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Abstract 

The presence of summarized statistical information, such as some statistics of the system response, 

is not rare in practical engineering as the acquisition of precisely measured point data is expensive and 

may not be always accessible. In this paper, we integrate the Bayesian framework with the maximum 

entropy theory and develop a Bayesian Maximum Entropy (BME) approach for model updating in a 

scenario where measurement data and statistical information are simultaneously available. Within the 

scope of this contribution, it is assumed that measurement data denote direct observations, e.g. point 

data, representing system response measurements while statistical information involves summarized 

information, e.g. moment and/or reliability information, of the system response. The basic principle of 

our approach is to convert point data and various statistical information into constraints under the BME 

framework and use the method of Lagrange multipliers to find the optimal posterior distributions. We 

then extend this approach to imprecise probabilistic models which have not been addressed so far. The 

approximate Bayesian computation is employed to facilitate the estimation of cumbersome likelihood 

functions which results from the involvement of entropy terms accounting for statistical information. 

Furthermore, a Wasserstein distance-based metric is proposed and embedded into the framework to 

capture the divergence information in an effective and efficient way. The effectiveness of the proposed 

approach is verified by a numerical case of simply supported beam and an engineering problem of 

fatigue crack growth. It shows some promising aspects of this research as better calibration results are 

produced with less uncertainty, and hence potential of our approach for engineering applications. 
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1. Introduction 

The characterization of the behavior of an engineering system by means of a numerical model 

usually comprises several deterministic and uncertain quantities. The uncertainty affecting a model can 

be broadly classified into epistemic and aleatory uncertainty [1]. To deal with such a model, uncertainty 

quantification (UQ) generally involves forward UQ and inverse UQ [2-6]. The former one allows 

obtaining the characteristics of the output response of the system given the model and its uncertain input 

variables while the later one focuses on the assessment of model characterizing the system’s behavior 

and the estimation of unknown parameters given the observed data. Inverse problems are ubiquitous and 

calibration approaches that consider uncertainty explicitly are often necessary to enhance the accuracy 

and fidelity of numerical models. To this end, Bayes' theorem allows solving probabilistic calibration 

problems by combining prior distribution with measurement data via a likelihood function and hence 

attracts much attention in related communities [7-12].  

Information for performing parameter calibration may be available in many different forms[13]. In 

practical applications, useful information in a report is usually presented in the form of observation 

frequency. In other cases, the performance of a population of components or systems may be synthesized 

as reliability data, or the measurements may be described by means of a statistical moment. These 

heterogeneous sources of information can lead to significant challenges for parameter calibration, as 

information may not be exclusively provided in traditional form, such as direct (point) observations [14], 

but also in frequency or summary form, such as reliability data, mean and variance, etc. [15]. The 

classical Bayesian method is mainly based on point measurements, and no formal rule is available for 

processing statistical information in other forms which hinders the comprehensive utilization of various 

sources of information. To fill this gap, Jayne proposed the method of constructing a prior by using the 

principle of Maximum Entropy (ME) [16, 17], whose idea is to construct a probability distribution 

function to maximize its information entropy under the constraints of moment information. Caticha and 

Giffin extended Jayne’s idea and proposed to simultaneously process point observations and moment 



data for probability updating based on the principle of Maximum relative Entropy (MrE) [18-20]. The 

MrE could be considered as a generalization of Bayesian theory since it reduces to the Bayes’ rule when 

only point data are available. Following this research line, Daoqing Zhou presents a general framework 

for probabilistic information fusion with point, moment, and interval data based on the principle of 

maximum relative entropy [21], VanDerHorn and Sankaran proposed to update model parameters by 

using statistical data and reliability data through Bayesian network [13]. However, till now, the research 

for coping with measurement data and statistical information (including reliability data and moment 

data) simultaneously is still limited, and a comprehensive framework addressing multi-source 

information fusion in the model updating has not been fully constructed yet.  

Dealing with data available in different forms is certainly not the only challenge that must be faced 

when identifying input parameters of a model. Essentially, input parameters may be subject to both 

aleatoric and epistemic uncertainties and hence, must be characterized by means of specialized models, 

such as imprecise probabilities. In this context, parameters calibration for imprecise probabilistic models 

is one of the most challenging tasks in UQ taking into account the possibly high dimension uncertain 

parameters and the large epistemic uncertainty associated with the input. Specifically, when the 

dimension of the parameters to be calibrated is high, the derivation of the corresponding likelihood 

function becomes extremely challenging as in most cases, it does not have an explicit form and is 

analytical intractable. To facilitate the derivation of complex likelihood function, the approximate 

Bayesian computation (ABC) proposed by Pritchard et al. has attracted wide attention in recent years 

[22]. This method involves statistical distance to construct an approximate likelihood function instead 

of evaluating the full likelihood function, allowing to reduce the associated numerical cost. Although 

some useful statistical distances, e.g. Euclidean distance and Bhattacharyya distance, have been used to 

construct the required UQ metric, some inherent drawbacks hinder their further applications in more 

general engineering cases. For instance, Euclidean distance-based metrics are not able to capture higher-

order information of imprecise probability distributions, while the Bhattacharyya distance tends to 

infinity when the two data sets under analysis are far apart. In this contribution, we explore the 

application of the Wasserstein distance (WD) [23] as a novel UQ metric in the imprecise probability 

model updating using multiple sources of information. 

