate which is consistent with the exact values, while ensuring that the associated C.o.V. is 397
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Figure 12: TFPF results obtained by different methods when the same number of samples is used (Example 2).

smaller than 0.2. This shows the advantage in efficiency and performance of the proposed ACLS 398

method. 399

To further investigate the performance, LS, IS, ALS and the proposed ACLS are carried out 400

under the same stop criterion of Ctol = 0.2, and the corresponding results are shown in Fig. 13. 401

It can be seen that, while the obtained TFPF results by these four methods are consistent with 402

the exact values, the number of simulated samples used to achieve the convergence for these four 403

methods is quite different, as noted from the figure, i.e., NT = 3463 for LS, NT = 55261 for IS, 404

NT = 1260 for ALS and NT = 400 for the proposed ACLS method. Accordingly, the number of 405

function calls is as follows: Ncall = 10495 for LS, Ncall = 55367 for IS, Ncall = 3780 for ALS and 406

Ncall = 1619 for the proposed ACLS method. That is, the proposed approach needs less function 407

calls to reach the convergence, nearly 1/6 of those by LS, 1/34 of those by IS, or 1/2 of those by 408

ALS. 409

4.3. Example 3: turbine blade 410

This example considers a jet engine turbine blade, as shown in Fig. 14. This blade has interior 411

cooling ducts, through which the flow of cool air maintains the temperature of the blade within 412

a prescribed limit. The turbine is a radial array of blades made of nickel alloys. These alloys 413

resist extremely high temperatures of the gases. At such temperatures, the material expands 414
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Figure 13: TFPF results of different methods under the same convergence criterion of C.o.V. (Example 2).

significantly, producing mechanical stress in the joints and significant deformations. Failure is in 415

this case defined as the maximum von Mises stress of the structure exceeding the allowable value 416

σa = 1.5GPa, and the corresponding performance function is: 417

g(x, t,Y (t)) = σa exp(−0.03t)− σmax(x,y(t)), (22)

where σmax(x,y(t)) is the maximum von Mises stress of the blade caused be the combination 418

of thermal and pressure effects; x = [E, γCTE, λ,Kapp, T1, T2] is the vector of basic random vari- 419

ables; E, γCTE, λ and Kapp are the Young’s modulus, coefficient of thermal expansion, Poisson’s 420

ratio and the thermal conductivity for nickel-based alloy (NIMONIC 90), respectively; T1 is the 421

temperature of the interior cooling air and T2 is temperature on the pressure and suction sides; 422

y(t) = [F1(t), F2(t)], where F1(t) and F2(t) are the pressure loads on the pressure and suction 423

sides of the blade which are caused by the high-pressure gas surrounding the sides of the blade. 424

Input random parameters and distribution parameters of random processes are shown in Table 3. 425

Parameters modelled with a normal distribution which must be within a prescribed range due to 426

physical reasons are truncated. 427

In this example, the final dimension of the vector (x, z) is 16 as the number of K-L expansion 428

terms nkl = 5 is considered. The proposed approach is applied with N = 100, and the convergence 429
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Figure 14: Geometry and von Mises stress of a turbine blade.

Table 3: Information of random variables and parameters (Example 3)

Variables Distribution Mean Standard deviation Autocorrelation function

E/Pa Normal 225× 109 223× 108 -

γCTE/(1/K) Normal 13× 10−6 13× 10−7 -

λ Normal 0.27 0.027 -

Kapp/(W/(m ·K)) Normal 11.5 1.15 -

T1/
◦C Normal 150 15 -

T2/
◦C Normal 1000 100 -

F1(t)/Pa Gaussian process 5× 105 1× 105 exp
{
−( tl+1−tl

2
)2
}

F2(t)/Pa Gaussian process 2× 105 4× 104 exp
{
−( tl+1−tl

2
)2
}
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criterion Ctol = 0.05 is selected. In this context, the adaptive strategy is carried out for m = 430

2 iterations until convergence is achieved, and thus a total of NT = 200 lines are used. The 431

traditional LS, IS and ALS are also applied with the same number of simulated samples. In 432

addition, Direct MCS is also applied for comparison, which is deemed as the exact value. 433

Figure 15: TFPF results varying with the number of iteration rounds (Example 3).

Fig.15 shows the results obtained by the proposed ACLS approach with respect to the number 434

of iteration steps k. By observing the results and the coefficient of variation in the figure, it can 435

be found that, in the first iteration, the estimated results have slight deviation from the reference 436

values. At the same time, the maximum coefficient of variation is close to 0.1. In this case, the 437

adaptive strategy selects the support time of next iteration to be at the time instant t = 0 where 438

the coefficient of variation is the largest. After only one additional iteration, the largest C.o.V. is 439

reduced below 0.05, and the C.o.V curve with respect to time tends to be flat. The above analysis 440

verifies the effectiveness of the proposed ACLS method. 441

Fig. 16 shows the TFPF results and C.o.V. by the proposed ACLS compared with LS, IS 442

and ALS methods. As shown in the figure, with the same total number of samples, all methods 443

produce accurate estimates. Regarding the coefficient of variation, the maximum coefficient of 444

variation of the LS method is more than 0.05, and that of the advanced line sampling method and 445

IS method exceeds 0.1, while the C.o.V. curve by the proposed ACLS method is below 0.05 over 446

the whole interval t ∈ [0, 10] year. 447
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Figure 16: TFPF results obtained by different methods using the same number of samples (Example 3).

