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Abstract

Digital control in manufacturing processes produces significant amounts of metadata. The production process meta-
data, such as thermal and optical measurements, enable a higher degree of property grading than uninstrumented man-
ufacturing and feedback for fault detection. This study explores how metadata can design fatigue-resistant structures
using physically grounded models such as density functional theory, cyclic plasticity, and fracture mechanics that train
machine learning algorithms. Machine learning models work very efficiently in their trained physical space. In compari-
son, mechanistic models are computationally costly for complex phenomena such as fatigue. We show how fatigue can be
administered consistently at all scales by energy-based criteria and how a mechanistic function can be built based on this
concept. The energy mechanistic function allows exact quantification of the effect of the existing flaws from manufacturing
on fatigue lifetime under certain load boundary conditions. Since the mechanistic function is local and subscale to the
prediction scale of the machine learning model, it can be used to build density functions for probabilistic regression of the
fatigue property on the scale above. The analysis is applied to the selective laser melting process due to the availability
of digital control and metadata generation during deposition.

Keywords: Density functional theory (DFT), Functional grading, Machine learning (ML), Fatigue strength, Cohesion
energy, Additive manufacturing (AM), Lifetime prediction, Bayesian statistics, Process monitoring, Artificial intelligence
(AI)

1. Introduction

There are benefits to additive manufacturing (AM) over conventional subtractive manufacturing methods, but more
structural qualification is needed for technical alloys’ cyclic deformation and fatigue characteristics. Increasing high-cycle
fatigue resistance in metallic materials under cyclic loads is essential for structurally demanding applications. Often, efforts
to improve fatigue damage resistance using traditional strengthening methods and hierarchical nanostructural alterations5

are unsuccessful. However, physics-based methods appearing in the recent literature promise significant breakthroughs
when coupled with high throughput machine learning and digital twinning techniques. In pure Cu, low-angle dislocation
barriers are introduced at the nanoscale, improving tensile strength and fatigue limit. The increased fatigue life results
from the high density of built-in low-angle dislocation cells, which reduces surface roughening and crack initiation [1].

The fatigue life of materials with minor flaws was estimated when subjected to multiple loads, and a notch factor and10

Murakami criterion calibrated the Fatemi-Socie, Smith-Watson-Topper, Susmel, and Lazarin critical plane models. Results
facilitated comparison between life predictions for various materials, loadings, and fault geometries [2]. However, applying
empirical fracture mechanics suffers from low transferability and poor integration when coupled with highly advanced
digital techniques. The effects of post-overload fatigue crack growth (FCG) and its relationships to the fatigue cycle and
stress intensity were evaluated. The findings indicated that residual stress (RS) contribution, with dependency behind15

the fracture tip and applied stress-intensity dependence in front of the crack tip, is a critical element for FCG rate
without initial acceleration [3]. The residual stress and fracture closure affect the fatigue crack growth rate (FCGR)
retardation caused by overload. The equivalent effective stress intensity factor range idea was developed to calculate
the stress intensity factor (SIF) range reduction ratio to evaluate the knockdown component concerning steady-state
growth. Plotted, fitted, and divided into closure and residual stress effects, respectively, were the size and scope of20

the overload-induced crack growth rate retardation[4]. Fatigue investigations on welded 42CrMo4 steel led to a viable
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material for hydrogen transport infrastructure to see how fatigue fracture formation was aided by hydrogen. Results
demonstrate considerable differences in testing methods and weld areas, with environments containing hydrogen showing
almost an order of magnitude more excellent rates of fatigue fracture formation. Both testing methods revealed similar
microstructural behavior, with martensite lath decohesion and intergranular fracture being detected. The heat-impacted25

zone demonstrated a higher vulnerability to hydrogen embrittlement [5]. The capturing of all of these fatigue physical
phenomena does not support knowledge transferability to other fatigue problems without effective digitalization of the
models. Digitalization can be established through sensor technology during manufacturing and service life by active
data logging and transfer to servers that process this information under the pretext of fundamental physics of electronic
structures and innovative machine learning techniques. Hence, the authors aim to introduce their mechanistic machine-30

learning technique in additive manufacturing under this framework.

In additively composed materials, surface, and bulk flaws were addressed using post-processing techniques. The main
subject of the investigation was the impact of peening treatments on the fatigue performance of AlSi10Mg specimens used
in V-notched laser powder bed fusion. A machine learning-based methodology found the relationships between residual
stress, hardness, surface roughness, crack initiation site depth, and fatigue life. The findings indicated that deeper fracture35

initiation sites and better fatigue life are produced by increasing surface hardening and decreasing surface roughness. The
improvement in fatigue life in the samples was also directly correlated with the depth of sub-surface fracture formation [6].
An innovative phase-field fracture framework based on fast Fourier transform (FFT) simulated fatigue cracks’ microscale
initiation and propagation and established a relationship between phase-field fracture and microstructural fatigue damage
by defining a damage-driving force based on energy and dislocation density. The framework mimicked the first phases of40

fatigue cracking, forecasting crack directions, rates of growth, and sensitivity to microstructural characteristics [7]. The
loading effect on fatigue cracks in specimens made of the aluminum alloy AA6082 (BS HE30) was correlated to crack
morphology to comprehend crack closure and residual stress effects. The focused ion beam digital image correlation
(FIB-DIC) approach assessed residual stress at key regions near fracture retardation sites. To determine the functions of
fracture closure and residual stress effects, the results were compared with experimental data [8]. Prediction of fatigue45

fracture propagation was performed in aluminum alloy 7075-T7351 coupons subjected to military transport aircraft loading
using FASTRAN v5.76. The highlight was the use of crack growth rate information for near-threshold prediction and the
efficacy of FASTRAN for diverse crack growth scenarios. To accurately and reliably anticipate the formation of fatigue
cracks across various structures, situations, and scenarios, engineers face issues when predicting fatigue crack growth
under variable amplitude loading [9]. Machine learning was used to find control limits of fatigue strength of hybrid fatigue50

specimens manufactured by selective laser melting on wrought aluminum alloys. The methodology was accurate from low
to very high cycle fatigue [10]. To explore fatigue crack propagation utilizing molecular dynamics (MD) and extended
finite element method (XFEM), it was suggested to use a representative volume element (RVE)-based multi-scale method.
The RVE model is constructed by fitting MD data with the Paris law model, and an atomic model of carbon steel plate was
constructed. Considered were microstructural flaws such as vacancies and interstitial atoms [11]. Coronary stents could55