Considering the issues described above, this contribution formulates an approach for parameter 

identification considering heterogeneous sources of information (that allows coping with both point 

measurements and statistical information) under the Bayesian Maximum Entropy (BME) framework, 

which is implemented via the ABC where the WD-based UQ metric is fully embedded. The objective is 

applying this approach to problems where input parameters are characterized with imprecise 

probabilistic models. The novelty of the works lies in two aspects. First, this paper provides a feasible 

method for statistical information, i.e. the reliability data and moment data, to be integrated into the 

parameter calibration. The proposed framework resolves the problem of probability information fusion 

with both measurement data and statistical information that has not been fully addressed in the existing 

literature. Second, the Bayesian Maximum Entropy method is applied to problems comprising imprecise 

probability models, where the WD plays a key role to efficiently fuse heterogeneous data. This allows 

to accurately calibrate the hyperparameters associated with an imprecise probabilistic model. 

The structure of this paper is as follows: In section 2, some preliminary works, including Bayesian 

model updating with mixed uncertainty, the basic concepts of maximum entropy and approximate 

Bayesian calculation are introduced. In section 3, the BME framework for measurement data and 

statistical information is proposed. In section 4, this framework is extended to incorporate imprecise 



probabilistic models where the ABC with novel WD-based metric is formulated for (hyper)parameters 

identification. In sections 5 and 6, a numerical example and an engineering application case are studied 

to verify the effectiveness of the proposed method. Section 7 provides concluding remarks. 

2. Preliminary works 

2.1 Uncertainty characterization 

In the context of uncertainty quantification, input parameters of a model may involve epistemic 

uncertainty and aleatory uncertainty [24, 25]. Epistemic uncertainty is the uncertainty caused by the lack 

of knowledge, which can be reduced or even eliminated with the accumulation of additional knowledge. 

Aleatory uncertainty, on the other hand, is due to the inherent randomness, and is regarded as irreducible. 

For convenience, the associated uncertainty is classified into three categories and notated as follows.  

• Category I is related with aleatory uncertainty. Input parameters in this category are denoted as ζ 

characterizing random variables with prescribed properties, such as distribution type, mean, 

variance. 

• Category II corresponds to epistemic uncertainty. The input parameters belonging to this category 

are denoted as c, which possess an unknown but constant value. 

• Category III denotes mixed uncertainty. The input parameters x with both aleatory and epistemic 

uncertainties are modeled as random variables with only vaguely determined uncertainty 

characteristics. An example of such model is a parametric probability box [24], where the 

parameters of a probability distribution (represented as θx in Figure 1) are characterized as interval 

variables. 

Figure 1 gives an intuitive description of the three categories uncertainty. 
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Figure 1 Intuitive description of the three categories uncertainty 

2.2 Maximum Entropy method 

The principle of maximum entropy was first proposed by Shannon [26]. Its main idea is that when 

only partial knowledge of an unknown distribution is available, the probability distribution that 

maximizes the entropy should be selected in accordance with that available knowledge. That is, when 



we need to establish the probability distribution of a random event, our prediction should meet all known 

conditions, and do not make any subjective assumptions about the unknown aspects. To illustrate, 

suppose our aim is to estimate the optimal (posterior) probability distribution ( )p   associated with 

parameter   in domain   based on the following information. 

• A prior distribution 0 ( )p   that summarizes a priori knowledge on the distribution associated with 

 . 

• The n-order moment of   is given as follows [20]: 

( ) ( ) ( )p f d f   


=                         (1) 

where ( )f   is 
n  (n is an integer number) and ( )f    denotes the expected value of ( )f  . 

• The integral of (posterior) probability distribution over domain Ω should equal to 1, that is: 

( ) 1p d 


=                               (2) 

According to the Maximum Entropy principle, the posterior distribution is derived by maximizing the 

negative of the relative entropy (also known as Kullback-Leibler divergence) S(p,p0) between the 

posterior distribution ( )p   and prior distribution 0 ( )p   [14]: 

0

0

( )
( , ) ( ) ln

( )

p
S p p p d

p


 


= −                      (3) 

which is subject to the constraints imposed by Eq. (1) and (2). Such problem has a general solution as 

[20]: 

( )

0( ) ( )e /fp p Z  =                            (4) 

where 
( )

0
( )e

f
Z p d

 
 


=   is the normalization constant, β is the so-called Lagrange multiplier, and 

the exponential term (entropy term)
( )e f 

 represents constraints imposed by ( )f  .  

2.3 Approximate Bayesian Computation 

Consider a deterministic forward model ( )M=y x   with n-dimensional input variables 

 1 2, ,..., nx x x=x   and m-dimensional output variables  1 2, ,..., my y y=y  . Given a collection of 

observations , ,...,
T

obs
 =  Y

obs1 2 Ny y y   with observation error, the Quantity of interest (QoI) can be 

estimated through the Bayesian inference [10]: 

( | ) ( )
( | )

( | ) ( )

obs
obs

obs
X

L p
p

L p d
=



Y
Y

Y

x x
x

x x x
                        (5) 

where p(x) is the prior distribution, p(x | Yobs) is the posterior distribution, and L(Yobs | x) is the likelihood 

function. ( | ) ( )obs
X

L p d Y x x x   is the normalization constant. Given independent observations, the 

likelihood function is decomposed as: 

1

( | ) ( | )
obsN

obs i

i

L p
=

=Y x y x                              (6) 

In practical engineering problems, high dimensional input and output may lead to the time-

consuming or even intractable calculation of full likelihood function. To address this obstacle, the ABC 

method has received much attention as it essentially reduces the computational cost by evaluating an 



approximate likelihood instead of the full likelihood. Typically, an approximate likelihood function with 

Gaussian kernel is considered [24]: 

2

2

( , )1
( | ) exp

22

obs sim
obs

d
L



 
 − 

 

Y Y
Y x                     (7) 

where ε is a predefined width factor controlling the concentration of the posterior distribution. A smaller 

ε leads to a more peaked posterior distribution but requires more calculation for convergence. The 

distance metric d(Yobs, Ysim) quantifies the discrepancy between the observed data Yobs and simulated 

data Ysim. The selected metric plays a central role in the Bayesian model updating. 

