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13

This paper introduces a formulation of the robust topology optimization problem that is14

tailored for designing fiber-reinforced composite structures with spatially varying principal15

mechanical properties. Specifically, a methodology is developed that incorporates the spatial16

variability in the engineering constants of the composite lamina into the concurrent topology17

(i.e., material distribution) and morphology (i.e., fiber orientation distribution) optimization18

problem for the minimization of the robust compliance function. The spatial variability in the19

mechanical properties of the lamina is modeled as a homogeneous random field within the20

design domain by means of the Karhunen-Loéve series expansion, and is thereafter intrusively21

propagated into the stochastic finite element analysis of the composite structure. To carry out22

the stochastic finite element analysis per iteration of the optimization cycle, the first-order23

perturbation method is utilized for approximating the current state variables of the physical24

system. The resulting robust topology and fiber orientation optimization problem is formulated25

step-by-step for the minimization of the robust compliance function. With the view of solving26

the optimization problem at hand by means of gradient-based solution algorithms, the first-order27

derivatives of the involved design functions𝑤.𝑟.𝑡. the associated design variables are analytically28

derived. The present work concludes with a series of numerical examples, focusing on the29

benchmark academic case studies of the 2D cantilever and the half part of the Messerschmitt-30

Bölkow-Blohm beam, aiming to demonstrate the developed methodology as well as to explore31

the effect that different parameterization instances of the random field bear on the predicted32

topology and morphology of the beams.33

34

1. Introduction35

Fiber-Reinforced Composites (FRCs) have become increasingly popular across industrial applications that require36

lightweight materials of high specific properties. Unlike traditional materials, FRCs allow for the customization of37

the material’s anisotropy to meet the structural requirements. The recent advent of Additive Manufacturing (AM)38

techniques has greatly facilitated the manufacturing of complex-shaped FRCs at reduced costs and time. Yet, the layer-39

by-layer printing strategy employed by most AM techniques limits the fiber deposition to being parallel to the printing40

plane, thereby rendering the design for optimal fiber orientation to be primarily approached as a 2D problem.41

Designing for the optimal fiber orientation at the Finite Element (FE) level can be performed by employing42

either the Continuous Fiber Orientation Optimization (CFOO) or the Discrete Fiber Orientation Optimization (DFOO)43

scheme. With regard to the former case, the optimal fiber orientation is sought for the FE within the [0, 180]◦ interval.44

Foundational contributions in CFOO include the stress-based method, proposed by Cheng et al. [1], and the strain-45

based method proposed by Pedersen [2, 3, 4]. The rationale of both methods is to align the fiber orientation with46

the major principal stress/strain trajectories during the optimization cycle in order to maximize the normal stress47

supported by the fiber. Comparative studies between the two methods carried out by Olhoff et al. [5] and Cheng et48

al. [1], concluded that the stress-based approach is slightly more efficient than the strain-based method, mainly due to49

the lower sensitivity the stress field exhibits 𝑤.𝑟.𝑡 variations in the fiber orientation. Conversely, the DFOO scheme50
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seeks to identify the optimal fiber orientation for the FE from a predefined set of candidates. This set is composed51

of various effective elasticity tensors of the composite lamina, with each tensor corresponding to a specific candidate52

fiber orientation, and to interpolate these within the FE domain, DFOO employs a parameterization scheme. Different53

methods for performing this parameterization have been proposed in the literature. The state-of-the-art includes the54

Discrete Material Optimization (DMO) proposed in [6], the Shape Functions with Penalization (SFP) proposed in55

[7, 8], the Bi-value Coding Parameterization (BCP) proposed in [9] and, the more recent Normal Distribution Fiber56

Optimization (NDFO) technique proposed in [10]. As this work centers around DFOO, the aforementioned techniques57

are discussed separately in the subsequent sections of the article.58

Given that the aforementioned techniques operate at the FE level, they do not guarantee spatial continuity in the59

fiber orientation distribution within the structural domain. Hence, they might deliver solutions that are not physically60

attainable. Therefore, to achieve smooth continuous fiber paths within the structure, an alternative approach has been61

adopted. Herein, a global level set function is defined over the design domain, where the corresponding iso-contours62

represent the fiber paths. The format of the level set function follows that of the general linear regression model; that63

is, a set of smooth basis functions is defined over the structural domain and their corresponding weights constitute64

the design variables of the morphology optimization problem. At every iteration of the optimization cycle, the fiber65

orientation at a specific location inside the domain is obtained via computing the gradient of the level set function66

at that location. The current fiber orientation is then utilized to update the local mechanical properties of the domain67

and conduct next the sensitivity analysis. The optimization progresses until the imposed convergence criterion is met.68

At the end of the optimization cycle, the final weights of the level-set are derived and its iso-contours are used to69

represent the optimal fiber paths. Fernandez et al. [11] utilized cubic B-splines as basis functions and incorporated70

into the corresponding morphology optimization problem the manufacturing constraints associated with the Direct71

Ink Writing (DIW) printing process. A similar study was conducted by Tian et al. [12] employing fifth-order radial72

basis functions to parameterize the level set function. In the formulation of the morphology optimization problem, the73

authors imposed the "offset" constraint on the gradient of the level set function to ensure that its contours (i.e. fiber74

paths) do not overlap. In a previous study [13], the authors utilized the inverse distance weighting function as the basis75

function and included the local curvature of the fiber path as an additional constraint in the optimization problem.76

Topology Optimization (TO)[14] seeks to identify the optimal density field distribution within the structural do-77

main under specific structural conditions. Numerous methods have been proposed in the literature for the formulation of78

the Topology Optimization Problem (TOP) for homogeneous structures, the Solid Isotropic Material with Penalization79

(SIMP) [15, 16] and the Level-Set Method (LSM) [17, 18, 19, 20] being the most popular among them. A summary80

of all these methods, along with the codes that solve the respective TOP formulations is provided in [21]. To design81

structures that are optimal in both their morphology and topology, different approaches have been proposed in the82

literature combining the two individual optimization problems. Nomura et al. [22] proposed the vector parameterization83

approach that simultaneously optimizes the density field (represented as the magnitude of the vector) and the fiber84

orientation (represented as the vector orientation). Jiang et al. [23] proposed a framework for concurrently optimizing85

the topology and morphology of the structure at the FE level, separating —as opposed to the work of Nomura et al.86

[22]— the design variables of the two optimization problems. In the same work, the authors also examined the effect87

of the printing plane on the topology and morphology of the final design. The work of Schmidt et al. [24] focused88

in a similar direction, where the authors proposed a framework for the concurrent Topology and Fiber Orientation89

Optimization (TFOO) that utilizes the spherical coordinates notation to characterize the fiber orientation within the90

design domain, as opposed to the earlier work of Jiang et al. [23] where the authors utilized the Cartesian coordinates91

notation for this purpose.92

All studies discussed thus far have been developed under deterministic assumptions holding for the structure; this93

means that the final designs perform optimally only when subjected to the specific (e.g. nominal) values of the structural94

conditions they have been optimized for (e.g., loading, boundary conditions, material properties, etc.) and are highly95

likely to be sensitive to any deviations from these values. In real-world applications, however, the structural conditions96

are non-deterministic, and it becomes crucial to incorporate these uncertainties into the optimization procedure to97

ensure that the final design will perform adequately across their entire range, i.e. ensure that the final design is robust.98

Robust Topology Optimization (RTO) incorporates these uncertainties into the topology optimization procedure to99

ensure that the topologically optimal design can withstand any realizations of these uncertainties. The majority of100

the methodologies proposed in the literature on RTO focus on attaining robust homogeneous structures under loading101

uncertainties. Guest et al. [25] utilized the perturbation method to solve problems under uncertain loads and nodal102

locations that are characterized by small uncertainties. Zhao et al. [26] formulated a methodology for the minimization103
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of the robust compliance function utilizing the Karhunen-Loéve (K-L) series expansion to represent the loading104

uncertainty as a homogeneous Random Field (RF). An extension of this method was recently proposed by Gao et105

al. [27] where the authors represented the loading uncertainty as an imprecise RF, whereby the two statistical moments106

of the RF are no longer constant values but are defined within intervals. Other notable contributions to the field of107

RTO concerning homogeneous structures involve that of Lazarov et al. [28], where the spatial material and geometric108

uncertainty are represented as homogeneous RFs and are incorporated into the topology optimization procedure,109

and the work of da Silva et al. [29], where the authors presented a complete mathematical framework for designing110

topologically robust homogeneous structures when considering the spatial variability in the Young’s Modulus. In the111

latter study, the authors also conducted a series of parametric studies aiming to investigate the effect of the correlation112

length on the final robust designs. The few studies on RTO for fiber-reinforced composites concentrate also on loading113

uncertainty. Xu et al. [30] formulated the robust Topology and Fiber Orientation Optimization Problem (TFOOP) when114

considering the uncertainty in the magnitude and the direction of the loading. In their work, the authors employed the115

DMO interpolation scheme to optimize the fiber orientation, constraining that way the optimal fiber orientation to lie116

within the set of candidates. Similar work was conducted by Sheng et al. [31] considering the same type of loading117

uncertainty. However, in their work, the authors employed the CFOO scheme, thereby allowing the fiber orientation to118

be freely optimized within the [0, 180]◦ interval. In addition, to reduce the computational cost of the robust TFOOP,119

they incorporated the Kriging surrogate model into the devised mathematical framework to conduct the sensitivity120

analysis for the robust compliance function.121

The present work is motivated by the work of da Silva et al. [29]. It focuses, however, on fiber-reinforced122

composite structures. Specifically, a methodology is proposed that incorporates the spatial variability in the principal123

material properties of the composite lamina into the robust TFOOP so as to predict topologically and morphologically124

robust composite structures. The methodology optimizes separately the morphology and topology of the structural125

domain at the FE level. For topology optimization, the density-based SIMP technique is utilized, while any of the126

aforementioned techniques from the DFOO scheme can be employed for optimizing the morphology. Concerning the127

spatial variability in the principal material properties, the methodology is formulated around the assumption that the128

𝐸1 Young’s Modulus of the composite lamina is stochastic. Based on this premise, the 𝐸1 Young’s Modulus is modeled129

as homogeneous RF within the structural domain and is integrated into the Stochastic Finite Element Analysis (SFEA)130

that is performed per optimization iteration (see [32], [33]). Finally, the corresponding Topology and Discrete Fiber131

Orientation Optimization Problem (TDFOOP) is formulated step-by-step for the minimization of the robust compliance132

function.133

The remaining part of this study is organized as follows: As the developed methodology relies on the existing134

mathematical framework of deterministic Topology and Discrete Fiber Orientation Optimization (TDFOO), to ensure135

comprehensiveness, an overview of the specific optimization problem is provided in Sec. (2). Subsequently, the136

formulation of the robust TDFOOP under principal material uncertainty is carried out in two successive parts. The137

first part, covered in Sec. (3), outlines the process of intrusively incorporating the spatial material variability into the138

SFEA nested within the optimization cycle. Additionally, the formulation of the SFEA is analytically conducted using139

the first-order Perturbation-Taylor series expansion method to approximate the current state variables. The second part,140

covered in Sec. (4), establishes the robust TDFOOP for minimizing the robust compliance function and performs the141

sensitivity analysis for the involved design functions. To demonstrate the developed methodology and assess the impact142

of different material variability parameterizations on the final robust designs, numerical examples are presented in Sec.143

(5). Lastly, the paper concludes in Sec. (6), where the authors present potential extensions, modifications, and discuss144

areas for further improvement of the proposed methodology.145

2. Deterministic Topology and Discrete Fiber Orientation Optimization146

This section summarizes the steps involved in formulating the elasticity tensor for the (𝑒) FE in the structural domain147

for the deterministic TDFOOP. In the authors’ view, it is convenient to first revisit the mathematical framework of the148

deterministic TDFOOP prior to proceeding to its stochastic formulation, as it establishes the necessary groundwork for149

formulating the latter. The current section is structured as follows: Sec. (2.1) provides an overview of the conventional150