detect coarse grains parallel to the ingot axis according to their microstructure. The Tanaka-Mura model in the finite
element method (FEM) was used in the study to simulate the fracture initiation process in a cyclic loading environment.
The impact of grain size, orientation, and surface roughness on the fatigue life of stent components was investigated [12]. A
fatigue life model based on unified mechanics theory was discovered through ultrasonic vibration experiments on samples
of A656 grade steel, and it successfully predicted high cycle fatigue life without using empirical curve fitting. The model60

necessitated the derivation of an analytical thermodynamic fundamental equation that describes the mechanisms that
caused entropy to be generated during the fatigue process. Due to its cumulative nature, entropy enabled the addition of
all active mechanisms [13]. Lamellar microstructure and micro defects impact the fatigue performance of metal alloys. The
crystal plasticity finite element method (CPFEM) considered stress and the parametric accumulative difference indicator
(ADI) for intragranular accumulative deformation. A higher β lath and synchronized refining improved the lamellar65

microstructural effect, possibly improving the design and production of advanced metal alloy materials [14]. A CPFE-
based computational approach that predicted creep-fatigue crack onset life reveals the grain-level damage mechanism.
Using a flexible creep-fatigue damage summing method for conservative evaluation, a new life prediction approach was
built and verified by strain-controlled testing in the GH4169 superalloy at 650°C [15]. The fatigue response of additive
manufacturing (AM) components was estimated in the article using machine learning techniques. It demonstrated the70

viability of physics-based ML methods for forecasting the fatigue response of AM parts using feed-forward neural networks
and physics-informed neural networks. Additionally, they examined the connection between process variables and fatigue
response [16]. By utilizing isotropic linear elastic fracture mechanics (LEFMs) boundary displacements, a molecular
dynamic (MD) model of a crack in pure aluminum has been created. With a sinusoidal load and 15 or more loading
cycles, the model simulated the formation of fatigue cracks in aluminum. The combination of dislocation emission and75

atomic separation resulted in the observation of crack advance [17].

In this article, the authors introduce a new approach to design components against fatigue damage from the first principles
upwards in scale. We utilize established numerical methods in quantum and continuum mechanics and expand their usage
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Figure 1: Summary of the mechanistic machine learning strategy used in the current study which explains schematically the flow of physics-
informed machine learning in the fatigue design problem

by combining them with atomistic and fracture mechanics methods. We enhance the post-processing and data analytics
of these models’ outcomes by applying Bayesian and reinforcement learning, new to this fatigue damage-tolerant design80

community. Reinforcement learning is particularly suitable for the fatigue problem because, in analogy to rewarding
the agent in the classical machine learning setup [18], we can reward the model here with the physical model in the
mechanistic setup we introduce in this study. Because fatigue is a multi-scale, multi-parameter problem, studying it
parametrically without data science techniques is computationally and experimentally expensive. Data science and, above
all, machine learning can identify data patterns and predict design rules. Their advantage is that they are data hungry85

which we remedy in this manuscript by introducing the mechanistic concept. The combination of physical and Bayesian
models compensates for the lack of physical knowledge from using data-driven methods alone. Therefore we shed light on
the mechanistic transformation of machine learning models that get trained based on modeling data that are physically
grounded. In the coming sections, we explain the methodology of how the design against fatigue damage to control meta
properties can start early on with the manufacturing process by mechanistic machine learning.90

2. Materials and methods

We would like to visually introduce the reader to an overview of the aims of this study through Figure 1. We use multi-
exposure treatments in selective laser melting of metallic powder to induce controlled microstructures with specific potential
cohesion energy that can be consumed as mechanical work to accommodate the loads applied during fatigue loading. The
latter, described by probabilistic regression, has inherently statistical characteristics induced by the microstructure’s95

heterogeneity and hierarchy. The hierarchy gives rise to variations of potential energy that sum up to nonuniform fatigue
strength, although the applied load is uniform in standard fatigue laboratory tests. Hence, the weakest link concept is
a valid claim in fatigue design and has been consistently successful in describing statistical properties of fatigue strength
[19, 20, 21, 22, 23]. We utilize this concept in the comprehensive Bayesian model of heterogeneities presented in equation
51 that will be explained in detail in section reinforcement learning 2.5.100

2.1. Experimental design

In this section we will introduce the process window we will train the model. That consists of specimens of Ti-6Al-4V
built by selective laser melting in the vertical direction. One batch will be built by one laser exposure using optimized
process parameters. The subsequent batches will have the standard first exposure plus a secondary exposure which will
be varied. The variation will induce variation in microstructures and defect distribution. The data, which consists of the105

fatigue model prediction and distributions of the features, will used to train and predict the machine learning model in
the sections 2.2 through until 2.5. This section will also introduce the mechanical energy consumed by atomic damping
as a microstructural origin for fatigue. The concept will be utilized in section 2.4.

The process window concerning laser scanning parameters is shown in Table 1. Ev stands for energy density, P for
laser power, vs for scanning speed and D for spot size. The specimens were built on modified SLM 250 HL and SLM110
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Figure 2: Functional grading strategy of properties on the xy plane using the process parameters of Table 1

500 HL systems for AlSi10Mg and Ti-6Al-4V alloys, respectively. They were all built in 90° orientation to the building
platform. To induce an in situ heat treatment effect, a second exposure treatment was applied variably to control thermal
history and cooling rates at specific contours. More details on the manufacturing technique can be found in [24]. Figure
2 shows schematically the functional grading strategy implemented in this study to remelt already exposed layers aiming
to improve local properties quantitatively by applying the mechanistic learning algorithm.115

Table 1: Local thermal control parameters of the in situ heat treatment of Ti-6Al-4V by selective laser melting

Parameter Power Scanning velocity Spot size Energy density

Ti-6Al-4V platform-heated (PH) at 200°C
Batch (P ;W ) (vs;mm/s) (D;mm) (Ev; J/mm3)

Standard 240 1,200 0.082 31.7
Ev1 200 1,000 0.082 31.7
Ev2 160 800 0.082 31.7
Ev3 120 600 0.082 31.7
Ev4 80 400 0.082 31.7
P1 80 1,200 0.082 10.6
P2 160 1,200 0.082 21.2
P3 320 1,200 0.082 42.3
P4 400 1,200 0.082 52.9
vs1 240 3,600 0.082 10.6
vs2 240 1,800 0.082 21.2
vs3 240 900 0.082 42.3
vs4 240 720 0.082 52.9
D1 240 1,200 0.116 31.7
D2 240 1,200 0.142 31.7
D3 240 1,200 0.164 31.7
D4 240 1,200 0.183 31.7