3. Bayesian Maximum Entropy framework for heterogeneous information 

fusion 

This section proposes a Bayesian Maximum Entropy framework for model updating using 

heterogeneous information. For the sake of simplicity, the current section assumes that the input and 

output of the model are scalars, that is y=M(x). However, the material reported here can be extended 

towards the more general case of vector-valued input and output y=M(x). 

3.1. Measurement data 

The measurement data here denotes the direct point observations of a system response e.g. sensor 

readings or experimental outcomes. The Bayesian updating model for the parameter x based on Nobs 

observations of the output response variable y, that is Yobs= [y1, y2, … , yNobs]
T, is shown below: 

0

0

0

(Y | ) ( )
( | ) ( | ) ( )

(Y | ) ( )
Y Yobs

obs
X

obs obs

L x p x
p x L x p x

L x p x dx
= 


                 (8) 

As an alternative to the Bayes’ rule, ME can be used to estimate the posterior distribution by maximizing 

the negative relative entropy between the prior joint distribution p0(y,x) and the posterior joint 

distribution p(y,x) under the constraints of point data [14]. In this case, the Dirac delta (denoted as  ) 

is used to convert point data into constraints:  

( , ) ( ), 1,2,...,i obs
X

p y x dx y y i N= − =                       (9) 

and the normalization constraints is obtained as: 

( , ) 1
Y X

p y x dydx


=                              (10) 

The optimal posterior distribution is obtained as Eq. (11) by maximizing the negative relative entropy 

under point data constraints and normalization constraints 

1 0 0 1 0 0 1

1

( ) ( ) (Y | ) / ( ) ( | ) /
obsN

obs i

i

p x p x p x Z p x p y x Z
=

= =                  (11) 

where 1 0 0
( ) (Y | )

obs
X

Z p x p x dx=   is the normalization constant. It is observed that the p1(x) derived in 

Eq. (11) is exactly the same as that derived in Eq. (8). Basically, the proposed BME framework is 

equivalent to the Bayes’ rule when only point data is considered [18]. 

3.2. Statistical information 

In some cases, direct measurements are not available and such information is given in a synthetized 

form as statistical information. Common forms of statistical information include summary statistics, 



such as the frequency of observations for discrete variables (e.g. reliability information) and the mean 

and variance of continuous variables (e.g. moment information). In the context of reliability analysis, a 

common form of available information is summarized reliability data for various mechanical 

components (e.g. failure rates or failure probabilities) instead of detailed actual test data.  

3.2.1. Reliability information 

One way to determine the reliability of a component or system is to perform m independent tests 

and record whether the performance , 1,...,iy i m=  of the system exceeds a certain specified threshold yc. 

The system performance is then synthetized into the ratio of the number of tests not exceeding the 

threshold value to the total number of tests. Thus, the reliability of the sample is obtained as: 

'

1
( ) /

m

i ci
R H y y m

=
= − , where H is the Heaviside step function. This type of reliability data can be 

included to perform model updating in the proposed BME framework. Specifically, the negative relative 

entropy between prior and posterior distribution is given as: 

2
2 0 2

0

( )
( , ) ( ) ln

( )X

p x
S p p p x dx

p x
= −                      (12) 

where 0 ( )p x  and 2 ( )p x  are the prior and posterior distributions respectively. The available reliability 

information is transformed into constraints as: 

'

2 ( ) ( )
X

p x R x dx R=                          (13) 

where 'R  denotes the reliability value and R(x) is reliability function given in Eq. (14) associated to 

parameter x considering output variable followed a Gaussian distribution [27]: 

( )
( ) ( ) c

c

M xy
R x P y y



 −
=  = 

 
                   (14) 

where P() is probability distribution function, ( )  is the cumulative function of the standard normal 

distribution, σ is the standard deviation of y and M(x). The optimal posterior distribution is solved by 

maximizing the negative relative entropy under the reliability constrain. The method of Lagrange 

multipliers is used and its function is given as 

'

2 0 1 2 0 1 2
( , ) ( , ) ( ) ( ),

X
F p p S p p p x R x dx R = + − 

                   (15) 

where β1 is the Lagrange multiplier corresponding to reliability data constraint and the optimal posterior 

distribution is derived by setting 

2

0
F

p


=


 as 

2 0 1 2( ) ( )exp( ( )) /p x p x R x Z=                         (16) 

where 2 0 1( )exp( ( ))
X

Z p x R x dx=    is the integration constant, and the Lagrange multiplier 1   is 

derived by solving the following equation: 

0 1 '2

1 0 1

( )exp( ( )) ( )ln

( ) ( )exp( ( ))

X

X

p x R x R x dxZ
R

p x R x dx



 


= =






                 (17) 

Regarding numerical implementation, this equation can be solved , for example, with the fsolve function 

in MATLAB software, and the integral part is evaluated using the integral function integral/integral2. 