Discrete Fiber Orientation Optimization Problem (DFOOP), and lists the thus far state-of-the-art techniques for151

parametrizing the mechanical properties of the candidates within the FE domain. Next, in Sec. (2.2), the DFOOP152

is combined with the TOP to derive the mathematical expression for the FE’s elasticity tensor.153
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2.1. Discrete Fiber Orientation Optimization154

Discrete material optimization seeks to identify the most suitable material for a given design domain from a pre-155

defined list of candidate materials. The candidate materials are indirectly represented on this list via their mechanical156

properties, and an interpolation scheme is employed to parameterize those within the domain of interest. In the case157

where each FE in the domain constitutes a separate domain of interest, the parameterization scheme reads as follows:158

[

𝐶𝑒(𝝃𝑒)

]

= 𝑁𝑒1(𝝃𝑒) ⋅
[

𝐶1
]

+⋯ +𝑁𝑒𝑛𝑐 (𝝃𝑒) ⋅
[

𝐶𝑛𝑐

]

=
𝑛𝑐
∑

𝑖=1
𝑁𝑒𝑖(𝝃𝑒) ⋅

[

𝐶𝑖
]

... 𝑒 = 1 ∶ 𝑛𝑒, (1)

s.t.
𝑛𝑐
∑

𝑖=1
𝑁𝑒𝑖(𝝃𝒆) = 1, (2)

where the subscript (𝑒) enumerates the FE after discretizing the structural domain into 𝑛𝑒 FEs, 𝑛𝑐 is the number of159

candidate materials assigned to it, [𝐶𝑖
] is the elasticity tensor representing the (

𝑖𝑡ℎ
) in order candidate material, and160

𝑁𝑒𝑖 ∈
[

0, 1
] the weight assigned to it, expressed as an explicit function of the so-called material design variable161

vector 𝝃𝑒. The objective of the Material Optimization Problem (MOP) is to solve for each 𝝃𝑒 design variable vector by162

optimizing the performance metric function. At the end of the optimization cycle, a unique material must be identified163

from the list for the FE, and to enforce this requirement, each FE is subject to the constraint of Eq. (2).164

In the context of discrete fiber orientation optimization, the candidate materials are the different effective165

mechanical properties of the lamina, each tied to a distinct candidate fiber orientation. The effective mechanical166

property corresponding to the 𝜃𝑖 candidate fiber orientation is computed by passing the principal elasticity tensor167

of the lamina through the following second-order transformation:168

[

𝐶𝑖
]

=
[

𝑇𝑖
]

⋅
[

𝐶𝑝
]

⋅
[

𝑇𝑖
]𝑇 … 𝑖 = 1 ∶ 𝑛𝑐 , (3)

where [

𝑇𝑖
] is the transformation matrix associated with the 𝜃𝑖 candidate fiber orientation and [

𝐶𝑝
] is the in-plane169

elasticity tensor corresponding to the principal coordinate system of the lamina. Considering the 2D case, the [𝑇𝑖
] and170

[

𝐶𝑝
] matrices are defined as follows:171

[

𝑇𝑖
]

=
⎡

⎢

⎢

⎣

cos2(𝜃𝑖) sin2(𝜃𝑖) −2 ⋅ cos(𝜃𝑖) ⋅ sin(𝜃𝑖)
sin2(𝜃𝑖) cos2(𝜃𝑖) 2 ⋅ cos(𝜃𝑖) ⋅ sin(𝜃𝑖)

cos(𝜃𝑖) ⋅ sin(𝜃𝑖) − cos(𝜃𝑖) ⋅ sin(𝜃𝑖) cos2(𝜃𝑖) − sin2(𝜃𝑖)

⎤

⎥

⎥

⎦

,
[

𝐶𝑝
]

=

⎡

⎢

⎢

⎢

⎣

1
𝐸1

− 𝑣12
𝐸1

0

− 𝑣12
𝐸1

1
𝐸2

0

0 0 1
𝐺12

⎤

⎥

⎥

⎥

⎦

−1

, (4)

where 𝐸1, 𝐸2 are the Young’s moduli along the major and minor axis of the lamina, respectively, and 𝐺12, 𝑣12 are the172

in-plane shear modulus and Poisson’s ratio, respectively.173

To perform the interpolation of Eq. (1), different techniques can be employed from the literature. Table 1 lists174

the weight functions proposed in the literature for the conventional discrete fiber orientation optimization. In the175

mathematical expression of the weight functions, the semicolon indicates that 𝑝𝜃 ∈ ℝ+ is a design parameter specific to176

each technique, and for all techniques serves the purpose of shifting the intermediate values of the penalized quantity177

toward its discrete binary values, so as to ensure that a unique material is identified for the FE at the end of the178

optimization.179

2.2. Formulation of the FE’s elasticity tensor for the deterministic TDFOO180

The density-based topology optimization is combined with discrete fiber orientation optimization by multiplying181

the parameterized mechanical property of Eq. (1) with the true relative density 𝑥𝑒 ∈
[

𝑥𝑒𝑚𝑖𝑛 , 1
]

of the FE, where 𝑥𝑒𝑚𝑖𝑛 a182

very small positive value. To achieve smoothness in both the morphology and topology distribution of the final design,183

filters are applied to the crude design variables of each individual optimization problem. More specifically, smoothing184

in the topology of the domain is achieved by passing the relative densities through the following filter:185
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Method Weight 𝑁𝑒𝑖(𝝃𝒆;𝑝𝜃) Bounds

DMO4 [6] 𝜉𝑝𝜃𝑒𝑖 ⋅
𝑛𝑐
∏

𝑗=1
𝑗≠𝑖

(

1 −
(

𝜉𝑒𝑗
)𝑝𝜃)

𝝃𝒆 ∈
[

0, 1
]𝑛𝑐

DMO5 [6]
�̂�𝑒𝑖

𝑛𝑐
∑

𝑖=1
�̂�𝑒𝑖

with �̂�𝑒𝑖 = 𝜉𝑝𝜃𝑒𝑖 ⋅
𝑛𝑐
∏

𝑗=1
𝑗≠𝑖

(

1 −
(

𝜉𝑒𝑗
)𝑝𝜃 )

𝝃𝒆 ∈
[

0, 1
]𝑛𝑐

SFP [7, 8]

(

1
4 ⋅

2
∏

𝑗=1

(

1 + 𝜉𝑒𝑗 ⋅ 𝜉𝑖𝑗
)

)𝑝𝜃

, 𝑖 = 1 ∶ 4 𝝃𝒆 ∈
[

− 1, 1
]2

BCP [9]

(

1
2𝑘 ⋅

𝑘
∏

𝑗=1

(

1 + 𝜉𝑒𝑗 ⋅ 𝜉𝑖𝑗
)

)𝑝𝜃

, 𝑘 = ⌈log2 𝑛𝑐⌉ 𝝃𝒆 ∈
[

− 1, 1
]

⌈log2 𝑛𝑐⌉

where

𝜉𝑖𝑗 =

⎧

⎪

⎨

⎪

⎩

1 𝑖 ∈
[

1, 2𝑗−1
]

−1 𝑖 ∈
[

2𝑗−1, 2𝑗
]

𝜉𝑚𝑗 𝑚 ∈
[

2𝑗 + 1, 2𝑘
]

where 𝑚 = 2⌈log2 𝑖⌉ + 1 − 𝑖

NDFO [10] �̂�𝑒𝑖
𝑛𝑐
∑

𝑖=1
�̂�𝑒𝑖

with �̂�𝑒𝑖 = 𝑒
− (𝜉𝑒−𝑖)2

2⋅𝑝2𝜃 1 ≤ 𝜉𝑒 ≤ 𝑛𝑐

Table 1
The weight function associated with each material interpolation technique proposed in the literature.

�̃�𝑒 =

∑

𝑗𝑒∈ℕ𝑒

(

1 − ‖𝒙𝑗𝑒𝑐 −𝒙𝑒𝑐‖
𝑅

)

⋅ 𝑥𝑗𝑒

∑

𝑗𝑒∈ℕ𝑒

(

1 − ‖𝒙𝑗𝑒𝑐 −𝒙𝑒𝑐‖
𝑅

) … 𝑒 = 1 ∶ 𝑛𝑒, 𝒙𝑗𝑒𝑐 ∈ Ω𝑒, (5)

where �̃�𝑒 is the physical relative density of the (𝑒) FE, (𝑗𝑒
) is its neighboring FE of true relative density 𝑥𝑗𝑒 with its186

centroid 𝒙𝑗𝑒𝑐 located within the filter radius 𝑅 that counts from the centroid 𝒙𝑒𝑐 of (𝑒), and ℕ𝑒 is the set of FEs within187

the neighborhood of (𝑒). Denoting, for the sake of brevity, the ratio of the centroidal distance between two neighbor188

FEs to the filter radius as 𝑑𝑗𝑒𝑒, Eq. (5) is simplified as follows:189

�̃�𝑒 =

∑

𝑗𝑒∈ℕ𝑒

(

1 − 𝑑𝑗𝑒𝑒
)

⋅ 𝑥𝑗𝑒
∑

𝑗𝑒∈ℕ𝑒

(

1 − 𝑑𝑗𝑒𝑒
) . (6)

To enforce intermediate values of the physical relative densities towards the 0/1 bounds, they are either penalized190

by a parameter 𝑝 ∈ ℝ≥1 or pass through a dynamic Heaviside-type transformation [34]. For the sake of simplicity191

throughout the development of the methodology in the upcoming sections, the former projection approach is adopted192

in this work.193

To smooth the morphology of the structural domain, the above filtering process is repeated for each individual194

component 𝑖 of the FE’s weight functions. To account, however, for the fact that the topology, and thereby the195
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morphology, of the void FEs do not contribute to the overall stiffness of the structural domain, the filter for the weight196

functions is designed to suppress the impact of the near-void FEs’ morphology throughout the filtering process of the197

domain’s morphology [35]:198

�̃�𝑒𝑖 =

∑

𝑗𝑒∈ℕ𝑒

(

1 − 𝑑𝑗𝑒𝑒
)

⋅𝑁 𝑗𝑒𝑖(𝝃𝒋𝒆 )
⋅ �̃�𝑝𝑗𝑒

∑

𝑗𝑒∈ℕ𝑒

(

1 − 𝑑𝑗𝑒𝑒
)

⋅ �̃�𝑝𝑗𝑒

. (7)

Hence, by including the physical relative densities of the neighboring FEs in the filtering process of the weight199

functions, it is ensured that the morphology of each FE (𝑒) is primarily impacted by the morphology of its non-void200

neighboring FEs. Similar to the physical relative densities, to enforce intermediate values of each weight function201

towards its 0/1 bounds, it is either penalized by a parameter 𝑝𝑛 ∈ ℝ≥1 or undergoes a dynamic Heaviside-type202

transformation. Again, for simplicity purposes, the former projection approach is adopted for the weight functions.203

Finally, the elasticity tensor of the (𝑒) FE for the deterministic TDFOOP is expressed in terms of the physical design204

variables �̃�𝑒 and �̃�𝑒𝑖 as follows:205

[

𝐶𝑒(�̃�𝑒,�̃�𝑒)

]

= �̃�𝑝𝑒 ⋅

( 𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝐶𝑖
]

)