The schematic of the temperature measurements scheme and the principle behind it is shown in Figure 3. The thermal
history and heat accumulation were tracked during the remelting process by a wide field thermal camera from EQUUS
(81k SM/M) to correlate layer by layer heat accumulation to the remnant porosity and its morphology. The calibration
functions of the temperature were set by putting a powder and solid part sample into an oven that will quantify the
temperature with thermocouples and surface radiation by the thermal camera. The setup was able to monitor a field of120

view of 100 × 100 mm² with 320 × 256 pixels and 300 frames per second such that multiple specimens were possible to
track at the same time so differences between applied remelting parameter sets can be revealed. This thermal measurement
will be used in the Bayesian model to achieve a probabilistic regression of the temperature profile of the laser parameter set
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Figure 3: Thermal imaging: a) measurement counts of powder and part; b) schematic illustration of the setup inside the chamber

with the resulting microstructure and fatigue strength. The thermal history is a measure of heat representing energy flow
in the cohesion of the microstructure on the atomic scale in our analysis because thermal history defines the distortion of125

the primitive unit cell from the relaxed unit cell at temperature of absolute zero. The electronic structural configuration
determines the cohesion in the bonds. Thus, the energy of the electronic structure is supposed to strongly correlate
to the material’s potential energy. Hence, fatigue strength, based on the energy method we will present later, can be
correlated by energy conservation laws, and fatigue strength can be predicted in a physically grounded manner. During
cyclic loading, the specimen accommodates a specific load applied by the corresponding displacement. This process of130

exerting mechanical work is an oscillatory motion with specific resolved kinetic and potential energy components. The
energy during an oscillation can be expressed as [25]

E(R) =
1

2
µν2 +

1

2
κR2 (1)

where µ is the reduced mass (It is the effective inertial mass of a multi body problem), ν is the velocity and κ is the
stiffness constant. The stiffness constant is found through d2E/dR2 where R is the oscillation distance of one stroke.
Depending on atomic, unit cell type, and molecular properties, an amount of internal damping (ID) is expected, which135

gives rise to plastic deformation [26]

ID =
1

2π

Wdiss

Wel
(2)

where Wdiss is the amount of energy lost in a given volume unit throughout one vibration cycle

Wdiss =

∮
σ dε = πσ0ε0 sinϕ = πJ2σ

2
0 (3)

and Wel is the maximum amount of elastic energy stored in a given volume

Wel =

∫ σ0

0

σ dε =
1

2
J1σ

2
0 (4)

where J1 and J2 are the real and imaginary parts of the compliance J∗. The harmonic equation of motion governs the
displacement amplitude x at the end of the fatigue specimen [27]140

x(t) = xme−βt cos(t
√
ω2 − β2 +Φ) +Xm cos(ωωt+ ϕ) (5)

where ω is the angular frequency, ωω the excitation frequency, β is the damping ratio. The amplitude is maximum
at resonance frequencies. Figure 4 shows the stress state along the ultrasonic specimen. The ultrasonic specimen was
used for very high cycle fatigue testing. The high cycle fatigue testing up to 1E6 was carried out on a Schenck PC63M
servohydraulic fatigue testing system with an Instron controller and 45 kN load cell. The vibration induces damage
at specific rates that the Arrhenius equation can describe. This model expresses the rate of a process k in terms of145

temperature T subject to the conservation of energy if, for instance, the fatigue loading leads to heat dissipation which
varies from a crystal lattice to another [28]

E(k) = Ae−B/T , var(k), T ∈ X = [T1, T2], T1 ≥ 0 (6)
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Figure 4: Displacement-stress distribution along an ultrasonic fatigue specimen using ultrasonic resonance in the Shimadzu USF-2000a

where A is constant and B is a constant related to the activation energy of the fatigue damage process. An equilibrium
constant Keq can be related to the change in temperature T by the enthalpy ∆Hθ [29]

d lnKeq

d(1/T )
= −∆Hθ

R
(7)

where R is the universal gas constant. At this point, it becomes a primary task for us to estimate the potential energy150

of the concerning lattice structures numerically based on thermodynamically consistent calculations of the enthalpy of
formation ∆Hθ which we will aim to achieve in the following sections.

2.2. Quantum mechanics

In the previous section 2.1, we discussed the atomic damping of the vibration energy of atoms, which, upon dissipation,
leads to loss of cohesion and formation of the fracture surface. In this section, we will introduce atomistic simulation155

based on the density functional theory (DFT) to compute the cohesion energy in the respective phases of the testes alloys.
In section 2.3 as well as section 2.4 we will compute the work per cycle and the cohesion energy of the microstructure.
Thus, we can estimate the microstructure’s capacity to accommodate the cyclic loading by deformation and how long it
can endure. Therefore, fatigue data points be estimated model-based for the train of the machine learning model.

In quantum mechanics, or the ab-initio level, one can study explicitly the behavior of fundamental particles. On the other160

hand, predicting and understanding all features and aspects of these particles, especially while interacting, and mapping
them onto mathematical formulations, is nearly an impossible task up to date. The success of density functional theory
(DFT) over other classical and quantum computational methods comes from the balance between the predictability power
and the computational tractability. In the Kohn-Sham (KS) framework, a fictitious system of non-interacting electrons
is studied explicitly instead of the many-body wave function in Schrödinger equation (SE) in a self-consistent manner165

whereby the KS electron density that is calculated from KS equations must be approximately equal to the particle density
that was used to construct the KS equations.

The features and overview of the unit cell parameters involved in this atomistic DFT study are shown in Figure 5 for
Al-based (face-centered cubic – FCC unit cell) alloys and in Figure 6 for Ti-based (Hexagonally closed packed – HCP
unit cell) alloys. We start with constructing the structures of the elements and primary phases, which are Al and Ti,170

as shown in Figure 5 and Figure 6. This step is important for understanding the positions of atoms of each structure
and for calculating equilibrium lattice constants and equilibrium c/a ratios (see Figure 6), which will help construct the
supercells used for all the following DFT calculations. Xcrysden software was employed to visualize the structures and
phases throughout, as shown in Figure 5 and Figure 6. The crystallographic structural data, such as the space group,
Wyckoff positions, number of atoms per unit cell, and lattice constants associated with each element and each phase, is175

detailed in [30]. Using the basis atoms, corresponding lattice vectors, and space groups, basis unit cells were constructed.
Structural optimization to obtain minimum energies has been done by means of relaxing lattice constants and tetragonality
ratio or c/a ratios for Ti (see Figure 6); the calculated total energies versus the atomic volumes are plotted and given in
Figure 12. Further details on the theoretical background of these calculations can be found in Appendix A.
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Figure 5: Features of atomistic modeling of Al-based (FCC unit cell) alloys

Figure 6: Features atomistic modeling of Ti-based (HCP unit cell) alloys

2.3. Continuum plasticity and damage180

In sections 2.1 and 2.2, we introduced specimen manufacturing and atomic damping as a microstructural origin for fatigue
failure and calculated the cohesion energy using DFT. However, to estimate fatigue strength we need to calculate the
amount of dissipation that the specimen will endure under cyclic loading. We will perform this here using a truncated
Fourier series based on cyclic plasticity theory, ductile damage, and model calibration from instrumented indentation.
Later we will explain how to obtain the cohesion energies of complex microstructures in section 2.4 using trivial cohesion185

energies of simple phases from section 2.2.