3.2.2. Moment information 

The moment information includes the mean, variance and percentage quantities of direct 

observations. In the proposed BME framework, such moment information is converted into various 

constraints and used for model updating. Typically, to moment information in its mean-value form, we 

have:  

3( ) ( )
X

p x M x dx y=                         (18) 

where p3(x) is the posterior probability distribution under the constraint of moment information, X is the 

domain of x, and y is the expected value of y. The second order moment information (variance) can be 

expressed as 
2( )( ( ) )p x M x y dx− . Similarly, the Lagrange function in the case of moment information 

is given as 

3 0 2 3 0 2 2( , ), ( , ) ( ) ( )
X

F p p S p p p x R x dx y   = + −
                    (19) 

where S(p3,p0) is the negative relative entropy between prior distribution p0(x) and posterior distribution 

p3(x), β2 is the Lagrange multiplier corresponding to the moment constraint. The optimal posterior 

distribution is derived by setting 

3

0
F

p


=


 as 

3 0 2 3( ) ( )exp( ( )) /p x p x M x Z=                        (20) 

where 3 0 2
( )exp( ( ))

X
Z p x M x dx=   is the integration constant, and β2 is a constant obtained by solving 

the following equation: 

 
0 2

3

2 0 2

( )exp( ( )) ( )ln

( ) ( )exp( ( ))

X

X

p x M x M x dxZ
y

p x M x dx



 


= =






                    (21) 

3.3. Bayesian Maximum Entropy method for heterogeneous information fusion 

For the information aggregation of measurement data, reliability and moment information, we 

propose a comprehensive BME model. It is carried out by maximizing the negative relative entropy 

between the prior joint distribution ( , )q y x  and posterior joint distribution ( , )p y x   

( , )
( , ) ( , ) ln

( , )Y X

p y x
S p q p y x dydx

q y x
= −                     (22) 

where 
0 0( , ) ( ) ( | )q y x p x p y x= . The expression in Eq. (22) should be maximized considering the all 

available information shown in Fig. (2). Essentially, this information is transformed into multiple 

constrains in Eq. (23) that need to be satisfied. 

'

( , ) ( ), 1,2,...,

( , ) 1
. .

( , ) ( )

( , ) ( )

i obs
X

Y X

Y X

Y X

p y x dx y y i N

p y x dydx
s t

p y x R x dydx R

p y x M x dydx y









 = − =

 =



=

 =










                   (23) 
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Figure 2 The structure for information fusion. 

In the BME framework, the measurement data is processed in the traditional Bayesian updating 

way while the moment information is included in the associated entropy terms, which allows a broader 

information fusion. By solving the corresponding optimization problem (for detailed procedure, please 

refer the Appendix), the optimal posterior joint distribution is derived as Eq. (24) includes three different 

sources of information 

0 3 4 4

1

( ) ( )exp( ( ) ( )) ( | ) /
obsN

i

i

p x p x R x M x p y x Z 
=

= +               (24) 

where 0 3 4

1

4 ( )exp( ( ) ( )) ( | )
obs

N

i
X

i

Z p x R x M x p y x dx 
=

= +    is the integration constant, β3 and β4 are the 

Lagrange multipliers corresponding to reliability data constraint and moment data constraint. 

4. Bayesian Maximum Entropy method for imprecise probabilistic model 

updating 

The proposed BME approach is capable of incorporating multi-type information (i.e. precise 

measurements, reliability information and moment information) under a comprehensive framework for 

model updating. However, the extension towards imprecise probabilistic model can be challenging, as 

the derivation of an analytical likelihood function is cumbersome or even intractable as the mixed 

uncertainty (Category III) is involved. To fill this gap, we employ ABC to avoid the cumbersome 

evaluation of full likelihood function. In addition, to address the hyperparameters of imprecise 

probabilistic model, a novel WD-based UQ metric is developed to capture higher order information in 

presence of mixed uncertainty. 

4.1. Bayesian Maximum Entropy method for Imprecise probability model updating 

The imprecise probability model includes epistemic uncertainty and aleatory uncertainty. Consider 

the model y=M(x | θx) that the probability distribution function P of the intermediate variable x is 

governed by the hyper-parameter θx : X~P(x | θx). Note that the hyper-parameter is affected by epistemic 

uncertainty (due to lack of data) and make the distribution of intermediate variable x imprecise (that is, 

a parametric probability box [24]). When output response data Yobs is available, Bayes’ theorem can be 

used to update the parameters as follows: 

(Y | ) ( | ) ( )
( , | Y )

(Y | ) ( | ) ( )

obs x x
x obs

obs x x x
X

L x P x P
P x

L x P x P dxd

 


  


=


      (25) 



where P(θx) is the hyper-prior distribution, (Y | ) ( | ) ( )obs x x x
X

L x P x P dxd  
   is the normalization 

constant, P(x,θx | Yobs) is the posterior distribution, L(Yobs | x) is the likelihood function, and P(x|θx) is 

probability of intermediate variable x conditioned on the hyper-parameter θx. The (prior) joint 

probability distribution of output variable y, intermediate variable x and hyper-parameter θx is 

decomposed as: 

0 0 0 0
( , , ) ( | ) ( | ) ( )

x x x
p y x p y x p x p  =                      (26) 

To estimate the optimal posterior distribution, we calculate the negative relative entropy of prior joint 

probability distribution p0(y,x,θx) and posterior joint probability distribution p(y,x,θx): 

0

0Y

( , , )
( , ) ( , , ) ln

( , , )

x
x x

x

p y x
S p p p y x dydxd

p y x


 




= −                  (27) 

The available reliability information is rewritten as the following constraint: 

'

Y X

( , , ) ( )x x xp y x R dydxd R  
 

=                       (28) 

where  R’ denotes the reliability value and R() corresponds to the reliability function. 