… 𝑒 = 1 ∶ 𝑛𝑒, (8)

s.t. ∑ 𝑛𝑐
𝑖=1�̃�

𝑝𝑛
𝑒𝑖 − 1 = 0,

where the bold symbol notation is utilized in Eq. (8) to represent the physical weight functions of the FE in a vector206

format. It is emphasized that both the physical relative density and weight functions of the FE form explicit functions207

of the true relative densities of its neighboring FEs. Moreover, the physical weight functions are explicit functions of208

the orientation variable vector of its neighboring FEs 𝝃𝑗𝑒 . Although these dependencies are important to bear in mind,209

they have been omitted in Eq. (8) for notational brevity.210

3. Robust TDFOO- Pt. I: Incorporation of the principal material variability into the SFEA211

In this section, the spatial variability in the engineering constants of the composite lamina is incorporated into212

the nested SFEA that is performed at each iteration of the robust TDFOO loop. The current section is structured as213

follows: in Sec. (3.1), the Young’s modulus along the major axis of the composite lamina is assumed to be stochastic214

and is modeled as a homogeneous RF within the composite domain. As a result, the originally deterministic principal215

elasticity tensor of Eq. (4) becomes itself stochastic which, in the framework of the FE-based DFOO, after undergoing216

the respective in-plane transformations of Eq. (3) generates a set of candidate stochastic effective elasticity tensors217

for the FE. Sec. (3.2) formulates the SFEA that is carried out at each iteration of the robust TDFOO loop to compute218

the current state vectors of the physical system. As the states of the physical system are conditioned on its current219

topology and morphology, a different state is realized per iteration of the optimization loop. For this reason, the SFEA220

is formulated in this section assuming that we are found at a specific iteration 𝑛 (or design point) inside the optimization221

cycle, where a particular morphology and topology have already been realized for the structural domain.222

3.1. Formulation of the FE’s elasticity tensor for the robust TDFOO223

To formulate the mathematical framework of the methodology, the spatial variability is assumed in the 𝐸1 Young’s224

Modulus along the major axis of the composite lamina. The reasoning behind this assumption stems from that the225

mechanical performance of composite structures —especially 3D printed structures— is primarily dictated by the226

properties of the fiber, and thereby, variations in 𝐸1 may have a much more substantial effect on the overall structural227

response compared to those in 𝐸2 or 𝐺12. Based on this premise, the variability in 𝐸1 is modeled as a homogeneous228

RF within the structural domain and is denoted as 𝐸1 ∼ 
(

𝜇𝐸1
, 𝜎2𝐸1

)

, where 𝜇𝐸1
and 𝜎2𝐸1

represent the constant229

true mean and variance of the field, respectively. Concerning the representation of the RF within the structural domain,230

various discretization techniques can be utilized for this purpose. Among these, the midpoint technique [36] is preferred231

in this study primarily due to its simplicity, wherein the RF is represented at the centroid 𝒙𝑒𝑐 of each FE (𝑒). Thus,232

employing the K-L series expansion technique to model the RF reads as follows:233

Ypsilantis et al.: Preprint submitted to Elsevier Page 6 of 30



𝑋1(𝒙𝑒𝑐 ,𝒛) = 𝜇𝐸1
+

𝑀
∑

𝑚=1

√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑒𝑐 ) ⋅ 𝑧𝑚, where 𝑧𝑚 ∼  (0, 1) , (9)

where 𝑋1(𝒙𝑒𝑐 ,𝒛) is the approximation of the 𝐸1 stochastic property at the centroid 𝒙𝑒𝑐 of the (𝑒) FE. After decomposing234

the covariance matrix, which contains the spatial correlation of the stochastic property at the FE centroids scaled by235

the variance of the RF, the stochastic property is represented by a finite series of 𝑀 stochastic variables. The stochastic236

variables 𝑧𝑚=1∶𝑀 follow the standard normal distribution and are independent, i.e. 𝔼 [

𝑧𝑙 ⋅ 𝑧𝑘
]

= 𝛿𝑙𝑘, where 𝛿𝑙𝑘 the237

Kronecker delta function. Lastly, 𝜆𝑚 and 𝜙𝑚(𝒙𝑒𝑐 ) are the eigenvalues and corresponding orthogonal eigenfunctions238

derived after decomposing the covariance matrix.239

Substituting in Eq. (4), the deterministic 𝐸1 Young’s Modulus with its stochastic formulation in Eq. (9), the240

principal elasticity tensor reads as follows:241

[𝐶𝑝(𝒙𝑒𝑐 ,𝒛)] = [𝑆𝑝(𝒙𝑒𝑐 ,𝒛)]
−1 =

⎡

⎢

⎢

⎢

⎢

⎣

1
𝑋1(𝒙𝑒𝑐 ,𝒛)

−𝑣21
𝐸2

0
−𝑣12

𝑋1(𝒙𝑒𝑐 ,𝒛)

1
𝐸2

0

0 0 1
𝐺12

⎤

⎥

⎥

⎥

⎥

⎦

−1

=

⎡

⎢

⎢

⎢

⎢

⎣

−
𝑋1(𝒙𝑒𝑐 ,𝒛)

𝑣12⋅𝑣21−1
− 𝐸2⋅𝑣12

2⋅(𝑣12⋅𝑣21−1)
−

𝑋1(𝒙𝑒𝑐 ,𝒛)
⋅𝑣21

2⋅(𝑣12⋅𝑣21−1)
0

− 𝐸2⋅𝑣12
2⋅(𝑣12⋅𝑣21−1)

−
𝑋1(𝒙𝑒𝑐 ,𝒛)

⋅𝑣21
2⋅(𝑣12⋅𝑣21−1)

− 𝐸2
(𝑣12⋅𝑣21−1)

0
0 0 𝐺12

⎤

⎥

⎥

⎥

⎥

⎦

(10)
From Eq. (10), it is observed that only some of the tensor’s entries contain the RF while others remain constant242

terms. Applying the transformation of Eq. (3) to the stochastic principal elasticity tensor for any candidate fiber243

orientation 𝜃𝑖 ∈ (−90, 0)◦ ∪ (0, 90)◦, the resulting stochastic effective elasticity tensor
[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

can be expressed244

into the following format:245

[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

=

⎡

⎢

⎢

⎢

⎣

𝑎11 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏11 𝑎12 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏12 𝑎13 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏13
𝑎21 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏21 𝑎22 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏22 𝑎23 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏23
𝑎31 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏31 𝑎32 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏32 𝑎33 ⋅𝑋1(𝒙𝑒𝑐 ,𝒛) + 𝑏33

⎤

⎥

⎥

⎥

⎦

(11)

where 𝑎𝑖𝑗 and 𝑏𝑖𝑗 , with (𝑖, 𝑗) =1:3, are constant terms arising from the transformation of Eq. (3). It is noted that the above246

format can be reached for the {−90◦, 0◦, 90◦} angles as well by adding (or subtracting, alternatively) to their values247

some small term 𝜏 > 0. Expanding the RF at each entry of the tensor according to Eq. (9), the tensor is decomposed248

as follows:249

[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

=
⎡

⎢

⎢

⎣

𝑎11 ⋅ 𝜇𝐸1
+ 𝑏11 𝑎12 ⋅ 𝜇𝐸1

+ 𝑏12 𝑎13 ⋅ 𝜇𝐸1
+ 𝑏13

𝑎21 ⋅ 𝜇𝐸1
+ 𝑏21 𝑎22 ⋅ 𝜇𝐸1

+ 𝑏22 𝑎23 ⋅ 𝜇𝐸1
+ 𝑏23

𝑎31 ⋅ 𝜇𝐸1
+ 𝑏31 𝑎32 ⋅ 𝜇𝐸1

+ 𝑏32 𝑎33 ⋅ 𝜇𝐸1
+ 𝑏33

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝐶0
𝑖
]

+
⎡

⎢

⎢

⎣

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝐴𝑖]

⋅

( 𝑀
∑

𝑚=1

√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑒𝑐 ) ⋅ 𝑧𝑚

)

⇒

[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

=
[

𝐶0
𝑖
]

+
[

𝐴𝑖
]

⋅

( 𝑀
∑

𝑚=1

√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑒𝑐 ) ⋅ 𝑧𝑚

)

… 𝑖 = 1 ∶ 𝑛𝑐 , (12)

where [𝐶0
𝑖
] and [

𝐴𝑖
] are constant matrices defined as shown in Eq. (12). In other words, the stochastic effective elastic250

tensor tied to the 𝜃𝑖 candidate fiber orientation can be decomposed into the sum of a constant (mean) matrix [

𝐶0
𝑖
] and251

a series of 𝑀 perturbation (stochastic) matrices [𝐴𝑖
]

⋅
(

∑𝑀
𝑚=1

√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑒𝑐 ) ⋅ 𝑧𝑚
)

.252
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Lastly, similar to the deterministic case, the topology optimization problem is combined with the now stochastic253

discrete fiber orientation optimization problem by multiplying the parameterized stochastic elasticity tensor of the FE254

with its physical relative density. Implementing the steps outlined in Sec. (2.2), the stochastic elasticity tensor of the255

(𝑒) FE for the robust TDFOOP reads as follows:256

[

𝐶𝑒(�̃�𝑒,�̃�𝑒,𝒛)

]

= �̃�𝑝𝑒 ⋅

( 𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

)

, (13)

where now
[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

is the stochastic candidate elasticity tensor associated with the 𝜃𝑖 candidate fiber orientation257

computed at the centroid 𝒙𝑒𝑐 of the FE.258

3.2. SFEA by means of the Perturbation-Taylor series expansion method259

The current subsection formulates the SFEA conducted at each iteration of the robust TDFOO loop, and is organized260

as follows: first, in Sec. (3.2.1) the stochastic stiffness matrix is derived for the (𝑒) FE and next for the whole structural261

domain. Following, in Sec. (3.2.2), the SFEA is performed for the structural domain employing the first-order Taylor262

series expansion method.263

3.2.1. Derivation of the FE’s stochastic stiffness matrix264

Substituting the elasticity tensor of Eq. (13) into the volume integral that computes the stiffness matrix of the FE,265

reads as follows:266

[

𝑘𝑒(�̃�𝑒,�̃�𝑒,𝒛)
]

= �̃�𝑝𝑒 ⋅

(

∫𝑉𝐸

[

𝐵𝑒
]𝑇

⋅

( 𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝐶𝑖(𝒙𝑒𝑐 ,𝒛)

]

)

⋅
[

𝐵𝑒
]

𝑑𝑉

)

=

�̃�𝑝𝑒 ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
(

∫𝑉𝐸

[

𝐵𝑒
]𝑇

⋅
[

𝐶0
𝑖
]

⋅
[

𝐵𝑒
]

𝑑𝑉
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝑘0𝑖
]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

+ �̃�𝑝𝑒 ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑒𝑐 ) ⋅

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
(

∫𝑉𝐸

[

𝐵𝑒
]𝑇

⋅
[

𝐴𝑖
]

⋅
[

𝐵𝑒
]

𝑑𝑉
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[𝛿𝑘𝑖]

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

⋅ 𝑧𝑚

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= �̃�𝑝𝑒 ⋅
𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝑘0𝑖
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝑘0𝑒(�̃�𝑒,�̃�𝑒)

]

+ �̃�𝑝𝑒 ⋅
√

𝜆1 ⋅ 𝜙1(𝒙𝑒𝑐 ) ⋅

( 𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝛿𝑘𝑖
]

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝛿𝑘1𝑒(�̃�𝑒,�̃�𝑒)

]

⋅𝑧1 +…+ �̃�𝑝𝑒 ⋅
√

𝜆𝑀 ⋅ 𝜙𝑀(𝒙𝑒𝑐 ) ⋅

( 𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 ⋅
[

𝛿𝑘𝑖
]

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
[

𝛿𝑘𝑀𝑒(�̃�𝑒,�̃�𝑒)

]

⋅𝑧𝑀 ⇒

[

𝑘𝑒(�̃�𝑒,�̃�𝑒,𝒛)
]

=
[

𝑘0𝑒(�̃�𝑒,�̃�𝑒)

]

+
𝑀
∑

𝑚=1

[

𝛿𝑘𝑚𝑒(�̃�𝑒,�̃�𝑒)

]

⋅ 𝑧𝑚 (14)

where 𝑉𝐸 is the volume of the FE, [𝐵𝑒
] is the Jacobian matrix of the FE’s shape functions, and [

𝑘0𝑒
] and

[

𝛿𝑘𝑚𝑒(�̃�𝑒,�̃�𝑒)

]

⋅267

𝑧𝑚 are the mean and the 𝑚𝑡ℎ stochastic part of the FE’s stiffness matrix, respectively. Aggregating the individual268

stiffness matrices of all 𝑛𝑒 FEs inside the domain, the global stochastic stiffness matrix is expressed in the same manner269

as:270

[

𝐾(�̃�,�̃� ,𝒛)
]

=
[

𝐾0(�̃�,�̃�)
]

+
𝑀
∑

𝑚=1

[

Δ𝐾𝑚(�̃�,�̃�)
]

⋅ 𝑧𝑚 (15)
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where271

[

𝐾0(�̃�,�̃�)
]

←

𝑛𝑒
⨄

𝑒=1

[

𝑘0𝑒(�̃�𝑒,�̃�𝑒)

]

,
[

Δ𝐾𝑚(�̃�,�̃�)
]

←

𝑛𝑒
⨄

𝑒=1

[

𝛿𝑘𝑚𝑒(�̃�𝑒,�̃�𝑒)

]

, �̃� =
𝑛𝑒
⋃

𝑒=1
�̃�𝑒 and �̃� =

𝑛𝑒
⋃

𝑒=1
�̃�𝑒.