The fatigue simulation is a dynamically complex process such that the implicit time integration in a cycle-by-cycle
manner represents a computationally prohibitive task. Therefore, this study will depend on mapping the time-dependent
displacement domain on the frequency domain such that a predetermined residual is reached in a Newton-Raphson scheme
using a truncated Fourier series (TFS). Using a truncated Fourier series, the displacement boundary conditions and its190

residuals are [31]

ū(t) = u0 +

n∑
k=1

[us
k sin kwt+ uc

k cos kwt] (8)

R̄(t) = R0 +

n∑
k=1

[Rs
k sin kwt+Rc

k cos kwt] (9)

where n stands for the number of terms in the Fourier series, ω = 2π/T and the u0, u
s
k and uc

k are the known displacement
coefficients associated with each degree of freedom in the problem. The residual coefficients in equation 9 are obtained by
tracking through the entire load cycle. A simple form of equation 5 is implemented for cyclic loading as follows [32]195

dWdamage =

∫ ∆ε

0

σ dε (10)
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where σ is the applied load. ∆ε is the strain induced by the accumulation and saturation of the load and its associated
displacement. Part of this work is irrecoverable and is the remanence of the supplied work after heat dissipation and
deduction of resolved recoverable work

dWirrecoverable = dWsupplied − (dQ+ dWrecoverable) (11)

It can also be decomposed into an inelastic part, heat, and damage such that the damage is proportional to the irrecoverable
and the supplied work obviously200

dWirrecoverable = dWinelastic − (dQ+ dWdamage) (12)

dWdamage ∝ dWirrecoverable (13)

dWdamage ∝ dWsupplied (14)

If the potential energy of a specimen is consumed, fatigue failure is induced to preserve the electronic structure of the
crystal lattice and form new fracture surfaces by realizing energy. Since the surface atoms have higher energy than bulk
atoms, therefore, the fatigue lifetime of a structure can be trivially estimated by dividing the potential energy by the205

damage rate per fatigue cycle as suggested and validated by Ellyin [32] for the case of the rate-independent response as
follows

Life =
Potential energy

Damage per cycle
=

U0

dWdamage
(15)

A more comprehensive, accurate representation following this concept will appear in the following lines after we include
influences of heterogeneities. For this estimation, we will rely on instrumented indentation. In instrumented indentation,
the relationship between indentation force and contact area with the indenter is [33]210

H =
F

Ac
(16)

where F is the indentation force and Ac is the contact area between the surface and indenter. The reduced Young’s
modulus E∗

c is a function of the slope of the withdrawal of the indenter S and disproportional to the square root of the
contact area Ac [34]

E∗
c =

S

2

√
π

Ac
(17)

However according to the first law of thermodynamics, the change in the internal energy of the materials being indented
can be expressed as heat Q and work W [35]215

∆U = Q−W (18)

Assuming quasistatic deformation and absence of inertial forces, the indentation force Fp can be related to the pressure
P across an equivalent projected diameter dp of the contact area Ac along the unit vector ẑ [36]

Fp = −∂P

∂z

πd3p
6

(19)

assuming force equilibrium allows us to imply pressure P as a membrane stress σ in the material [37], hence

P = σ (20)

which can be expressed in terms of cyclic hardening mechanisms [38]

σ = Isotropic+Kinematic (21)

This expression trivially describes the state of the hysteresis loop in space. Both expansion and translation of the yield220

locus in space are induced by isotropic and kinematic hardening, respectively. The yield surface we aim to describe its
evolution is itself described by

F =

(
3

2
(σ′ − x′) : (σ′ − x′)

) 1
2

− σy(p) ≤ 0 (22)

where σ is the current stress state and x′ is the back stress in tensor form. The kinematic hardening is described in terms
of plastic strain ∆εpl and back stress parameters as
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∆σ − k =
C

γ
tanh(γ

∆εpl

2
) (23)

where k is a constant, C and γ are the parameters associated with this back stress. A component of back stress increment225

is described in terms of plastic strain as

dx =
2

3
Cdεpl − γx|dεpl| (24)

The combined isotropic and kinematic hardening model with one back stress will be [39]

σ = σ0 +Q(1− e−bεpl) +
C

γ
(1− e−γεpl) (25)

where σ0 is the initial size of the yield surface, Q and b are the isotropic hardening parameters. C and γ are the kinematic
hardening parameters of the corresponding back stress component. The formation of fatigue intrusions and extrusions
is predominantly induced by shearing in the principle resolved shear stress direction on the corresponding slip system;230

therefore, we will focus on using the Fatemi-Socie parameter in this study as we have ductile failures in bulk metallic
specimens. The fatigue lifetime Fatemi-Socie model has a basic form as follows [40]

∆γ

2
(1 + k

σmax
n

σy
) = γ′

f (2Nf )
c0 +

τ ′f
G
(2Nf )

b0 (26)

where k is the Fatemi-Socie damage parameter that is empirically deduced as

k =

 γ′
f (2Nf )

c0 +
τ ′
f

G (2Nf )
b0

(1 + νe)
σ′
f

E (2Nf )b + (1 + νp)ε′f (2Nf )c
− 1

 2σy

σ′
f (2Nf )b

(27)

such that γ is the shear strain range, σy is the yield strength, c0 and b0 are the torsional fatigue strength, exponents,

while c and b are the axial fatigue exponents, G is the shear modulus, σ
′

f is the axial fatigue strength coefficient, ε
′

f is the235

fatigue ductility coefficient. τf and γf are the axial and torsional fatigue strength and ductility coefficients, respectively.
νe and νp are the elastic and plastic Poisson’s ratios. At shear strain ranges below the macroscopic cyclic plastic strain
limit, such as in very high cycle fatigue (VHCF), the inconsistency of the damage parameter approaching zero is avoided
by multiplying the parameter by (∆γ/2)(1 + (σmax

n /σy) [41]. To homogenize the right-hand side of the equation, fatigue
lifetime based on shear strain-life properties can be expressed by uniaxial loading using the relationships240