The first order moment information of the output response y  is transformed as:  

Y X

( , , ) ( | )x x xp y x M x dydxd y  
 

=                      (29) 

where y=M(x|θx), y   is the expected value of y. The measurement data Yobs=[y1, y2, … , yNobs]
T is 

transformed as: 

X

( , , ) ( ), 1,2,...,x x i obsp y x dxd y y i N  


= − =                 (30) 

in addition, there is the normalization constraint: 

Y X

( , , ) 1x xp y x dydxd 
 

=                         (31) 

In this case, the Lagrange function is given as 

'

0 0

Y X Y X

Y X Y X

( , , , , , ) ( , ) ( , , ) 1 ( , , ) ( )

( , , ) ( | ) ( ) ( , , ) ( )

x x x x x

x x x x x i

F p p S p p p y x dydxd p y x R dydxd R

p y x M x dydxd y y p y x dxd y y dy

          

       

   

  

   
= + − + −   

   

   
− + − −   

   

 
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where the Lagrange multiplier , , ,     corresponds to the constraint of Eq. (28-31). Then, the optimal 

posterior joint distribution is obtained by setting 0
F

p


=


 as 
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=  is the integration constant. Substitution of Eq. 
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Eq. (34) can be alternatively expressed as: 
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The posterior distribution of unknown parameter x and hyperparameter x  is derived by integrating 

out y:  
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constant obtained by solving 
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4.2. Approximate Bayesian computation with Wasserstein distance-based UQ metric 

The proposed BME approach has been extended to imprecise probability models in the preceding 

section. However, in presence of mixed uncertainty, the evaluation of full likelihood function is much 

more challenging as additional hyperparameters are introduced. To address this issue, ABC is employed 

as it facilitates the process by evaluating an approximate likelihood function instead a complete one. 

The original likelihood function in Eq. (36) is replaced by an approximate likelihood function, and the 

posterior distribution is obtained as follows: 
2
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To perform the ABC, a suitable UQ metric is required to measure the divergence between the observed 

dataset and the simulated samples.  

Given the observed dataset Yobs and the simulated sample set Ysim  obtained by running the 

forward model y=M(x) multiple times, the popular Euclidean distance (ED)-based metric is presented 

as [28]: 

(Y ,Y ) (Y Y )(Y Y )T

E obs sim obs sim obs simd = − −                  (38) 

where Yobs  and Ysim  represent the mean values of observed data and simulated samples respectively. 

It is apparent that ED measures the absolute distance between the mean values of the two sample sets, 

which is applicable for parameter calibration when few parameters with epistemic uncertainty (i.e. 

constants with unknown value) are identified. However, in case a large number of parameters with mixed 

uncertainty (i.e. imprecise random variables) is being identified, ED-based metric becomes problematic 

as it is not able to capture the divergence of higher-order information, such as variance and covariance.  

In this context, some other alternatives such as the Bhattacharyya distance (BD) [24] is useful as it 

provides a means for measuring the degree between probability densities associated with observed and 

simulated data. Nonetheless, when these two data sets are far apart (i.e., there is no overlap), BD tends 

to infinity, which may lead to implementation issues. By contrast, the WD is capable of capturing the 

divergence information between two different sample sets while avoiding the aforementioned 

implementation issues, so as to serve a promising UQ metric for BME model updating [23]. The p-WD 

[29] is defined as follows: 
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where 
Y ( )F y

obs
  and 

Y ( )F y
sim

  are cumulative probability density functions of Yobs and Ysim  

respectively, 
1

Y ( )F −

obs
 and 

1

Y ( )F −

sim
 are the α quantile functions, and p represents the dimension. For 

one dimensional case, i.e. p = 1, the WD is the area between the two marginal CDFs. The following Fig. 

3 shows an intuitive description of the one-dimensional WD, which is used in our study. 

1

0

α

CDF of observed data

CDF of simulated data

1

Y ( )F −

obs

1

Y ( )F −

sim  
Figure 3 Intuitive description of one-dimensional Wasserstein distance 

To illustrate the benefits of using WD as UQ metric, consider a simple model y = x2 where x follows 

a Gaussian distribution with imprecise parameters (μ, σ). 50 observed samples Yobs= [y1, …, y50]
T, 

moment informationy =64 and reliability information R’=0.65 are generated based on the true values 

μ0=8, σ0=1. Given a prior distribution μ ~ Unif (0,20), σ ~ Unif (0,5). The posterior distributions of (μ, 

σ) by employing the WD-based metric with different p-value are shown in Figure 4. Table 1 shows the 

statistical results of μ and σ for different p-value. The average deviation first decreased and then 

increased with the increase of p-value, and the result of p=3 is the best. A larger p requires more 

calculation time. The posterior distributions of (μ, σ) by employing the ED-based, BD-based and the 

WD-based metric with p=3 are shown in Figure 5. Table 2 shows statistical results of posterior 

distributions for different metrics. The average deviation with the WD-based metric is the smallest. 



  
Figure 4 The results based on WD with different p-value. 

Table 1 Statistical results of μ and σ for different p-value. 

p-value 
Posterior mean (deviation) 

Average deviation Time(s) 
μ σ 

p=1 8.0811(1.01%) 0.9478(5.22%) 3.12% 52 

p=2 8.0713(0.89%) 0.9745(2.55%) 1.72% 60 

p=3 8.0240(0.30%) 1.0260(2.60%) 1.45% 80 

p=4 7.9847(0.19%) 1.0685(6.85%) 3.52% 96 

p=5 7.9520(0.60%) 1.0870(8.70%) 4.65% 119 

p=6 7.9421(0.72%) 1.0986(9.86%) 5.29% 136 

 

 

Figure 5 The posterior of parameters with different metrics. 

Table 2 Statistical results of μ and σ for different metrics. 

Metrics Parameters 25% quantile 75% quantile Mean Average deviation 

ED 
μ 8.0736 8.1791 8.0903 1.43% 

σ 0.1609 0.7227 0.5733 51.44% 

BD 
μ 7.9310 8.1620 8.0015 0.97% 

σ 0.8731 1.0913 1.0382 8.55% 

WD 
μ 7.9434 8.1013 8.0240 0.76% 

σ 0.9623 1.0879 1.0260 5.05% 

 



4.3. Algorithm for Implementation  

From an implementation viewpoint, the main steps of our approach are summarized as follows: 

Step 1 Determine the object function using Eq. (27) and construct the required constraints using Eq. (28) 

and (29). Then solve the corresponding optimization problem by using the Lagrange multiplier 

method (see in Appendix). 