3.2.2. Computation of the system’s state variables by means of the first-order perturbation method272

Perturbation methods are essentially local Taylor series expansions of the response function. In the context of273

static SFEA, the response function corresponds to each nodal displacement 𝑢𝑗 inside the global displacement vector274

𝑼 (�̃�,�̃� ,𝒛) and the local Taylor series is formulated around the mean of the stochastic variables. Consequently, employing275

a first-order Taylor series expansion for each nodal displacement around the mean 𝒛 = 𝟎 of the stochastic variables,276

the global displacement vector is approximated as follows:277

𝑼 (�̃�,�̃� ,𝒛) = 𝑼 0(�̃�,�̃�) +
𝑀
∑

𝑚=1

𝑑𝑼 (�̃�,�̃� ,𝒛)

𝑑𝑧𝑚

|

|

|

|

|𝒛=𝟎
⋅ 𝑧𝑚

𝑑𝑼
𝑑𝑧𝑚

|

|

|

|𝒛=𝟎
=𝑼 𝐼

𝑚(�̃�,�̃�)
⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 𝑼 (�̃�,�̃� ,𝒛) = 𝑼 0(�̃�,�̃�) +

𝑀
∑

𝑚=1
𝑼 𝐼

𝑚(�̃�,�̃�)
⋅ 𝑧𝑚,

(16)
where 𝑼 0(�̃�,�̃�) is the global mean displacement vector and 𝑼 𝐼

𝑚(�̃�,�̃�)
its first-order derivative vector 𝑤.𝑟.𝑡. the random278

variable 𝑧𝑚 at 𝒛 = 𝟎. Figure (1) illustrates the first-order perturbation method for the 𝑢𝑗 nodal displacement at two279

successive iterations 𝑛, 𝑛+1 of the robust TDFOO loop - the figure also highlights that different states are realized for280

the 𝑢𝑗 nodal displacement as the optimization progresses. At each iteration of the optimization loop, the state vectors281

are computed by satisfying the discrete governing equations of the physical system. For the static linear problem, these282

read as follows:283

[

𝐾(�̃�,�̃� ,𝒛)
]

⋅ 𝑼 (�̃�,�̃� ,𝒛) = 𝑭 0 ⇔

(

[

𝐾0(�̃�,�̃�)
]

+
𝑀
∑

𝑚=1

[

Δ𝐾𝑚(�̃�,�̃�)
]

⋅ 𝑧𝑚

)

⋅

(

𝑼 0(�̃�,�̃�) +
𝑀
∑

𝑚=1
𝑼 𝐼

𝑚(�̃�,�̃�)
⋅ 𝑧𝑚

)

= 𝑭 0,

(17)
where 𝑭 0 is the external load vector considered in this work both deterministic and independent of the design variables.284

The state vectors of the system𝑼 0(�̃�,�̃�),𝑼 𝐼
𝑚=1∶𝑀(�̃�,�̃�)

are computed by equating the coefficients that multiply the same285

𝑧𝑚 variable on each side of the equation, and then solving the resulting 𝑀 + 1 linear systems:286

∙ 𝒓0(�̃�,�̃�) ∶
[

𝐾0(�̃�,�̃�)
]

⋅ 𝑼 0(�̃�,�̃�) − 𝑭 0 = 𝟎 (18)

∙ 𝒓𝑚(�̃�,�̃�) ∶
[

𝐾0(�̃�,�̃�)
]

⋅ 𝑼 𝐼
𝑚(�̃�,�̃�)

+
[

Δ𝐾𝑚(�̃�,�̃�)
]

⋅ 𝑼 0(�̃�,�̃�) = 𝟎… 𝑚 = 1 ∶ 𝑀. (19)

4. Robust TDFOO- Pt. II: Formulation of the robust TDFOOP287

This section formulates the robust TDFOOP for minimization of the robust compliance function, and it is structured288

as follows: Sec. (4.1) formulates the expression for the robust compliance function. In Sec. (4.2), the resulting robust289

TDFOOP is posed and in Sec. (4.3), the sensitivities of the design functions involved in the optimization problem are290

analytically derived.291

4.1. Formulation of the robust compliance function292

When designing for robustness, the two statistical moments of the robust compliance function represent a trade-off293

between reward (mean) and risk (standard deviation) [37]. Therefore, the robust compliance minimization problem is294

typically posed as a bi-variate optimization problem seeking to minimize simultaneously the mean and the standard295
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Figure 1: Following the first-order Taylor series approximation, the nodal displacement 𝑢𝑗(�̃�,�̃� ,𝒛) of the physical system is
approximated by a hyperplane about the mean of the stochastic variables. The concept is illustrated here for the case of
two stochastic variables, i.e. M=2. The states are conditional on the current design point, and therefore, different states
are realized between the successive iterations 𝑛 and 𝑛 + 1 of the robust TDFOO loop.

deviation of the robust compliance function. The standard approach is to combine the two objectives into a single-296

objective function. The most popular technique for performing this conversion is the weighted sum method, whereby297

the single-objective function reads as:298

𝑓(�̃�,�̃�) = 𝑤1 ⋅ 𝜇𝑓 (�̃�,�̃�) +𝑤2 ⋅ 𝜎𝑓 (�̃�,�̃�), (20)
where 𝑓(�̃�,�̃�) is the robust compliance function to be minimized, 𝜇𝑓 (�̃�,�̃�) and 𝜎𝑓 (�̃�,�̃�) are the mean and standard299

deviation of the compliance function, respectively, and (𝑤1, 𝑤2) ∈ ℕ+ are predefined weights assigned to each one of300

them. The mean compliance function 𝜇𝑓 (�̃�,�̃�) is analyzed as follows:301

𝜇𝑓 (�̃�,�̃�) = 𝔼
[

𝑭 𝑇
0 ⋅ 𝑼 (�̃�,�̃� ,𝒛)

]

= 𝑭 𝑇
0 ⋅ 𝑼 0(�̃�,�̃�), (21)

while the standard deviation function 𝜎𝑓 (�̃�,�̃�), equals to the square root of its variance function 𝑣𝑓 (�̃�,�̃�):302

𝜎𝑓 (�̃�,�̃�) =
√

𝑣𝑓 (�̃�,�̃�) where 𝑣𝑓 (�̃�,�̃�) = ℂ𝕆𝕍 1
[

𝑭 𝑇
0 ⋅ 𝑼 (�̃�,�̃� ,𝒛),𝑭

𝑇
0 ⋅ 𝑼 (�̃�,�̃� ,𝒛)

]

, (22)
where ℂ𝕆𝕍 1 [⋅, ⋅] is the covariance operator, and the subscript 1 indicates that the state variables are a first-order Taylor303

series approximation of the stochastic variables 𝒛. The variance function is analyzed further as follows:304

𝑣𝑓 (�̃�,�̃�) = 𝑭 𝑇
0 ⋅

( 𝑀
∑

𝑚=1

𝑀
∑

𝑙=1
𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
(

𝑼 𝐼
𝑙(�̃�,�̃�)

)𝑇
⋅ 𝔼

[

𝑧𝑙 ⋅ 𝑧𝑚
]

)

⋅ 𝑭 0 ⇒

𝑣𝑓 (�̃�,�̃�) = 𝑭 𝑇
0 ⋅

( 𝑀
∑

𝑚=1

𝑀
∑

𝑙=1
𝑼𝑇

𝑚(�̃�,�̃�)
⋅
(

𝑼 𝐼
𝑙(�̃�,�̃�)

)𝑇
⋅ 𝛿𝑙𝑚

)

⋅ 𝑭 0 = 𝑭 𝑇
0 ⋅

( 𝑀
∑

𝑚=1
𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
)

⋅ 𝑭 0. (23)
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As the order of magnitude of the standard deviation function is oftentimes lower than that of the mean function, the305

coefficients (𝑤1, 𝑤2) in Eq. (20) must be tuned properly to avoid overlooking it throughout the optimization process. In306

this respect, normalization techniques prove to be useful in order to even out the significance between the two functions307

and bring them to approximately the same order of magnitude. To this end, the normalization technique proposed in [29]308

is adopted in this work, where the authors normalized the mean and standard deviation functions by the corresponding309

coordinate of the so-called utopia point in the criterion space —in the framework of multi-objective optimization,310

each coordinate of the utopia point in the criterion space is determined by minimizing each of the involved objectives311

separately—. Assuming in the present case that the coordinates of the utopia point are
(

𝜇★

𝑓 , 𝜎
★

𝑓

)

, each obtained by312

minimizing the mean and the standard deviation functions separately, the expression for the robust compliance function313

of Eq. (20) is modified more efficiently as follows:314

𝑓(�̃�,�̃�) = 𝑤 ⋅
𝜇𝑓 (�̃�,�̃�)

𝜇★

𝑓

+ (1 −𝑤) ⋅
𝜎𝑓 (�̃�,�̃�)

𝜎★𝑓
, (24)

with 𝑤 ∈ [0, 1] a weight parameter. The expression in Eq. (24) is better scaled compared to that of Eq. (20) as315

the normalized objectives 𝜇𝑓 (�̃�,�̃�)

𝜇★𝑓
and 𝜎𝑓 (�̃�,�̃�)

𝜎★𝑓
range roughly in the same order of magnitude. Therefore, the robust316

compliance function to be minimized throughout the remainder of the paper is that of Eq. (24), nevertheless, for the317

sake of brevity, the initial formatting introduced in Eq. (20) is preserved, and the two weights 𝑤1 and 𝑤2 are set equal318

to 𝑤1 =
𝑤
𝜇★𝑓

and 𝑤2 =
1−𝑤
𝜎★𝑓

, respectively.319

4.2. Formulation of the robust TDFOOP320

Both the mean and the standard deviation functions are expressed in terms of the physical design variables321

𝑷 =
[

�̃�, �̃�
], they are minimized, however, 𝑤.𝑟.𝑡. the true design variables. The robust TDFOOP for minimization of322

the robust compliance function is subject to: (1) the physical system’s discretized governing equations constraints of323