∆γ

2
(1 +

σmax
n

σy
) = ((1 + νe)

σ′
f

E
(2Nf )

b + (1 + νp)ε′f (2Nf )
c)(1 + k

σ′
f

2σy
(2Nf )

b) (28)

∆γ

2
(1 +

σmax
n

σy
) = ((1 + νe)

σ′
f

E
(2Nf )

b + (1 + νp)ε′f (2Nf )
c) + k

σ′
f

4G
(2Nf )

b (29)

Figure 7 explains the flow of information in the Fatemi-Socie-based analysis of plastic damage in cyclic ratcheting ac-
cumulation. Fatigue models are built as digital twins of fatigue specimens by microcomputed tomography (µ-CT), and
geometrical transformation from surface representation to finite element representation, which can be set in a boundary
value problem that we will solve its deformation and stress by the truncated Fourier series method mentioned earlier. These
digital twins aim to achieve control over the manufacturing process in an active property control technology. The nodal245

variables describe the damage state from specimen to specimen and predict fatigue lifetime in the Fatemi-Socie model
as a function of plastic and elastic properties. The outcomes provide the necessary S − N data to fit the probabilistic
regression fatigue lifetime model.

2.4. Fracture mechanics

The calculation of cohesion energy in section 2.2 cannot be trivially used for fatigue lifetime prediction. This calculation250

accounted only for simple lattices and did not yet include further cohesion mechanisms such as phase interfaces and grain
boundary strengthening. Therefore, this section will explain the procedure to obtain more realistic cohesion energy values
based on the kinetic failure of solids and use the values obtained from DFT as a first guess in a numerical scheme.

For a stressed body the time necessary for fracture according to the kinetic theory of failure of solids [42] is given by

τ = τ0e
(U0−γσ)/RT (30)
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Figure 7: Fatigue lifetime prediction based on damage of the continuum of the structure of interest [38]

where τ is the time to failure, τ0 is a molecular vibration parameter, U0 is is the potential cohesion energy, γ is the lethargy255

of the microstructure, R is the gas constant and T is the temperature. We here estimate U0 based on the first guess from
DFT calculations of section 2.2 and instrumented indentation tests. The J-integral in an instrumented indentation test
is [43]

JIC ≈ Wp (31)

where Wp is the plastic work. The energy absorbed in the indentation is calculated as

KIC =

√
JICE

1− ν2
(32)

where the toughness KIC can be expressed independent of the geometry by the surface energy γp per mole [44]260

KIC =

√
2

π
γpE (33)

where E is the elastic modulus. When we recall that the electronic structure has a key role to play in the fracture of the
matter and recall the kinetic equation of the fracture of solids equation 30 and interpret defects as loss of energy due to
atoms having higher energy states on the surfaces of the defects than in the bulk of the materials. Thus, the effect of
defects on fatigue strength can be initially formulated as

Fatigue life time =
Potential energy − Surface energy of defects

Work per cycle

=
U0 − γsAdefects

dWdamage

(34)

where γs is the surface energy per unit area. Adefects is the projected area of the defects perpendicular to the loading265

direction. Therefore, the various geometric features of the defects, such as size, location, and morphology, could be
accounted for. When the stressed volume does enough work, local fracture takes place as postulated by Irwin in [45]

G = −dΠ

dA
(35)

where G is the energy release rate, Π is the potential energy of the stressed volume, A is the fractured surface. The
J-integral is used to quantify this plastic energy in the contours ahead of the crack tip [46] as follows

J =

∫
Γ

ω dy − Ti
∂ui

∂x
ds (36)

where ω is the strain energy density, Ti is the stress vector, ui is the displacement vector and ds is the increment along270

the path Γ. To simulate this crack propagation into the specimen, we use the extended finite element method (XFEM)
where the nodal shape functions give the displacement field after enrichment as [47]

u(x) =

N∑
I=1

NI(x)

[
u⃗I +H(x)a⃗I +

4∑
α=1

Fαb⃗
α

I

]
(37)
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Figure 8: Crack propagation workflow as implemented using XFEM in Abaqus [48]

where NI(x) is the nodal shape function, u⃗I is the displacement of the nodes, x is the coordinate and I is the element node
label. The Heaviside function H(x) is responsible for mitigating the singularity since it is a jump enrichment function of
the a⃗I nodal degree of freedom (DOF) for jump discontinuity275

H(x) =

{
1 if(x⃗− v⃗∗) n⃗ ≥ 0,

−1 otherwise
(38)

The details on the crack propagation simulation can be found in [48]. The algorithmic implementation of the critical
energy release rate fracture mechanics scheme within the XFEM is graphically represented in Figure 8 on the basis of the
energy release rate at the decohesion of the crack tip. The energy release rate is calibrated from the cohesion energy in
equation 30. The reduction in fatigue strength due to the presence of defects as presented in equation 34 can be generalized
to all heterogeneities in the following mathematical form280

N(σ, U0) =

∫
...
∫
V
U0(V )dnV −

∑n
i=1 γsiAi

dW+
d =

∫
cycle

(σ − σref )H(σ − σref ) dε
(39)

where N is the fatigue strength in cycles given a load σ the results in a strain ε while H is the heaviside function and
σref is equivalent to the critical resolved shear stress. U0 is the potential energy stored in the material based on the
ab initio calculations, which depend on the volume of the fatigue ensemble V within the structure (molecular dynamic
calculations). γs is the surface energy per unit area of a heterogeneity Ai, which is not a sub-molecular heterogeneity.

2.5. Reinforcement learning285

From sections 2.1 to 2.4, we showed our approach to fatigue lifetime prediction. The non-empirical approach can generate
an enormous amount of synthetic fatigue data. Thus fatigue data points and the corresponding distributions of defects,
microstructure, and thermal history can be used to train a probabilistic regression model in reinforcement learning. We
will not need to split data for training and validation since we will use synthetic data for training and experimental data for
testing and validation. The application of the reinforcement learning algorithm based on Weibull regression is introduced290

as follows.

When equation 39 is solved for sufficiently numerous scenarios to calibrate the Fatemi-Socie model, the outcomes are used
to train the following machine learning model for an arbitrary number of fatigue-related influences, as follows

Q(N |P (A1), P (A2), ..., P (An)) =

∫
...