Step 2 Generate n samples θx=[θ1, θ2,…, θn] from the prior distribution p(θx). For each sample θi, 

generate enough N samples for intermediate variable x given X ~ p(x|θi). These samples are then 

propagated through the forward model y = M(x) to obtain the corresponding samples for the output 

Ysim. 

Step 3 Calculate the WD between the simulated sample set Ysim and the observed data set Yobs by using 

Eq. (39), and then build the approximate likelihood function based on the derived WD-based metric 

by using Eq. (7). 

Step 4 According to Eq. (37), perform transitional Markov chain Monte Carlo (TMCMC) algorithm 

under the proposed BME framework. The TMCMC algorithm allows sampling from intermediate 

probability distribution functions (PDFs). Intermediate distributions 
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  are computed as the product of the prior distribution and 

likelihood and exponential function scaled by a transitional coefficient 0 1j  . The method 

starts from 0j =   and gradually transitions to 1j =  . The first distribution p0 is the prior 

distribution, and the last is the posterior distribution. 

For the sake of clarity, a flowchart of the proposed BME approach based on WD is shown in Figure 6. 
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Figure 6 Flowchart of the proposed BME-WD approach. 

5. Test Example: Simply supported beam 

In this section, we use a numerical case to validate the proposed method. Fig 7. shows a simply 

supported beam subjected to uniformly distributed load p. Due to uncertainties in the fabrication process, 

all geometric parameters shown in Fig. 7 are not precisely known and are described with (truncated) 

normal distributions with coefficient of variation 0.1. According to the Euler-Bernoulli beam theory, the 

mid-span deflection Vmid of the beam is given as 

4

3

5
( , , , , )

32
mid

pL
V M E p L b h

Ebh
= =                      (40) 

where E represents the Young’s modulus while L, b and h are length, width and height of the beam 

respectively. For validation purpose, two subcases are demonstrated with different parameters settings: 

(1) parameters with category I (aleatory) and category II (epistemic) uncertainty are considered; (2) 

parameters with category I (aleatory) and category III (mixed) uncertainty are considered. 



midV
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Figure 7 Simple supported beam. 

5.1. Subcase 1: Probability model with disjoint aleatory and epistemic uncertainty 

In this subcase, parameters (b, h, L, p) are set as aleatory uncertainty variables while the Young's 

modulus E is an epistemic uncertain parameter to be calibrated. The specific parameter settings are 

shown in Table 3. To model the Young’s Modulus E, in the Bayesian framework, its prior distribution is 

assigned as a lognormal distribution where the distribution parameters are μE = 3.4GPa and σE = 0.15GPa 

[30]. An error term e ~ Gaussian(0,0.008) is included to represent the noise associated with mid-span 

deflection. 

180 raw data of the output Vobs are derived based on the “true” value of Young's modulus E=20GPa 

and independently generated samples of (b, h, L, p) by using Eq. (39). Among them, 50 data points are 

used to yield the first moment information 0.0145V m=  and another 100 data points are used to yield 

the reliability information R=0.67 by setting the deflection threshold Vcrit = 0.018m. The 30 left data 

points are kept as measurement data. 

Table 3 Scenario 1: parameter settings for simple supported beam model. 

Category Parameter Value Uncertainty characteristics 

I b 
1 1, 0.15 0.015,Guassian m m = =  Aleatory uncertainty 

I h 
2 2, 0.3 0.03,Guassian m m = =  Aleatory uncertainty 

I L 
3 3, 5 0.5,Guassian m m = =  Aleatory uncertainty 

I p 
4 4, 12000 / 100 /,Guassian N Nm m = =  Aleatory uncertainty 

II E Unknown constant Epistemic uncertainty 

The TMCMC algorithm [31] is applied to perform the proposed BME approach as it allows to 

sample from intermediate probability distribution functions (PDFs) and can be used to effectively 

perform identification in the parameter space. Intermediate distributions are computed as the product of 

the prior distribution and likelihood and exponential function scaled by an exponent parameter 0<αj≤

1. The method starts from αj=0 and gradually transitions to αj=1. Thus, the first distribution is the prior 

PDF, and the last is the posterior distribution. In this subcase, a posterior distribution model using three 

types of data is formulated as 

1 2

30
( ) ( )

0

1

( | ) ( ) ( | ) R E M E

i

i

p E D p E p V E e +

=

                     (41) 

We first carry out the simulation by using the point data, reliability information, and moment 

information separately, corresponding to β1=β2=0, β2=0 and β1=0 in Eq. (41), then the posterior 

distributions of Young's modulus E are derived and shown in Fig. 8. It can be seen that the three posterior 

distributions in different scenarios all converge to the true value, however, the curve produced using 

point data is more concentrated with less uncertainty, followed by the curve of using moment 

information and that of using reliability information. This is not surprising as the reliability information 



and moment information are indeed “manufactured” from the raw point data and lose some of the 

information contained during the process. By contrast, Fig. 9 shows the estimation results of using both 

statistical information and point data. It can be seen that the proposed BME approach can effectively 

fuse multi-type information and produce better estimation results with less uncertainty. It is noted that, 

in this specific case, only using the point data already achieved satisfying estimation results. However, 

it does not mean that solely using point data is sufficient for all cases. Simply abandoning those 

imprecise (but valuable) information seems lack of scientific foundation. In a more general sense, it is 

reasonable and desirable to aggregate all available information to produce a comprehensive estimation 

result. 

 

  

Figure 8 Posterior distribution with 

 three types of data separately. 

 

      Figure 9 Posterior distribution of data fusion. 