Eqs. (26, 27), (2) the volume constraint of Eq. (28), (3) the self-complementary condition imposed on the penalized324

filtered weights of Eq. (29), and (4) the side constraints of the true design variables of Eq. (30):325

Find
[

(

𝑥1, 𝝃1
)

, ⋯ ,
(

𝑥𝑛𝑒 , 𝝃𝑛𝑒
)

]

by solving:326

argmin
(�̃�,�̃�)

𝑓(�̃�,�̃�) = 𝑤1 ⋅ 𝜇𝑓 (�̃�,�̃�) +𝑤2 ⋅ 𝜎𝑓 (�̃�,�̃�), (25)

subject to:
𝒓0(𝑼0;�̃�,�̃�) ∶

[

𝐾0(�̃�,�̃�)
]

⋅ 𝑼 0(�̃�,�̃�) − 𝑭 0 = 𝟎, (26)
𝒓𝑚(𝑼 𝐼

𝑚,𝑼0;�̃�,�̃�) ∶
[

𝐾0(�̃�,�̃�)
]

⋅ 𝑼 𝐼
𝑚(�̃�,�̃�)

+
[

Δ𝐾𝑚(�̃�,�̃�)
]

⋅ 𝑼 0(�̃�,�̃�) = 𝟎 … 𝑚 = 1 ∶ 𝑀, (27)
𝑉𝑡(�̃�)

𝑉0
= 𝑓𝑣 ⇒ ℎ𝑣(�̃�) ∶

𝑉𝑡(�̃�)

𝑓𝑣 ⋅ 𝑉0
− 1 = 0, (28)

ℎ𝑒(�̃�𝒆) ∶
𝑛𝑐
∑

𝑖=1
�̃�𝑝𝑛

𝑒𝑖 − 1 = 0 … 𝑒 = 1 ∶ 𝑛𝑒, (29)

𝑥𝑒min
≤ 𝑥𝑒 ≤ 1, 𝝃𝑒min

≤ 𝝃𝑒 ≤ 𝝃𝑒max
… 𝑒 = 1 ∶ 𝑛𝑒, (30)
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where 𝑉𝑡(�̃�) is the target volume for the structural domain corresponding to the fraction 𝑓 𝑣 of its initial 𝑉0, and the327

side constraints concerning the 𝝃𝒆 variables of Eq. (30) are defined as listed in Table 1 depending on the technique328

selected to perform the parameterization of the candidates.329

To solve the above optimization problem using gradient-based solution algorithms, the first-order derivatives of all330

design functions are required. The procedure for analytically deriving those is detailed next.331

4.3. Sensitivity analysis of the design functions332

As mentioned previously, the objective is to compute the gradient of all design functions 𝑤.𝑟.𝑡. the true design333

variables. Starting with the true relative densities, the derivative of the robust compliance function 𝑤.𝑟.𝑡. the relative334

density 𝑥𝑒 of the (𝑒) FE reads as:335

∙
𝑑𝑓(�̃�,�̃�)

𝑑𝑥𝑒
= 𝑤1 ⋅

𝑑𝜇𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
+𝑤2 ⋅

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
, (31)

where the partial derivative of the mean compliance function 𝑤.𝑟.𝑡. the relative density 𝑥𝑒 is analyzed as follows:336

𝑑𝜇𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
= 𝑭 𝑇

0 ⋅
𝑑𝑼 0(�̃�,�̃�)

𝑑𝑥𝑒
= 𝑭 𝑇

0 ⋅

(

∑

𝑗𝑒∈ℕ𝑒

[

𝑑𝑼 0(�̃�,�̃�)

𝑑�̃�𝑗𝑒
⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1

𝑑𝑼 0(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]) Eq.(26)∶𝑭 𝑇
0 =𝑼

𝑇
0(�̃�,�̃�)

⋅
[

𝐾0(�̃�,�̃�)

]

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒

𝑑𝜇𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
=

∑

𝑗𝑒∈ℕ𝑒

[

𝑼𝑇
0(�̃�,�̃�)

⋅
[

𝐾0(�̃�,�̃�)
]

⋅
𝑑𝑼 0(�̃�,�̃�)

𝑑�̃�𝑗𝑒
⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1
𝑼𝑇

0(�̃�,�̃�)
⋅
[

𝐾0(�̃�,�̃�)
]

⋅
𝑑𝑼 0(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]

(32)
while the same partial derivative of the standard deviation function can be expressed as follows:337

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
=

∑

𝑗𝑒∈ℕ𝑒

(

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒
⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

)

(33)

where338

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒
= 1

2 ⋅√𝑣𝑓 (�̃�,�̃�)
⋅
𝑑𝑣𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒
and 𝑑𝜎𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
= 1

2 ⋅√𝑣𝑓 (�̃�,�̃�)
⋅
𝑑𝑣𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
. (34)

In Eq. (34), the derivative of the variance function𝑤.𝑟.𝑡. the physical relative density �̃�𝑗𝑒 is derived by differentiating339

Eq. (23):340

𝑑𝑣𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒
= 𝑭 𝑇

0 ⋅

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

𝑑𝑼 𝐼
𝑚(�̃�,�̃�)

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
+ 𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
𝑑
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇

𝑑�̃�𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅ 𝑭 0. (35)

Similarly is derived its partial derivative 𝑤.𝑟.𝑡. the 𝑘𝑡ℎ component of the �̃� 𝑗𝑒 vector:341

𝑑𝑣𝑓 (�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
= 𝑭 𝑇

0 ⋅

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

𝑑𝑼 𝐼
𝑚(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
+ 𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
𝑑
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇

𝑑�̃�𝑗𝑒𝑘

⎞

⎟

⎟

⎟

⎠

⋅ 𝑭 0. (36)

Finally, substituting Eqs. (34, 35, 36) in Eq. (33), the partial derivative of the standard deviation 𝑤.𝑟.𝑡. 𝑥𝑒 is342

computed:343
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𝑑𝜎𝑓 (�̃�,�̃�)

𝑑𝑥𝑒
= 1

2 ⋅√𝑣𝑓 (�̃�,�̃�)
⋅

[

∑

𝑗𝑒∈ℕ𝑒

𝑭 𝑇
0 ⋅

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

𝑑𝑼 𝐼
𝑚(�̃�,�̃�)

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
+ 𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
𝑑
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇

𝑑�̃�𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅ 𝑭 0 ⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1
𝑭 𝑇

0 ⋅

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

𝑑𝑼 𝐼
𝑚(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
+ 𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
𝑑
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇

𝑑�̃�𝑗𝑒𝑘

⎞

⎟

⎟

⎟

⎠

⋅ 𝑭 0 ⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]

.

(37)

344

345

Concerning the orientation variables, the partial derivative of the robust compliance function 𝑤.𝑟.𝑡. the 𝑙𝑡ℎ346

component of the 𝝃𝑒 vector reads as follows:347

∙
𝑑𝑓(�̃�,�̃�)

𝑑𝜉𝑒𝑙
= 𝑤1 ⋅

𝑑𝜇𝑓 (�̃�,�̃�)

𝑑𝜉𝑒𝑙
+𝑤2 ⋅

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑𝜉𝑒𝑙
, (38)

where the partial derivative of the mean compliance function 𝑤.𝑟.𝑡. 𝜉𝑒𝑙 equals to:348

𝑑𝜇𝑓 (�̃�,�̃�)

𝑑𝜉𝑒𝑙
= 𝑭 𝑇

0 ⋅
𝑑𝑼 0(�̃�,�̃�)

𝑑𝜉𝑒𝑙
=

(

∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1
𝑼𝑇

0(�̃�,�̃�)
⋅
[

𝐾0(�̃�,�̃�)
]

⋅
𝑑𝑼 0(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙

)

, (39)

while the partial derivative of the standard deviation function 𝑤.𝑟.𝑡. 𝜉𝑒𝑙 equals to:349

𝑑𝜎𝑓 (�̃�,�̃�)

𝑑𝜉𝑒𝑙
= 1

2 ⋅√𝑣𝑓 (�̃�,�̃�)
⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1
𝑭 𝑇

0 ⋅

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

𝑑𝑼 𝐼
𝑚(�̃�,�̃�)

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇
+ 𝑼 𝐼

𝑚(�̃�,�̃�)
⋅
𝑑
(

𝑼 𝐼
𝑚(�̃�,�̃�)

)𝑇

𝑑�̃�𝑗𝑒𝑘

⎞

⎟

⎟

⎟

⎠

⋅ 𝑭 0 ⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙

⎞

⎟

⎟

⎟

⎠

.

(40)
To compute the Jacobian of the system’s state vectors in Eqs. (32, 37, 39, 40), the discretized governing equations350

of Eqs. (26, 27) must be considered. The process for analytically deriving the Jacobian of the state vectors 𝑤.𝑟.𝑡.351

the physical design variables at any iteration 𝑛 inside the robust TDFOO loop is detailed separately in the following352

subsections.353

Regarding the constraint functions, the volume constraint of Eq. (28) is expanded as follows:354

ℎ𝑣(�̃�) =
𝑉𝑡(�̃�)

𝑓 𝑣 ⋅ 𝑉0
− 1 =

𝑣1 ⋅ �̃�1 +⋯ + 𝑣𝑛𝑒 ⋅ �̃�𝑛𝑒
𝑓𝑣 ⋅

(
∑𝑛𝑒

𝑒=1 𝑣𝑒
)

− 1 =
∑𝑛𝑒

𝑒=1 𝑣𝑒 ⋅ �̃�𝑒
𝑓𝑣 ⋅

(
∑𝑛𝑒

𝑒=1 𝑣𝑒
)
− 1, (41)

where 𝑣𝑒 is the volume of the (𝑒) FE. As such, the derivative of the volume constraint 𝑤.𝑟.𝑡. the 𝑥𝑒 and 𝜉𝑒𝑙 design355

variables, respectively, equals to:356

∙
𝑑ℎ𝑣
𝑑𝑥𝑒

=
∑

𝑗𝑒∈ℕ𝑒

𝑑ℎ𝑣
𝑑�̃�𝑗𝑒

⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

= 1
𝑓𝑣 ⋅

(
∑𝑛𝑒

𝑒=1 𝑣𝑒
)
⋅
∑

𝑗𝑒∈ℕ𝑒

𝑣𝑗𝑒 ⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

, ∙
𝑑ℎ𝑣
𝑑𝜉𝑒𝑙

= 0. (42)

Finally, the same partial derivatives concerning the self-complementary constraint of Eq. (29) equal to:357
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∙
𝑑ℎ𝑒
𝑑𝑥𝑒

= 0, ∙
𝑑ℎ𝑒
𝑑𝜉𝑗𝑒𝑙

= 𝑝𝑛 ⋅

( 𝑛𝑐
∑

𝑘=1
�̃�𝑝𝑛−1

𝑒𝑘 ⋅
𝑑�̃�𝑒𝑘
𝑑𝜉𝑗𝑒𝑙

)

, (43)

where358

𝑑�̃�𝑒𝑘
𝑑𝜉𝑗𝑒𝑙

=

(

1 − 𝑑𝑗𝑒𝑒
)

⋅ �̃�𝑝𝑗𝑒
∑

𝑗𝑒∈ℕ𝑒

(

1 − 𝑑𝑗𝑒𝑒
)

⋅ �̃�𝑝𝑗𝑒

⋅
𝑑𝑁𝑗𝑒𝑘

𝑑𝜉𝑗𝑒𝑙
.