∫
N

f(N |P (A1), P (A2), ..., P (An)) d
nP (Ai)

(40)

Q is the probability distribution of N given the probability distributions of heterogeneities An. f(N) is the mechanistic
function of fatigue strength given distributions of heterogeneities P (Ai) such as equation 39. The gamma function is295

defined by the form

Γ(α) =

∫ ∞

0

xα−1e−x dx, for α > 0 (41)
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If the density function of the failure rate of X is given by equation 42

f(x;α, β) =

{
1

βαΓ(α)x
α−1e−x/β if x > 0

0 elsewhere
(42)

where α > 0 and β > 0. The values of α and β change the central tendency and scatter of the distribution. The Weibull’s
cumulative distribution function (CDF) can be expressed in the closed form

F (x) = 1− e−αxβ

for x ≥ 0 (43)

The stress-life model is derived based on the compatibility condition of Castillo and Cantelli [49]. In a Woehler field, the300

compatibility of the cumulative density function (CDF) of the lifetime Nf and the stress range ∆σ must be ensured such
that the minimization law of the weakest link principle is valid

Q∗(N∗,∆σ∗) = E∗(N∗|∆σ∗) = F ∗(∆σ∗|N∗) = qmin(N
∗,∆σ∗) (44)

It is implied that finding the compatible pairs of life and stress is a minimization optimization problem. The literature
shows how the function is solved [50] leading to the log-dimensional Weibull model for which the maximum likelihood
must be inversely minimized305

Q(N,∆σ) = 1− exp

(
−
(
(logN −B)(g(∆σ))− λ

δ

)β
)

(logN −B)(g(∆σ)) = constant

(45)

such that B is related to a fatigue lifetime threshold and C is related to a virtual fatigue limit. λ is the location
parameter. These parameters are used for computational convenience and are not considered physical limits of fatigue
since most recent literature on fatigue suggests that a limit does not exist [51, 52]. However, the zero-percentile curve
can be interpreted as the smallest number of cycles required to reach a fatigue failure for various stress levels, which is
the value presented by the bias in lifetime or load. Hence the bias in a lifetime might be interpreted as the transition310

point between the macrostructural crack initiation and propagation until the arrest phase is finished [24]. In this case, a
representation based on Gumbel CDF will be more rewarding because the heterogeneities causing fatigue failure are the
largest heterogensities

Q(N,∆σ) = 1− exp

(
− exp

(
(logN −B)(g(∆σ))− λ

δ

))
(logN −B)(g(∆σ)) = constant

(46)

Maximization of the log-likelihood of the Weibull model yields the expression [53, 49, 24]

L = −
∑

i∈I1∪I0

(
Ni − λ

δ
)β + (β − 1)

∑
i∈I1

(
Ni − λ

δ
) +

∑
i∈I1

log
β

δ (47)

with respect to λ, δ and β where I0 and I1 are the set of runouts and non-runouts respectively. Following the same315

footsteps, the maximized Gumbel likelihood will be [53, 49, 24]

L = −
∑

i∈I1∪I0

exp(
Ni − λ

δ
) + (β − 1)

∑
i∈I1

(
Ni − λ

δ
) +

∑
i∈I1

log δ (48)

We identify a joint probability function for a fatigue-related influence Ai for an arbitrary number of influences n. We
generalize the concept introduced by [24] for porosity and microstructure. Hence, it can be formulated for a given load
state ∆σ as

Q(N,∆σ) =
∑
N

∑
∆σ

f(N,∆σ|A1, A2, ..., An) ∆
nAn (49)
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in a discrete case, while in a continuous case320

Q(N,∆σ) =

∫
N

∫
∆σ

f(N,∆σ|A1, A2, ..., An) d
nAn (50)

hence, the updates on beliefs of fatigue lifetime Nf and load ∆σ conjugates can be put in a posterior distribution using
the prior form π(N,∆σ) for an arbitrary number of influences An

Q(N,∆σ|A1, A2, ..., An) =
Πn

i=1f(Ai|N,∆σ) π(N,∆σ)

Πn
i=1g(Ai)

(51)

where g(Ai) is marginal probability of the fatigue-related influence of parameter Ai. For best local estimates of the
conjugate at a given load level ∆σa, we apply a 5-th order Taylor polynomial [31]

Nf (∆σ) ≈ T5(∆σ) = f(∆σa)− f
′
(∆σa)(∆σ −∆σa)+

f
′′
(∆σa)

2!
(∆σ −∆σa)2 + ...+

f5(∆σa)

5!
(∆σ −∆σa)5

(52)

Awd et. al [52] formulated a Monte Carlo estimate of the conditional distribution of a fatigue-related influence given a325

specific fatigue lifetime as follows

E[g(Ai)|N ] ≈ 1

S

S∑
s=1

g(A
(s)
i ) (53)

sampling continues until saturation and the parameters of equation 45 are updated based on the reward function

r =
p(A∗

i |N)

p(A
(s)
i |N)

=
p(A∗

i |N)p(A∗
i )

p(N)

p(N)

p(N |A(s)
i )p(A

(s)
i )

=
p(A∗

i |N)p(A∗
i )

p(N |A(s)
i )p(A

(s)
i )

(54)

the error estimation minimizes the following expression using the simplex algorithm [54], if gradients are not possible to
obtain analytically

L (Nf (Ai), Nf (U0)) = (Nf (Ai)−Nf (U0))
2

(55)

where Nf (Ai) is the resulting fatigue lifetime based on statistical learning compared against the resulting experimentally-330

validated fatigue lifetime based on the physical potential energy concept. We will solve this simplex optimization problem
linearly using the simplex algorithm, an iterative method introduced by Dantzig [54]. Hence, the problem is to be
formulated as


max(or min)[Z(y) = c∗y]

My = b

y ≥ 0Rn

(56)

where c ∈ Rn, M ∈ Rm×n are beforehand fixed data. By solving a linear system of equations M = yb, we can obtain

a solution of the form
(

B−1b
0N

)
. Therefore it is a global optimum that is a basic one [55]. Hence, the machine learning335

strategy applied here is a multilayer strategy of deeply interconnected regression schemes that apply high-dimensional
integration by the Metropolis-Hastings Monte Carlo algorithm.