Figure 17: TFPF results obtained by different methods using the same convergence criterion Ctol value (Example

3).
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Fig. 17 shows the results by different methods with the same convergence criterion Ctol = 0.05. 448

It can be seen that, LS, ALS and IS used 319, 750 and 4102 samples to reach the stopping criterion, 449

respectively, while ACLS used just 200 samples to do so. Besides, the total number of function 450

calls needed by ACLS is approximately 4/5 of that by LS, 1/5 of that by IS, and 2/5 of that by 451

ALS, respectively. 452

5. Conclusions 453

A new efficient Adaptive Combined Line Sampling (ACLS) approach has been proposed to 454

estimate the time-variant failure probability function of structures. This approach follows the 455

‘composite limit states’ concept which transforms the time-variant problem into a series system 456

through discretisation. An adaptive strategy and an optimal combination algorithm have been 457

proposed to solve the time-variant failure probability function (TFPF) efficiently. The original 458

contribution of this work is that the convergence of the overall TFPF (measured in a maximum 459

of C.o.V. over the time span) can be ensured by selecting support points in an active fashion. 460

Numerical and practical examples have been presented to show the advantages of the proposed 461

approach with respect to existing techniques. It is observed that the proposed approach shows a 462

high efficiency in the sense of obtaining the TFPF for a given convergence criterion. 463

Despite progress in the proposed method, limitations still remain. Since the accuracy of the 464

method highly depends on the accuracy in the determination of the most probable point, the LS 465

component estimators could produce errors, potentially compromising the accuracy of the obtained 466

results. Also, special attention should be paid to the problem with multiple important directions 467

(failure regions) where underestimation may occur if any failure region is neglected. Additionally, 468

to perform LS component estimators, it is necessary to transform the limit state function into the 469

standard normal space. Furthermore, due to the small sample size N in each iteration, using LS 470

estimators to deal with a high-dimensional and highly non-linear LSF can lead to noisy and biased 471

results. Through the validation of three examples, the proposed ACLS method is applicable for 472

moderate nonlinear and moderate dimensional problems. 473

Future work will concentrate on the combination of the presented algorithms with Advanced 474

Line Sampling (ALS) [7] and active learning LS methods [35] instead of Line Sampling (LS) to 475

avoid the calculation of design point(s) and to further alleviate the computational burden. Efforts 476

will also be made to apply the proposed approach to problems involving non-stationary/non- 477
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Gaussian processes. Another future research task is to apply the proposed approach to systems 478

involving multiple performance functions. 479
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Appendix A. Selection of weights for minimising C.o.V. 495

This Appendix shows that the optimal weights based on minimising the C.o.V. are given by 496

Eq. (12). Note that similar principles for combination algorithms have been used in [8, 24, 497

25]. However, it is worth to point out that in this paper, this algorithm is applied to solve the 498

time-variant failure probability function, which is distinct with respect to the aforementioned 499

contributions. As minimising the Cov[P̂
(m)
F (t)] is equal to minimising the Cov2[P̂

(m)
F (t)], then the 500

optimisation problem of minimising the C.o.V. to find the optimal weights is recast as follows: 501

min Cov2[P̂
(m)
F (t)] =

m∑
k=1

w2
k(t)Cov2

[
P̂F,k(t)

]
s.t.

m∑
k=1

wk(t) = 1

(A.1)
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Using the Lagrange multipliers method, the Lagrangian of the problem of Eq. (A.1) can be 502

expressed as 503

L(w, λ) =
m∑
k=1

w2
k(t)Cov2

[
P̂F,k(t)

]
+ λ

(
m∑
k=1

wk(t)− 1

)
(A.2)

The first-order necessary conditions for optimality read: 504

∂L(w, λ)

∂wk(t)
= 0

∂L(w, λ)

∂λ
= 0

(A.3)

Solving this system of equations will result in the following expressions 505

wk(t) = −λ

2
Cov−2

[
P̂F,k(t)

]
λ = − 2∑m

k=1Cov−2
[
P̂F,k(t)

] (A.4)

which leads to: 506

wk(t) =
Cov−2

[
P̂F,k(t)

]
∑m

j=1Cov−2
[
P̂F,j(tl)

] (k = 1, . . . ,m) (A.5)

Since the objective function is convex (quadratic in w ) and the constraint is affine, the result of 507