4.3.1. Computation of the state vectors’ Jacobian359

For notational brevity, the dependency of the design functions and state vectors on the physical design variables is360

dropped from now forth, it is maintained, however, for the stiffness matrices. Further, the index 𝑛 is introduced in this361

section to indicate that the underscripted quantity is computed at the iteration 𝑛 of the robust TDFOO loop.362

Assuming that we are found at the 𝑛𝑡ℎ design point𝑷 𝑛 =
[

�̃�𝑛, �̃�𝑛
]where the corresponding equilibrium constraints363

are being satisfied, i.e. 𝒓0(𝑷 𝑛,𝑼0𝑛) = 𝟎 and 𝒓𝑚(𝑷 𝑛,𝑼 𝐼
𝑚𝑛,𝑼0𝑛)

= 𝟎, any perturbation 𝑑𝒑 about 𝑷 𝑛 must be accompanied by364

a perturbation 𝑑𝑼 in each state vector such that the respective discretized governing equation remains satisfied, as365

illustrated in Figure (2). Requiring the total differential of the residual equations to be zero for any perturbation about366

the current design point, the Jacobian of the current state vectors 𝑼 0𝑛 and 𝑼 𝐼
𝑚𝑛 is derived. Considering first the mean367

part of the governing equations, this condition is expressed mathematically as follows:368

∙ 𝑑𝒓0 = 𝒓0(𝑷 𝑛,𝑼0𝑛) − 𝒓0(𝑷 𝑛+𝑑𝑝𝑗 , 𝑼0𝑛+𝑑𝑼0) = 𝟎 ⇒
𝑑𝒓0
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛,𝑼0𝑛

⋅ 𝑑𝑝𝑗 +
𝑑𝒓0
𝑑𝑼 0

|

|

|

|𝑷 𝑛,𝑼0𝑛

⋅ 𝑑𝑼 0 = 𝟎, (44)

while for the 𝑚𝑡ℎ stochastic governing equation, the condition reads as:369

∙ 𝑑𝒓𝑚 = 𝒓𝑚(𝑷 𝑛,𝑼0𝑛,𝑼 𝐼
𝑚𝑛)

− 𝒓𝑚(𝑷 𝑛+𝑑𝑝𝑗 , 𝑼0𝑛+𝑑𝑼0𝑛, 𝑼 𝐼
𝑚𝑛+𝑑𝑼

𝐼
𝑚𝑛)

= 𝟎 ⇒

𝑑𝒓𝑚
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛,𝑼0𝑛,𝑼 𝐼
𝑚𝑛

⋅ 𝑑𝑝𝑗 +
𝑑𝒓𝑚
𝑑𝑼 0

|

|

|

|𝑷 𝑛,𝑼0𝑛,𝑼 𝐼
𝑚𝑛

⋅ 𝑑𝑼 0 +
𝑑𝒓𝑚
𝑑𝑼 𝐼

𝑚

|

|

|

|

|𝑷 𝑛,𝑼0𝑛,𝑼 𝐼
𝑚𝑛

⋅ 𝑑𝑼 𝐼
𝑚 = 𝟎 …𝑚 = 1 ∶ 𝑀. (45)

Substituting Eq. (26) in Eq. (44) reads as follows:370

𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 ⋅ 𝑑𝑝𝑗 +
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅ 𝑑𝑼 0 = 𝟎 ⇔
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

= −
𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 (46)

Similarly, substituting the 𝑚𝑡ℎ stochastic governing in Eq. (27) equation into Eq. (45) reads as:371

𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 𝐼
𝑚𝑛 +

𝑑
[

Δ𝐾𝑚(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 +
[

Δ𝐾𝑚(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

+
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 𝐼

𝑚
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

= 𝟎 ⇒

[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 𝐼

𝑚
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

= −

(

𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 𝐼
𝑚𝑛 +

𝑑
[

Δ𝐾𝑚(�̃�,�̃�)
]

𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 +
[

Δ𝐾𝑚(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0
𝑑𝑝𝑗

|

|

|

|

|𝑷 𝑛

)

(47)
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Figure 2: The appropriate differential in the state vectors 𝑑𝑼 0 and 𝑑𝑼 𝐼
𝑚=1∶𝑀 must accompany a differential of 𝑑𝒑 about the

current design point
(

𝑷 𝑛,𝑼 0𝑛,𝑼
𝐼
𝑚𝑛

)

so that the discrete governing equations remain satisfied - moving along the contours
𝒓0(𝑷 ,𝑼0) = 𝟎 and 𝒓𝑚(𝑷 ,𝑼𝐼

𝑚;𝑼0) = 𝟎 with a step of 𝑑𝒑 + 𝑑𝑼 0 and 𝑑𝒑 + 𝑑𝑼 𝐼
𝑚, respectively.

where the index 𝑗 in 𝑝𝑗 denotes the direction of the perturbation in the physical design variables space; for instance,372

setting 𝑑𝑝𝑗 = 𝑑�̃�𝑗𝑒 , Eqs. (46, 47) compute the Jacobian of the state vectors 𝑤.𝑟.𝑡. the physical relative density �̃�𝑗𝑒 :373

∙
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0
𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

= −
𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛, (48)

∙
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 𝐼

𝑚
𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

= −

(

𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 𝐼
𝑚𝑛 +

𝑑
[

Δ𝐾𝑚(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 +
[

Δ𝐾𝑚(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0
𝑑�̃�𝑗𝑒

|

|

|

|

|𝑷 𝑛

)

,

(49)
while setting 𝑑𝑝𝑗 = 𝑑�̃�𝑗𝑒𝑘 compute the Jacobian of the state vectors 𝑤.𝑟.𝑡. the 𝑘𝑡ℎ component of the physical374

weight function vector �̃� 𝑗𝑒 :375

∙
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

= −
𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛, (50)

∙
[

𝐾0(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 𝐼

𝑚

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

= −
⎛

⎜

⎜

⎝

𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 𝐼
𝑚𝑛 +

𝑑
[

Δ𝐾𝑚(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

⋅ 𝑼 0𝑛 +
[

Δ𝐾𝑚(�̃�𝑛,�̃�𝑛)

]

⋅
𝑑𝑼 0

𝑑�̃�𝑗𝑒𝑘

|

|

|

|

|𝑷 𝑛

⎞

⎟

⎟

⎠

.

(51)
The conditions of Eqs. (48 : 51) must be met at any iteration inside the optimization cycle, and they are being376

leveraged in order to compute the current gradient of the 𝜇𝑓 (�̃�,�̃�) and 𝜎𝑓 (�̃�,�̃�) objectives at the FE level. The377

incorporation of these conditions into the expression derived for the gradient of the objectives in Eqs. (32, 37, 39,378

40) is conducted next.379
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4.3.2. Computation of the objectives functions’ derivatives at the FE level380

For notational brevity, the dependency of the stiffness matrices on the physical design variables is omitted from381

now forth. Further, the index 𝑛 is now dropped for the sake of generalizing the derivatives of the design functions382

for all iterations inside the optimization cycle, and last, for the sake of readability, the final expression derived for the383

derivatives of the mean and standard deviation functions is enclosed within boxes.384

Starting with the mean compliance function, substituting the conditions of Eqs. (48, 50) in Eq. (32), the derivative385

of the compliance function 𝑤.𝑟.𝑡. 𝑥𝑒 is now computed at the level of its (𝑗𝑒
) neighboring FE:386

𝑑𝜇𝑓
𝑑𝑥𝑒

=
∑

𝑗𝑒∈ℕ𝑒

[

𝑼𝑇
0 ⋅

[

𝐾0
]

⋅
𝑑𝑼 0
𝑑�̃�𝑗𝑒

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Eq.(48)∶=− 𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒
⋅𝑼0

⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1
𝑼𝑇

0 ⋅
[

𝐾0
]

⋅
𝑑𝑼 0

𝑑�̃�𝑗𝑒𝑘
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Eq.(50)∶=− 𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒𝑘
⋅𝑼0

𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]

⇒

𝑑𝜇𝑓
𝑑𝑥𝑒

= −

(

∑

𝑗𝑒∈ℕ𝑒

[

𝑼𝑇
0 ⋅

𝑑
[

𝐾0
]

𝑑�̃�𝑗𝑒
⋅ 𝑼 0 ⋅

𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+
𝑛𝑐
∑

𝑘=1
𝑼𝑇

0 ⋅
𝑑
[

𝐾0
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝑼 0 ⋅

𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

])

⇒

𝑑𝜇𝑓
𝑑𝑥𝑒

= −
∑

𝑗𝑒∈ℕ𝑒

⎛

⎜

⎜

⎜

⎝

𝒖𝑇0𝒋𝒆 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝒋𝒆

⎞

⎟

⎟

⎟

⎠

⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

−
𝑛𝑐
∑

𝑘=1

∑

𝑗𝑒∈ℕ𝑒

⎛

⎜

⎜

⎜

⎝

𝒖𝑇0𝒋𝒆 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝒋𝒆

⎞

⎟

⎟

⎟

⎠

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒
(52)

where the derivatives of the (

𝑗𝑒
) FE’s mean stiffness tensor 𝑤.𝑟.𝑡. its filtered relative density �̃�𝑗𝑒 and weight function387

�̃�𝑗𝑒𝑘, are calculated by directly differentiating the corresponding term in Eq. (14):388

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
= 𝑝 ⋅ �̃�𝑝−1𝑗𝑒

⋅

( 𝑛𝑐
∑

𝑘=1
�̃�𝑝𝑛

𝑗𝑒𝑘
⋅
[

𝑘0𝑘
]

)

,
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
= 𝑝𝑛 ⋅ �̃�

𝑝
𝑗𝑒
⋅ �̃� (𝑝𝑛−1)

𝑗𝑒𝑘
⋅
[

𝑘0𝑘
]

. (53)

The expression for the derivative of the standard deviation function 𝑤.𝑟.𝑡. 𝑥𝑒 is replicated here for convenience:389

𝑑𝜎𝑓
𝑑𝑥𝑒

= 1
2 ⋅√𝑣𝑓

⋅

[

∑

𝑗𝑒∈ℕ𝑒

( 𝑀
∑

𝑚=1
𝑭 𝑇

0 ⋅

(

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚
)𝑇 + 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒

)

⋅ 𝑭 0

)

⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+…

𝑛𝑐
∑

𝑘=1

( 𝑀
∑

𝑚=1
𝑭 𝑇

0 ⋅

(

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚
)𝑇 + 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒𝑘

)

⋅ 𝑭 0

)

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]

.

To bring the above derivative at the level of the (

𝑗𝑒
) neighboring FE, the 𝑚𝑡ℎ term of the two nested series that390

compute the partial derivative of the variance function 𝑤.𝑟.𝑡. �̃�𝑗𝑒 and �̃�𝑗𝑒𝑘, respectively, must be expanded; starting391

with the 𝑚𝑡ℎ term of the first nested series which computes the partial derivative of the variance function 𝑤.𝑟.𝑡. the392

physical relative density �̃�𝑗𝑒 , it is expanded as follows:393

∙ 𝑭 𝑇
0 ⋅

(

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚
)𝑇 + 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒

)

⋅ 𝑭 0 = 𝑭 𝑇
0 ⋅

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅ 𝑭 0 + 𝑭 𝑇
0 ⋅ 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒
⋅ 𝑭 0 =

2 ⋅ 𝑭 𝑇
0 ⋅

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒
⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅ 𝑭 0

𝑭 𝑇
0 =𝑼

𝑇
0 ⋅[𝐾0]

⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇐⇒ 2 ⋅ 𝑼𝑇
0 ⋅

[

𝐾0
]

⋅
𝑑𝑼 𝐼

𝑚
𝑑�̃�𝑗𝑒

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

Eq.(49)∶=− 𝑑
[

𝐾0(�̃�,�̃�)
]

𝑑�̃�𝑗𝑒

|

|

|

|

|

|𝑷 𝑛

⋯

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0 =
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− 2 ⋅

(

𝑼𝑇
0 ⋅

𝑑
[

𝐾0
]

𝑑�̃�𝑗𝑒
⋅ 𝑼 𝐼

𝑚 + 𝑼𝑇
0 ⋅

𝑑
[

Δ𝐾𝑚
]

𝑑�̃�𝑗𝑒
⋅ 𝑼 0 +

(

𝑼 𝐼
𝑚
)𝑇

⋅
𝑑
[

𝐾0
]

𝑑�̃�𝑗𝑒
⋅ 𝑼 0

)

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0 =

− 2 ⋅

⎛

⎜

⎜

⎜

⎝

𝒖𝑇0𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖𝑚𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇𝑚𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0 =

− 2 ⋅

⎛

⎜

⎜

⎜

⎝

𝒖𝑇𝑚𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖𝑚𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0, (54)

where the partial derivatives of the
[

𝛿𝑘𝑚𝑗𝑒
]

perturbation matrix 𝑤.𝑟.𝑡. �̃�𝑗𝑒 and �̃�𝑗𝑒𝑘 respectively, are again derived by394

directly differentiating the corresponding stochastic tensor in Eq. (14):395

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒
= 𝑝 ⋅ �̃�𝑝−1𝑗𝑒

⋅
√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑗𝑒𝑐 ) ⋅

( 𝑛𝑐
∑

𝑘=1
�̃�𝑝𝑛

𝑗𝑒𝑘
⋅
[

𝛿𝑘𝑘
]

)

,
𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
= 𝑝𝑛 ⋅ �̃�

𝑝
𝑗𝑒
⋅
√

𝜆𝑚 ⋅ 𝜙𝑚(𝒙𝑗𝑒𝑐 ) ⋅ �̃�
(𝑝𝑛−1)
𝑗𝑒𝑘

⋅
[

𝛿𝑘𝑘
]

.