3. Results and discussion

3.1. Observable properties

The selective laser melting process induces unique microstructure characteristics in addition to the defects, which are340

unique compared to conventionally synthesized Ti-6Al-4V. Figure 9 shows two magnifications of the microstructure under
optical microscopy. Dominant prior β grains are observed in the build-up direction consistent with literature [56, 57]
and similar to electron beam melting with less pronounced texture [58]. This anisotropic texture is responsible for
lower fracture strain according to [59]. In the current study, the in situ heat treatment presented in Table 1 leads to a
significantly observable modification in the prior β grain morphology and width. The microstructure modification will345

change the cohesion energy and adjust fatigue strength locally. The scheme described in sections 2.2, section 2.3 as well
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Figure 9: Microstructure of SLM Ti-6Al-4V in first standard exposure parameters according to Table 1 showing the width y of a prior β grain
as the microstructural parameter of interest. (a) – (f) represents a cross-section of the specimen at various locations with various magnifications
to visually indicate the variability of the microstructure under the same scanning parameters

as section 2.4 will be used to generate synthetic data points from these. Modified microstructures to train the machine
learning model in section 2.5 and predict fatigue strength with further modifications in micros sutures and defect status.
Moreover, the outcomes of the model suggest that the model can be used to design fatigue-resistant microstructures from
the online measured data during processing. Hence, a significant influence on both quasistatic and fatigue properties was350

expected. It was proven by a cyclic instrumented indentation in the first cycle and subsequent cyclic hardening parameters.
Significant microstructure modification indicated by the variability of the width of the prior β grain as shown in Figure 9
led to control of elastic modulus, fracture toughness, cyclic plasticity parameters, and fatigue strength.

Inside the prior β grains, the strain localises itself along the 45° α lath [60]. Hence, localization plays a critical role in
fracture and the short microstructural crack propagation inside the prior β grain is a mechanism for crack retardation by355

grain boundary strengthening [61]. However, once this boundary is overcome we observe a microscopic drop in the slope
of the stress-strain curve, as in Figure 10a. After an initial hardening modulus beyond the elastic limit, the hardening
modulus becomes negative, following the extension of the crack to other prior β grains. In the instrumented indentation
test in Figure 10b, a decrease of the slope of the unloading modulus ensues with cycles being added on the same indentation.
Assuming a similar mechanism in the indentation, the load accommodation is transferred from within the prior β grain360

to the neighboring ones. This is a primary task of the microstructure designer to strengthen the prior β grain boundary
to the maximum possible since this represents the extent of functional structural bearing capacity.

3.2. Lattice parameter energy

In additively manufactured bulk alloys, residual porosity has been identified as stress raisers [62, 63, 64, 65] where models
are being developed to capture the crack initiation effect that starts at these internal defects [66, 67, 68] and to differentiate365

between bulk and subsurface influences [69, 70]. Most of these methods are based on fracture mechanics and the Murakami
concept [71, 72]. In contrast to linear elastic fracture mechanics, another methodology also attempted studying the local
plastic deformation at defect roots [38] such as crystal plasticity methods [73, 7, 74]. A few have adopted an energy-based
approach [75] similar to the one described here, and to the authors’ knowledge, none has included atomistic effects in
AM structural modeling except a previous publication of the authors [76]. The trivially calculated energy from section370

2.2 is coupled with the theory of kinetic failure of solids in section 2.4 to obtain real microstructure-relevant cohesion
energy. In this manner, the cohesion energy accounts for further microstructural strengthening mechanisms such as grain
boundary strengthening and phases interfaces in addition to the trivial interatomic forces coming out of the primary
phase calculations of DFT. The authors already demonstrated how coupling an efficient machine learning modeling with a
proper phenomenological model can significantly enhance numerical techniques’ predictive power through a comprehensive375

literature review [77] of empirical and numerical models and numerical solvers of fatigue damage mechanisms. The authors
then couple these aspects of the literature by considering the variability of porosity in the specimens deposited through
the plan in Table 1. We scan the specimen in the X-ray computed tomography and build density functions of porosity
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Figure 10: Quasistatic properties of SLM Ti-6Al-4V in first exposure parameters: a) Tensile test; b) Ultramicro instrumented indentation; Mat.:
Material; PH: platform-heated; UTS: Ultimate tensile strength; εf : Fracture strain; σa,start: initial stress amplitude in LIT; f : frequency; R:
stress ratio; dσa/dN : rate of increase of stress amplitude; σa,f : failure stress amplitude in LIT; εa,f : failure strain amplitude in LIT

Figure 11: Nondestructive testing of pore characteristics using X-ray microcomputed tomography of first standard exposure parameters iden-
tifying distributions of porosity according to Table 1: a) Three-dimensional render with critical defect; b) Weibull probability density graph
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Figure 12: Identification of cohesion energy of the microstructure of SLM Ti-6Al-4V: a) Theoretical result from DFT calculations; b) Result
from molecular dynamics of the kinetic failure of solids

distributions based on Figure 11 in addition to the distributions of microstructure based on Figure 9. These distributions
of porosity feed quantitatively in equation 39 and probabilistically in equation 40. Quantitatively they are used in equation380

39 to deduce the actual potential energy of a fatigue specimen based on the microstructural potential energy estimated in
equation 30 from the first guess made in the DFT calculation in equation 64. That is demonstrated graphically in Figure
12. Figure 12a shows an energy volume curve based on the DFT calculation, representing an utterly relaxed crystal lattice
with an almost zero magnitude stress tensor. However, in the real specimens and due to more complex interactions in
the crystal and the superlattice (periodic structure of phases), the unit cell experiences a degree of distortion and volume385

change under an amount of residual stress. The deduced energy volume curve (MD corrected based on the theory of the
kinetic failure of solids; equation 30) is shown in Figure 12b. Table 2 states the energy and lattice parameters of the SLM
Ti α phase under the processing parameters of Table 1.