5.2. Subcase 2: imprecise probability model with mixed uncertainty 

In this subcase, parameter settings of (b, h, L, p) remain unchanged while the Young's modulus E is 

assumed to follow a LogNormal distribution LogNormal(μE, σE) with unknown hyperparameters to 

incorporate the mixed uncertainty. We assign diffuse prior distributions μE ~Uniform(0,20GPa) and σE ~ 

Uniform(0,2GPa) to the unknown hyperparameters since we only roughly know their lower and upper 

bounds. Based on the predetermined true values μE =3GPa and σE =0.15GPa, 180 samples of E are generated 

and are combined with independently generated samples of (b, h, L, p) to produce corresponding output 

samples. Similarly as in the previous Subcase, 100 raw data of V are used to produce the reliability 

information R=0.67 by adopting the threshold Vcrit = 0.018m. This process is equivalent to evaluate the 

reliability for a batch of 100 nominal identical beams. The moment information 0.0145V m=  is obtained 

by calculating the mean value of another 50 data points. The left 30 data points are used as direct 

observations.  

Table 4 Scenario 2: parameter settings for simple supported beam model. 

Category Parameter Value Uncertainty characteristics 

I b 
1 1, 0.15 0.015,Guassian m m = =  Aleatory uncertainty 

I h 
2 2, 0.3 0.03,Guassian m m = =  Aleatory uncertainty 

I L 
3 3, 5 0.5,Guassian m m = =  Aleatory uncertainty 

I p 
4 4, 12000 / 100 /,Guassian N Nm m = =  Aleatory uncertainty 

III E ( , )
E E

LogNormal    
Mixed uncertainty 

To address the imprecise probabilistic model updating, the developed WD-based UQ metric is 



embedded into the stochastic model updating framework. The posterior distributions model of the two 

hyperparameters of interest are formulated as 
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As an imprecise parameter, the QoIs here are actually the hyperparameters μE and σE. The posterior samples 

are obtained by using the TMCMC algorithm, after 7 iterations, the transition coefficient αj=1 indicates the 

updated samples have converged to the target distribution as shown in Fig. 10. It shows that the posterior 

distributions converge to the true value indicating a successful model updating. Figure 11 shows a 

comparison between the cases using point data, reliability information, moment information and fused 

information respectively. Table 5 gives a summary of the statistical results. It suggests that the uncertainty 

is gradually reduced as more information added in. 

 
Figure 10 Posterior of hyperparameters with the proposed BME-WD method. 

Table 5 Updated results of hyperparameters ( , )E E  . 

Cases 
 Posterior mean (True value) Relative error 

E  E  E  E  

Reliability 3.0716 (3.00) 0.8789 (0.15) 2.38% 485.93% 

Moment 4.3291(3.00) 0.8147 (0.15) 44.30% 442.67% 

Point 2.9936 (3.00) 0.1328 (0.15) 0.21% 11.46% 

Reliability+Moment+Point 2.9963 (3.00) 0.1378 (0.15) 0.12% 8.13% 



 
Figure 11 Posterior distributions with different data. 

To highlight our contribution, a comparison is carried out towards with the existing BME methods with 

ED-based metric. The estimation results are shown in Fig. 12. It shows that both methods perform well in 

the calibration of μE (mean value), however, the traditional method (BME-ED) failed in calibrating σE (the 

standard deviation) in comparison with the proposed BME-WD method. This is because the ED-based 

metric only returns a distance measure between the mean of observed data set and that of simulated samples 

while neglecting the difference of higher order information. On the contrary, the proposed WD-based metric 

allows good estimation results for both μE and σE by sufficiently capturing the divergence of higher order 

information. This point is clearly demonstrated by the statistics shown in Table 6. To see the improvement 

in uncertainty reduction, the p-box of posterior distributions of deflection V are shown in Fig. 13. It is 

obtained by first generating enough samples for the imprecise parameters and then drawing the envelope 

based on these samples (each sample denotes a CDF curve). 

Table 6 Updated results of hyperparameters ( , )E E  . 

Cases 
 Posterior mean (True value) Relative error 

E  E  E  E  

BME-ED 3.0199 (3.00) 0.2006 (0.15) 0.66% 33.73% 

BME-WD 2.9963 (3.00) 0.1378 (0.15) 0.12% 8.13% 



  

(a) Posterior distribution with BME-ED. 

  

(b) Posterior distribution with BME-WD. 

Figure 12 Comparison of the posterior distribution with two methods. 

 

Figure 13 The p-box of posterior distribution of the deflection Vmid with different method. 

6. Application Example: Fatigue crack growth 

In this section, an engineering application example is demonstrated to show the potential of the 

proposed BME approach. 

6.1. Problem description 

The Paris law [32] is one of the most widely used models for the fatigue-induced crack growth analysis 



[33-35]. It is adopted to describe the crack growth rate under constant amplitude cyclic loading: 

( )mda
C K

dN
=                                  (43) 

where a is the half-crack size, N is the number of cycles, da/dN is the crack growth rate, K a  =   is 

the stress intensity factor range which (for simplicity) does not include any correction factor due to the 

assumed finite size of the plate [36],   represents the applied stress range during one load cycle, and m 

and C are the unknown material parameters of interest. Given the initial half-crack size a0 the half-crack 

size aN is solved by integrating Eq. (43) as a function of N: 
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Eq. (44) will serve the forward model in this case study. According to the accumulated knowledge, the 

logarithm of C and m could be modeled via a two-dimensional Gaussian distribution taking their correlation 

into consideration [37]. To incorporate the epistemic uncertainty, it is assumed that we only vaguely know 

the lower and upper bounds of the mean and covariance: 1 [ 40, 20]  − − , 2 [0,10]   
2

1 [0,10]  , 
2

2 [0,1]   

and 12 [ 1,1]  − . For comparison purpose, the target value for parameter calibration are set based on the 

posterior values in [37], which are estimated (but without mixed uncertainty) based on Virkler’s experiment 

data of 68 species for 2024-T3 aluminum alloy [38]. Detailed parameter settings can be found in Table 7. 