(55)
Similarly, expanding the 𝑚𝑡ℎ term of the second nested series which computes the partial derivative of the variance396

function 𝑤.𝑟.𝑡. the 𝑘𝑡ℎ component of the �̃� 𝑗𝑒 weight vector reads as follows:397

∙ 𝑭 𝑇
0 ⋅

(

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚
)𝑇 + 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒𝑘

)

⋅ 𝑭 0 = 𝑭 𝑇
0 ⋅

𝑑𝑼 𝐼
𝑚

𝑑�̃�𝑗𝑒𝑘
⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅ 𝑭 0 + 𝑭 𝑇
0 ⋅ 𝑼 𝐼

𝑚 ⋅
𝑑
(

𝑼 𝐼
𝑚
)𝑇

𝑑�̃�𝑗𝑒𝑘
⋅ 𝑭 0 = …

− 2 ⋅

⎛

⎜

⎜

⎜

⎝

𝒖𝑇𝑚𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖𝑚𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0 (56)

Finally, substituting Eqs. (54, 56) into Eq. (37), the derivative of the standard deviation function 𝑤.𝑟.𝑡. 𝑥𝑒 is398

computed:399

𝑑𝜎𝑓
𝑑𝑥𝑒

= − 1
√

𝑣𝑓
⋅

[

∑

𝑗𝑒∈ℕ𝑒

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

(

𝒖𝑇𝑚𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒
⋅ 𝒖𝑚𝑗𝑒

)

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0

⎞

⎟

⎟

⎟

⎠

⋅
𝑑�̃�𝑗𝑒
𝑑𝑥𝑒

+…

𝑛𝑐
∑

𝑘=1

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

(

𝒖𝑇𝑚𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖𝑚𝑗𝑒

)

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0

⎞

⎟

⎟

⎟

⎠

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝑥𝑒

]

(57)

400

401

Concerning next the derivative of the mean compliance function 𝑤.𝑟.𝑡. the 𝑙𝑡ℎ component of the orientation vector402

𝝃𝑒, it is expressed as follows:403
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𝑑𝜇𝑓
𝑑𝜉𝑒𝑙

= 𝑭 𝑇
0 ⋅

𝑑𝑼 0
𝑑𝜉𝑒𝑙

=
(

∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1
𝑼𝑇

0 ⋅
[

𝐾0
]

⋅
𝒅𝑼 0

𝑑�̃�𝑗𝑒𝑘
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

Eq.(50)∶=− 𝑑[𝐾0]
𝑑�̃�𝑗𝑒𝑘

⋅𝑼0

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙

)

= −

(

∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1
𝑼𝑇

0 ⋅
𝑑
[

𝐾0
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝑼 0 ⋅

𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙

)

⇒

𝑑𝜇𝑓
𝑑𝜉𝑒𝑙

= −
∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1

(

𝒖𝑇0𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒

)

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙
(58)

while that of the standard deviation function after substituting Eq. (56) in Eq. (40), reads as:404

𝑑𝜎𝑓
𝑑𝜉𝑒𝑙

= − 1
√

𝑣𝑓
⋅

⎛

⎜

⎜

⎜

⎝

∑

𝑗𝑒∈ℕ𝑒

𝑛𝑐
∑

𝑘=1

⎛

⎜

⎜

⎜

⎝

𝑀
∑

𝑚=1

⎛

⎜

⎜

⎜

⎝

𝒖𝑇𝑚𝑗𝑒 ⋅
𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝛿𝑘𝑚𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖0𝑗𝑒 + 𝒖𝑇0𝑗𝑒 ⋅

𝑑
[

𝑘0𝑗𝑒
]

𝑑�̃�𝑗𝑒𝑘
⋅ 𝒖𝑚𝑗𝑒

⎞

⎟

⎟

⎟

⎠

⋅
(

𝑼 𝐼
𝑚
)𝑇

⋅
[

𝐾0
]

⋅ 𝑼 0

⎞

⎟

⎟

⎟

⎠

⋅
𝑑�̃�𝑗𝑒𝑘

𝑑𝜉𝑒𝑙

⎞

⎟

⎟

⎟

⎠

.

(59)

405

406

Having finally derived the analytical expression of the gradient for all design functions involved in the robust407

TDFOOP, gradient-based solution algorithms, such as the Method of Moving Asymptotes (MMA) [38], can be408

employed to solve the optimization problem in Sec. (4.2).409

5. Numerical examples410

In this section, the methodology is demonstrated in the academic case studies of the 2D cantilever and the half411

part of the Messerschmitt-Bölkow-Blohm (MBB) beam for different parameterizations of the 𝐸1 random field. The412

geometric dimensions, loading, and boundary conditions of both beams are depicted in Figure (3); the cantilever beam413

is fixed at its left-hand side with the vertical force of 100 N being applied at its lower right tip, while the roller support414

conditions are applied at the left-hand side of the half MMB beam which is clamped at its lower right end, with the415

vertical force of 100 N being applied at its lower left tip. Both beams are subject to a discretization mesh of [120× 75]416

FEs, composed of square four-node bi-linear FEs. The particular discretization mesh is considered fine enough for417

employing the midpoint technique to represent the random field at the centroid of the FEs.418

In regards to the engineering constants of the composite lamina, the Young’s Modulus along the major axis is419

modeled as a homogeneous RF with a mean value of 𝜇𝐸1
= 200 GPa and a standard deviation 20% of the mean, i.e.,420

𝜎𝐸1
= 40 GPa. The 𝐸2 and 𝐺12 moduli are both set equal to 10 GPa, while the major Poisson ratio to 𝑣12 = 0.3. It is421

noted that the values of the engineering constants are kept constant throughout all numerical examples.422

The remainder of this section is structured as follows: to examine the effect of the spatial variability in 𝐸1 on423

the robust TDFOOP, different parameterizations are examined for the RF. Sec. (5.1) specifies the parameterization424

instances investigated for the RF. Next, in Sec. (5.2), the design parameters of the robust TDFOOP are defined, which425

are kept fixed throughout all numerical examples. Lastly, Sec. (5.3) presents the robust designs predicted for the426

2D cantilever and half MBB beams corresponding to the different parametrizations of the RF. In addition, for each427

parameterization instance of the RF, separate sub-cases are presented corresponding to different weights 𝑤 being428

assigned to the mean and the standard deviation functions during the formulation of the robust compliance function of429

Eq. (24).430
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(a) 2D cantilever beam (b) 2D half MBB beam
Figure 3: The geometry, boundary, and loading conditions of the 2D cantilever and half MBB beam case studies.

5.1. Parameterization instances considered for the RF431

The heterogeneity in 𝐸1 is modeled by means of the isotropic Gaussian kernel function, reading as follows:432

ℂ𝕆ℝ(𝑏)
𝑋1𝑋1

[

𝑋1(𝒙𝒆𝒄 )
, 𝑋1(𝒙𝒆𝒄+‖𝜹𝒙‖2)

]

= exp
[

−
(

𝛿𝑥1
𝑏

)2
−
(

𝛿𝑥2
𝑏

)2
]

(60)

where 𝛿𝑥𝑙=1∶2 ≥ 0 is the centroidal distance of the FEs along 𝑙𝑡ℎ coordinate direction and 𝑏 ≥ 0 is the correlation length433

of the kernel function, considered equal for both coordinate directions. Within the framework of SFEA, it is convenient434

to express the parametrization of the RF in terms of the dimensionless ratio of the FE length 𝑙𝑒 to the correlation length435

𝑏, rather than solely in terms of the correlation length 𝑏. The effect of the 𝑙𝑒
𝑏 ratio on the modeling and behavior of the436

random field is very well established from past extensive studies carried out in [39], which revealed that low ratios of437

𝑙𝑒
𝑏 indicate highly correlated stochastic processes and a relatively small number of terms is required in the K-L series to438

represent them, and conversely, that, high ratios of 𝑙𝑒
𝑏 indicate less correlated stochastic processes, and thereby a large439

number of terms is required for their representation [40].440

In the numerical examples presented in this section, the effect of the following three 𝑙𝑒
𝑏 ratios is considered on the441

robust TDFOOP: 𝑙𝑒
𝑏 = {0.05, 0.1, 0.2} where 𝑙𝑒 = 66.66 mm in both case studies. The number of stochastic terms442

required in the K-L series is determined according to the following convergence metric:443

𝜖𝑀 =

∑ 𝑛𝑒
𝑒=1

(

𝜎2𝐸1
−𝕍𝔸ℝ

[

𝑋1(𝒙𝑒𝑐 )

]

𝜎2𝐸1

)

𝑛𝑒
≤ 𝜏𝜖 , where 𝕍𝔸ℝ

[

𝑋1(𝒙𝑒𝑐 )

]

=
𝑀
∑

𝑚=1
𝜆𝑚 ⋅ 𝜙2

𝑚(𝒙𝒆𝒄 )
, (61)

where 𝜖𝑀 the global relative error resulting from truncating the K-L series in 𝑀 terms, 𝕍𝔸ℝ
[

𝑋1(𝒙𝑒𝑐 )

]

is the444

approximated variance of stochastic property measured at the centroid 𝒙𝑒𝑐 of the (𝑒) FE, and 𝜏𝜖 the prescribed truncation445

error tolerance. Table 2 lists the number of terms required in the K-L series for each of the three 𝑙𝑒
𝑏 ratios, based on the446

metric of Eq. (61), for the input data of the two case studies and tolerance 𝜏𝜖 = 0.001.447

5.2. Design parameters of the robust TDFOOPs448

This section lists the design parameters set for the examined robust TDFOOPs. As stated at the beginning of the449

section, all design parameters are held fixed throughout all numerical examples.450

451
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𝑙𝑒
𝑏

0.05 0.1 0.2

M 70 235 861

Table 2
Number of terms required in the K-L series to achieve a tolerance of 𝜏𝜖 = 0.001 based on the metric of Eq. (61).