Eq. (A.5) is the global optimum. 508
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[6] H. Pradlwarter, G. I. Schuëller, P.-S. Koutsourelakis, D. C. Charmpis, Application of line 520

sampling simulation method to reliability benchmark problems, Structural safety 29 (2007) 521

208–221. 522

[7] M. de Angelis, E. Patelli, M. Beer, Advanced line sampling for efficient robust reliability 523

analysis, Structural Safety 52 (2015) 170–182. 524

[8] M. A. Shayanfar, M. A. Barkhordari, M. Barkhori, M. Rakhshanimehr, An adaptive line sam- 525

pling method for reliability analysis, Iranian Journal of Science and Technology, Transactions 526

of Civil Engineering 41 (2017) 275–282. 527

[9] S. K. Au, J. L. Beck, First excursion probabilities for linear systems by very efficient impor- 528

tance sampling, Probabilistic Engineering Mechanics 16 (2001) 193–207. 529

[10] M. A. Misraji, M. A. Valdebenito, H. A. Jensen, C. F. Mayorga, Application of directional 530

importance sampling for estimation of first excursion probabilities of linear structural systems 531

subject to stochastic Gaussian loading, Mechanical Systems and Signal Processing (2020) 532

106621. 533

[11] S. K. Au, J. L. Beck, Estimation of small failure probabilities in high dimensions by subset 534

simulation, Probabilistic Engineering Mechanics 16 (2001) 263–277. 535

[12] H.-S. Li, T. Wang, J.-Y. Yuan, H. Zhang, A sampling-based method for high-dimensional 536

time-variant reliability analysis, Mechanical Systems and Signal Processing 126 (2019) 505– 537

520. 538

[13] S. Chakraborty, S. Tesfamariam, Subset simulation based approach for space-time-dependent 539

system reliability analysis of corroding pipelines, Structural Safety 90 (2021) 102073. 540

[14] W. Du, Y. Luo, Y. Wang, Time-variant reliability analysis using the parallel subset simula- 541

tion, Reliability Engineering & System Safety 182 (2019) 250–257. 542

[15] X. Yuan, S. Liu, M. Faes, M. A. Valdebenito, M. Beer, An efficient importance sampling ap- 543

proach for reliability analysis of time-variant structures subject to time-dependent stochastic 544

load, Mechanical Systems and Signal Processing 159 (2021) 107699. 545

30



[16] Y. Zhang, J. Xu, M. Beer, A single-loop time-variant reliability evaluation via a decoupling 546

strategy and probability distribution reconstruction, Reliability Engineering & System Safety 547

232 (2023) 109031. 548

[17] Z. Xu, J. H. Saleh, Machine learning for reliability engineering and safety applications: 549

Review of current status and future opportunities, Reliability Engineering & System Safety 550

211 (2021) 107530. 551

[18] M. Li, Z. Wang, Lstm-augmented deep networks for time-variant reliability assessment of 552

dynamic systems, Reliability Engineering & System Safety 217 (2022) 108014. 553

[19] Z. Wang, P. Wang, A double-loop adaptive sampling approach for sensitivity-free dynamic 554

reliability analysis, Reliability Engineering & System Safety 142 (2015) 346–356. 555

[20] I. Depina, T. M. H. Le, G. Fenton, G. Eiksund, Reliability analysis with metamodel line 556

sampling, Structural Safety 60 (2016) 1–15. 557

[21] J. Wu, Z. Jiang, H. Song, L. Wan, F. Huang, Parallel efficient global optimization method: 558

A novel approach for time-dependent reliability analysis and applications, Expert Systems 559

with Applications 184 (2021) 115494. 560

[22] Z. Zhao, Z.-H. Lu, X.-Y. Zhang, Y.-G. Zhao, A nested single-loop kriging model coupled with 561

subset simulation for time-dependent system reliability analysis, Reliability Engineering & 562

System Safety 228 (2022) 108819. 563

[23] K. Zhang, N. Chen, P. Zeng, J. Liu, M. Beer, An efficient reliability analysis method for 564

structures with hybrid time-dependent uncertainty, Reliability Engineering & System Safety 565

228 (2022) 108794. 566

[24] I. Papaioannou, D. Straub, Combination line sampling for structural reliability analysis, 567

Structural Safety 88 (2021) 102025. 568

[25] X. Yuan, Y. Qian, J. Chen, M. G. Faes, M. A. Valdebenito, M. Beer, Global failure probability 569

function estimation based on an adaptive strategy and combination algorithm, Reliability 570

Engineering & System Safety 231 (2023) 108937. 571

31



[26] B. Sudret, A. Der Kiureghian, Stochastic finite element methods and reliability. A state- 572

of-the-art-report, Technical Report November, Department of Civil & Environmental Engi- 573

neering, University of California, Berkley, Institute of Structural Engineering, Mechanics and 574

Materials, 2000. 575

[27] S. Huang, S. Quek, K. Phoon, Convergence study of the truncated karhunen–loève expan- 576
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