Table 7 Parameter settings of the forward model. 

Parameters Value Hyperparameter Target value 
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0a  Deterministic, 9 mm - - 

  Deterministic, 48.28 MPa - - 

To carry out our study, 200 pairs of (C m) are generated based on the true (target) values of their mean 

and covariance, which lead to 200 samples of aN for a fixed N=230000. 50 samples are used as direct 

measurements (i.e. point data), 100 data are used to produce the associated reliability information 
' 0.95R =  

by setting a threshold ac = 24.9mm, and the left 50 samples are used to obtain the corresponding first order 

moment 23.314a =  mm. All this information is used to address the imprecise probabilistic model updating 

under the proposed BME framework. 

6.2. Results and discussion 

Fig. 14 shows the estimated results of 5 hyperparameters by using the proposed BME (with WD-based 

metric) and that of using the traditional BME method (with ED-based metric). It is seen that the proposed 

BME-WD method significantly outperforms the traditional BME-ED method both in accuracy and 

uncertainty reduction. Such benefits should be attributed to the capability of the proposed WD-based metric 

in capturing the required information for higher-order parameter calibration. This advantage is also 

demonstrated by the quantitative summarized results shown in Table 8.  

For comparison, we show the prior and posterior distributions of the 5 hyperparameters using only 

point data and all available information (i.e. including reliability and moment information) in Fig. 15. 

Essentially, the estimation results of using all information slightly outperform those derived using only direct 

measurements. It indicates that involving all available information in the model updating improves the 



estimation results, suggesting the importance of statistical information as an complement to traditional direct 

point observations (especially when the number such measurements is limited). The statistics are 

summarized in Table 9. 

 

Figure 14 Posterior distribution of hyperparameters with different method. 

Table 8 Updated results of hyperparameters. 

Method 
Updated posterior mean of hyperparameter (Relative error) 

1  2  
2

1  
2

2  12 ( 21 ) 

BME-ED -27.6064 (3.58%) 3.0719 (6.07%) 3.7077 (131%) 0.0941 (96%) -0.5806 (109%) 

BME-WD -28.3509 (0.98%) 3.2255 (1.38%) 1.6575 (3.28%) 0.0502 (4.58%) -0.2878 (3.71%) 

 



 

Figure 15 Probability distribution of hyperparameters under different cases. 

Table 9 Updated results of hyperparameters. 

Case 
Updated posterior mean of hyperparameter (Relative error) 

1  2  
2

1  
2

2  12 ( 21 ) 

Point -29.1067 (1.66%) 3.3594 (2.72%) 1.6673 (3.89%) 0.0500 (4.17%) -0.2887 (4.04%) 

Point +Statistic -28.3509 (0.98%) 3.2255 (1.38%) 1.6575 (3.28%) 0.0502 (4.58%) -0.2878 (3.71%) 

The posterior distributions of (lnC, m) are derived based on the estimated hyperparameters and are 

shown in Figure 16. These sample pairs of (lnC, m) are then used to produce the corresponding p-box of aN 

at a fixed N=230000. From Fig. 17, it is seen that the (posterior) p-box with BME-WD fully envelops the 

true CDF curve and shows a significant uncertainty reduction compared with the (posterior) p-box with 

BME-ED. To highlight our contribution, Fig. 18 shows the estimated aN (with calibrated parameters) 

evolution with respect to the cycle number N for the proposed BME-WD method and that of the traditional 

BME-ED method. The curve derived using BME-WD matches the target one well while the curve produced 

by BME-ED shows a significant bias, indicating a successful crack growth prediction in the former case. 

 



Figure 16 Posterior distribution and samples of parameter with different method. 

 

Figure 17 Comparison of predicted p-box and target CDF at N=230000cycles. 

 

Figure 18 Comparison of calibrated model and target model. 

7. Conclusions 

In this paper, a BME framework is developed for imprecise model updating in presence of 

measurement data (i.e. point data) and statistical information (e.g. moment and reliability information). The 

idea behind this approach is by transforming heterogeneous information into multiple constraints, thus the 

optimal posterior distribution can be derived by resolving the corresponding optimization problem with 

entropy terms under the proposed BME framework. To facilitate the whole process, a novel WD-based 

metric is further developed and embedded into the framework to tackle the cumbersome construction of 

likelihood function resulting from information fusion. Two case studies are demonstrated to validate its 

effectiveness and efficiency. Based on the derived results, the following remarks are drawn: 

• The proposed method has the capacity of aggregating multiple information (including point 

measurements, reliability information and moment information) in the BME framework and producing 

better calibration results with less uncertainty. 

• The TMCMC algorithm is used to facilitate the approximate Bayesian computation in inverse problem 



solving, which is effective in dealing with the complicated (implicit) likelihood function. 

• The WD is employed to build a novel UQ metric to capture higher-order information in imprecise 

probabilistic models and is proved to be more efficient than some other existing metrics. 
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Appendix 

For a general case with direct measurements (point data), reliability information and moment 

information, its corresponding Lagrange function is given as 
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where 1 2 3 4, , ,      are the Lagrange multipliers corresponding to normalization constraint, point data 

constraint, reliability data constraint and moment data constraint. The optimal posterior joint distribution is 

obtained by applying the calculus of variations by imposing 0
F

p


=


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The joint posterior is expressed as: 
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Integrating out y yields (Considering all the point data Yobs=[y1, y2, … , yNobs]
T): 
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where Lagrange multiplier β3 , β4 is determined by Eq. (A-6): 
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