External penalty: 𝑝𝑛 = 1
Built-in penalty: 𝑝𝜃 ∈ [0.012953, 10]

# Candidate fiber angles per FE: 𝑛𝑐 = 16

(a) The design parameters for the NDFO-based DFOOP

Volume fraction: 𝑓𝑣 = 0.3
Penalty factor: 𝑝 ∈ [1, 5]

(b) The design parameters for the TOP
Table 3
Design parameters of the topology and morphology optimization problem

Starting with the design parameters of the TOP, the volume fraction has been set equal to 𝑓𝑣 = 0.3. The initial452

penalty of the physical relative densities is set equal to 𝑝 = 1 and, after the 20𝑡ℎ iteration of the optimization loop,453

gradually increases within the optimization cycle until the value of 𝑝 = 5 is reached, after which point it is held fixed.454

Concerning the design parameters of the DFOOP, 16 distinct candidate fiber orientations are assigned per FE,455

evenly distributed within the [−90◦, 90◦] interval. The parameterization of the resulting 16 candidate stochastic456

effective elasticity tensors within the FE domain is performed by employing the NDFO interpolation scheme. The457

penalty parameter of the physical weight functions has been set equal to 𝑝𝑛 = 1. As discussed in previous works of the458

authors (see [35], [41]), this setting results in a trade-off between the level of discreteness in the morphology of the final459

design and the computational effort required to solve the optimization problem. More specifically, setting the penalty460

factor 𝑝𝑛 to values greater than one leads to higher fiber convergence in the final design, i.e. to a more definitive461

selection of the optimal orientation among the candidates. Conversely, setting 𝑝𝑛 = 1 alleviates the computational462

intensity of the optimization problem by automatically satisfying the self-complementary constraints in Eq. (29), at463

the expense, however, of obtaining lower fiber convergence levels in the final design. Thus, having set 𝑝𝑛 = 1 in the464

current numerical examples, to attain 100% fiber convergence in the final design, the maximum component of the final465

filtered weight functions vector �̃�★
𝑒 =

[

�̃�★

𝑒1,… , �̃�★
𝑒𝑛𝑐

]

is rounded to one and all other components to zero after the466

completion of the optimization problem. Again, even though this setting might result in rounding towards suboptimal467

angles in the set, it is still preferred due to its lower computational intensity.468

Concerning the built-in penalty parameter 𝑝𝜃 of NDFO, it is initialized to the value of 10 and is gradually decreased469

within the optimization loop until the value of 𝑝𝑚𝑖𝑛𝜃 = 0.012953 is reached (see [10]), at which point the optimization470

cycle is terminated. In other words, the optimization process concludes when 100 % fiber convergence is reached within471

the underlying NDFO-based DFOOP. Finally, the filter radius has been set 3 times the FE length for both the relative472

densities and weight functions. The design parameters for the robust TDFOOPs are summarized in Table 3.473

5.3. Results474

The robust designs obtained for the cantilever and half MBB beam corresponding to the different parameterizations475

of the RF are depicted in Figures (4:9). For all designs, the density display threshold has been set to the standard476

𝑥𝑑 = 0.5. Moreover, to enhance the visual clarity of the fiber orientation distribution in the figures, the fiber orientation477

interval [−90◦, 90◦] has been divided into the sub-ranges [−90◦,−20◦) [−20◦, 20◦), and [20◦, 90◦], and each sub-range478

has been assigned a distinct color. Lastly, Table 4, reports for each case study, the final values of the robust compliance479

function corresponding to the different parameterizations of the RF and weights 𝑤.480

As depicted in the figures, the designs obtained for the cantilever and half MBB beam by minimizing solely the481

mean compliance function exhibit a smoother and more compact material distribution compared to those obtained by482

minimizing the respective robust compliance functions; these designs, however, are optimal only for the nominal value483

𝜇𝐸1
= 200 GPa of the RF and sensitive to any deviations from it. It is noted at this point, that the mean compliance484

minimization problem has been solved only once for each case study as it remains unchanged for all three 𝑙𝑒
𝑏 ratios.485

For convenience, however, the obtained designs are replicated in the results figures for all three ratios.486
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𝐶𝑎𝑛𝑡𝑖𝑙𝑒𝑣𝑒𝑟 𝐵𝑒𝑎𝑚 𝐻𝑎𝑙𝑓 𝑀𝐵𝐵 𝐵𝑒𝑎𝑚

𝑤

𝑙𝑒
𝑏

0.05 0.1 0.2 0.05 0.1 0.2

1 1 1 1 1 1 1

0.8 1.377 1.300 1.358 1.352 1.501 1.338

0.6 1.433 1.576 1.391 1.268 2.089 1.563

0.4 1.524 1.452 1.322 1.201 1.733 1.446

0.2 1.327 1.241 1.173 0.904 1.416 1.346

0 1 1 1 1 1 1
(

𝜇★

𝑓 , 𝜎
★

𝑓

)

(

7.23, 0.0831
) (

7.23, 0.0820
) (

7.23, 0.0615
) (

7.315, 0.0925
) (

7.315, 0.0468
) (

7.315, 0.0546
)

Table 4
Final values of the robust compliance function 𝑓 corresponding to the different parameterizations of the RF and weight
values 𝑤 for the 2D cantilever and half MBB beam case studies. The last row reports the respective utopia point coordinates
in 𝑚𝐽 .

The effect of the correlation length 𝑏 on the resulting topologies becomes evident when minimizing solely the487

standard deviation of the compliance function; that is, smaller correlation lengths 𝑏, or equivalently, less correlated488

stochastic processes, yield topologically finer and more intricate designs so that they can respond to local variations in489

the material properties and ensure robustness across different regions of the domain, whereas, higher correlation lengths490

yield topologically less refined designs due to the comparatively more consistent and global variation of the material491

property across the domain. Furthermore, the transition in the final topology for the intermediate weights seems to be492

relatively smooth for the 𝑙𝑒
𝑏 = {0.05, 0.1} ratios and less smooth for the ratio 𝑙𝑒

𝑏 = 0.2, which is somewhat expected as493

the smoothness of those transitions is highly dependent on the complexity of the standard deviation function; increased494

complexity of the standard deviation function —resulting from a high number of 𝑀 terms in the K-L series, and495

consequently number of state variables— is highly likely to cause the optimizer to get trapped in local minima that496

correspond to different configurations.497
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance)

Figure 4: Robust designs predicted for the 2D cantilever beam for 𝑙𝑒
𝑏
= 0.05 and varying weights 𝑤.
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance function)
Figure 5: Robust designs predicted for the 2D cantilever beam for 𝑙𝑒

𝑏
= 0.1 and varying weights 𝑤.
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance function)
Figure 6: Robust designs predicted for the 2D cantilever beam for 𝑙𝑒

𝑏
= 0.2 and varying weights 𝑤.
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance)
Figure 7: Robust designs predicted for the 2D half MBB beam for 𝑙𝑒

𝑏
= 0.05 and varying weights 𝑤.
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance function)
Figure 8: Robust designs predicted for the 2D half MBB beam for 𝑙𝑒

𝑏
= 0.1 and varying weights 𝑤.
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(a) 𝑤 = 1 (mean compliance function) (b) 𝑤 = 0.8

(c) 𝑤 = 0.6 (d) 𝑤 = 0.4

(e) 𝑤 = 0.2 (f) 𝑤 = 0 (standard deviation of the compliance function)
Figure 9: Robust designs predicted for the 2D half MBB beam for 𝑙𝑒

𝑏
= 0.2 and varying weights 𝑤.
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6. Extensions and recommended modifications to the methodology498

The methodology can be extended/modified in some of the following ways:499

• Modeling the spatial variability in the 𝐸2 and 𝐺12 Moduli: The methodology has been developed and demon-500

strated assuming the spatial variability in the 𝐸1 Young’s Modulus of the composite lamina. By performing the501

same steps as for 𝐸1, the methodology can be implemented integrally to model the spatial variability in the 𝐸2502

and 𝐺12 moduli as well.503

• Employing more rigorous projection techniques: Throughout the development of the methodology, the penal-504

ization technique has been utilized for projecting the physical design variables toward their binary bounds.505

Alternatively, the Heaviside projection technique could be employed. Specifically, concerning the physical506

relative densities, the Heaviside projection technique has proved its superiority over the penalization technique507

as it ensures a 0/1 design field at the end of the optimization cycle. Similarly, the same binary result can be508

achieved for the weight functions when also subjected to a Heaviside-type transformation. However, in this case,509

the self-complementary condition of Eq. (29) is violated and must be imposed as a constraint in the optimization510

problem, as opposed to the special case ‘𝑝𝑛 = 1’of the penalization filtering technique, where the condition is511

automatically satisfied.512

• Selecting a different interpolation technique: The interpolation scheme of NDFO was utilized in the numerical513

examples for the parameterization of the stochastic effective elasticity tensors as it employs a single design514

variable to perform the interpolation. Alternatively, any of the rest interpolation techniques listed in Table 1 can515

be employed for this purpose.516

• Solving only the robust DFOOP: The methodology has been formulated for the concurrent topology and discrete517

fiber orientation optimization problem. However, it can be modified accordingly to address only the robust518

DFOOP. In this case, the design variables of the relative densities are excluded (i.e., are set equal to unity) from519

the optimization problem, leading to the formulation of the robust DFOOP solely in terms of the orientation520

variables:521

Find: 𝚵★ =
[

𝝃𝟏,⋯ , 𝝃𝒏𝒆
]

by solving:
argmin 𝑓

(�̃�)
= 𝑤1 ⋅ 𝜇𝑓 (�̃�) +𝑤2 ⋅ 𝜎𝑓 (�̃�),

subject to:
∙ 𝒓0(𝑼0;�̃�) ∶

[

𝐾0(�̃�)
]

⋅ 𝑼 0(�̃�) − 𝑭 0 = 𝟎,

∙ 𝒓𝑚(𝑼 𝐼
𝑚,𝑼0;�̃�) ∶

[

𝐾0(�̃�)
]

⋅ 𝑼 𝐼
𝑚(�̃�)

+
[

Δ𝐾𝑚(�̃�)
]

⋅ 𝑼 0(�̃�) = 𝟎 … 𝑚 = 1 ∶ 𝑀,

∙ ℎ𝑒(�̃�𝒆) ∶
∑ 𝑛𝑐

𝑖=1�̃�
𝑝𝑛
𝑒𝑖 − 1 = 0 … 𝑒 = 1 ∶ 𝑛𝑒,

∙ 𝝃𝒆𝑚𝑖𝑛 ≤ 𝝃𝒆 ≤ 𝝃𝒆𝑚𝑎𝑥 … 𝑒 = 1 ∶ 𝑛𝑒.

522

7. Concluding remarks523

The scope of this work has been to propose a methodology that incorporates the spatial variability in the engineering524

constants of the composite lamina into the FE-based TDFOOP for minimization of the robust compliance function.525

To intrusively incorporate the spatial variability into the optimization problem, the main idea involved expressing the526

elasticity tensor of each FE in the structural domain as the sum of a deterministic (mean) tensor and a series of stochastic527

(perturbation) tensors, as detailed in Sec. (3.1). To perform the nested SFEA within the optimization cycle, the528

methodology utilizes the first-order Taylor series expansion to approximate the system’s current state variables, which529

limits its applicability/accuracy to linear problems with small variations. In Sec. (4), the resulting robust compliance530

function was formulated and the corresponding robust TDFOOP was posed. Numerical examples were conducted in531

Sec. (5), considering different parameterizations for the RF and weights for the mean and standard deviation functions532

Ypsilantis et al.: Preprint submitted to Elsevier Page 28 of 30



of the robust compliance. The effect of the correlation length on the resulting topologies was evident when minimizing533

solely the standard deviation of the compliance function, with smaller correlation lengths resulting in finer and more534

intricate final topologies that can adapt to the local variations of the material property, whereas stochastic processes of535

higher correlation lengths resulted in comparatively more compact final topologies. The paper concluded with some536

suggestions by the authors aiming to extend and improve the current mathematical and application framework of the537

methodology.538
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