Table 2: Cohesion energy and corresponding lattice parameters after application of DFT and the kinetic failure of solids

Element Cell Atoms U0(eV ) E(GPa) Vol.(Ao3) a(Ao)

Ti HCP 2 -17.84 124 44.56 3.76

3.3. Cyclic deformation

The constitutive behavior of ductile materials is not stable throughout the fatigue loading regimes from low to high cycle390

fatigue; it is rather dynamic stress-strain behavior. In low cycle fatigue, where loads are high and nearer to the yield of the
specimen, the relatively wide hysteresis loops are to be seen [32]. Their width and height change rapidly at the beginning
of the test in a contracting fashion due to hardening until the behavior inflects into a softening phase characterized
by increased softening due to large-scale granular plastic deformation and increased compliance of the specimen due to
cracking. In high cycle fatigue, an intermediate saturation phase is observed where only microstructural cracking ensues395

and significant softening is yet to appear until the shift into long cracking. In very high cycle fatigue, the loads are away
from the yield point, and the deformation mechanism is highly localized in the microstructure, which leads to negligible
macroscopic observations. This is even exaggerated more while using ultrasonic fatigue testing devices due to high strain
rate hardening [51]. The distinction between those regimes and identification of their load level boundaries is necessary
for proper analysis modeling, prediction, and design for fatigue lifetimes. This distinction may have some grey areas400

depending on the complexity of the microstructure and secondary conditions, such as surface finish and residual defects.
The continuous incremental load increase tests are high throughput techniques to estimate these load levels on the load
spectrum. In Figure 13, we represent the transition points (at which the derivative of the plastic strain amplitude curve
is zero) of the fatigue loading spectrum of SLM Ti-6Al-4V based on the response of cyclic strain components of this test.
From the plastic strain amplitude evolution, we can see a transition point at around 570 MPa into very high cycle fatigue.405

A transition occurs short of 800 MPa from low to high cycle fatigue.

In Figure 14, the comparison between the quasi-static and low increase tests total strain relations hints at a decrease in
elastic modulus and general softening of the microstructure due to the load reversals. The load reversals can constitute a
basis for calibrating cyclic plasticity models, which can be used to compute the energy consumed per cycle and accurately
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Figure 13: Cyclic deformation under continuous incremental cyclic loading in the range of fatigue stress amplitudes; Energy×1E2; Mat.:
Material; PH: platform-heated; UTS: Ultimate tensile strength; εf : Fracture strain; σa,start: initial stress amplitude in LIT; f : frequency; R:
stress ratio; dσa/dN : rate of increase of stress amplitude; σa,f : failure stress amplitude in LIT; εa,f : failure strain amplitude in LIT

Figure 14: Comparison between quasistatic and cyclic deformation characteristics in the range of fatigue loading; Energy×1E2
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Figure 15: Evolution of the yield locus to calculate damage due to plastic work by simulation of yield surface expansion

capture the microstructure’s saturation state. In Figure 15, stepwise incremental loading is shown under displacement410

control to calibrate the isotropic part of the cyclic plasticity model. Every level provides a constitutive relation for the
subsequent virtual constant amplitude test simulation. From this, the work done by the specimen is calculated, and the
remaining lifetime can be tracked. The model in this configuration becomes simpler and does not consume prohibitive
computational power in comparison to the fatigue damage model based on crystal plasticity, which needs significant
computational power during model generation and load case simulation [78, 15] or the need for numerically complex415

multi-scale homogenization of state variables across scales [79].

Establishment energy as a basis of modeling mechanics of fatigue also enables the adoption of fracture mechanics param-
eters from the same tests. Thus, calibration of a fracture mechanics model and a fatigue crack propagation simulation
becomes possible within the same scheme without additional fracture toughness or fatigue crack propagation standardized
test [80]. A crack propagation curve reveals the fatigue regime zones in great compliance with what was discussed in420

Figure 13. Hence, a properly calibrated fatigue crack propagation simulation would reveal similar attributes. In addition
to mechanism revelation, load level, and frequency dependencies can be visualized and compared. Figure 16 shows such a
comparison based on the simulation scheme of Figure 8. We see a clear transition from microstructurally short to techni-
cally long crack propagation with a clear well of stress intensity factor that also characterizes the beginning of significant
compliance of the specimen. We see also by steps of 50 MPa how the curves shift into the two o’clock direction. In the425

high-frequency simulation, the transition happens at much lower propagation rates but at similar stress intensity factor
ranges. The whole set of curves appears to shift down with varying degrees. The corresponding shift to a 50 MPa step in
the loading amplitude is significantly more significant. Details on the fatigue crack propagation simulation in this setup
can be found in [48]. This is not the first attempt to simulate fatigue fracture using the extended finite element method
[81, 82, 83, 84, 11]. However, it might be the first with an extensive degree of correlation to the manufacturing process430

and its induced flaws that are highly random.
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Figure 16: Long and short fatigue crack propagation: a) Low-frequency simulations in high cycle fatigue; b) Ultrasonic frequency simulation in
very high cycle fatigue; d

√
area/dN : rate of increase of area of crack with applied cycles; ∆K: cyclic stress intensity factor range

3.4. Material energy losses

In the build-up of the model described here, we use energy as the base dimension and hence we represent the existence
of defects inside fatigue specimens as loss of fatigue potential energy due to defects. Already internal surfaces have been
formed in the defect formation process, which means that the energy released during the formation of these surfaces435

is not available anymore as potential energy inside the fatigue specimen to accommodate externally applied loads that
result in internal damping, deformation, and potentially formation of fracture surfaces to release some of the stored
energy. Figure 17 represents the application of this concept where the experimental fatigue data of low-frequency tests,
on servo-hydraulic machines, are shown. The figure shows two predicted blue points at 600 MPa of stress amplitude for
the total life of the specimens. The blue star presents a prediction free of defects based on the DFT calculation and440

strength of the microstructure in Figure 10b. The point already lies at the upper boundaries of the experimental data of
specimens that carry almost no defects. The prediction at this point relies solely on the microstructure. No doubt that the
experimental fatigue data present a trade-off between both influences of the microstructure and porosity since we tested
polished specimens. However, in numerical modeling, as we see, the two factors can be separated. A prediction based on
the same microstructural strength but with a total defect area of 1.385e5 µm2 is shown in the blue hexagon. This point445

lies at the lower average value of life at this load level with almost an order of magnitude of fatigue strength reduction.
Given this result, we can ultimately separate influences and predict the effects of defects given the same microstructure
and vice versa in a very deterministic fashion relative to each other. The strength of the microstructure alone is calculated
by the cohesion energy and is degraded by the amount of work the microstructure exerts per cycle until fracture. In section
2.4, the influence of defects is quantified separately and locally by calculating the energy required to form these defects450

from the surface energy of this alloy and removing this from the energy available to the microstructure to accommodate
the applied load. However, the variation of microstructural strength and defect formation location due to the thermal
input become the primary source of uncertainty and the nature of probabilistic fatigue. Hence we further post-process the
correlation between distributions of defects, microstructure, and process parameters using Bayesian statistics and Monte
Carlo simulations.455

It is worth mentioning that the model has good accountability of strain rate effects when testing at ultrasonic frequencies,
such as in Figure 18. The fatigue strength of the exact microstructural location is shown with a blue star since it is a
prediction without porosity consideration. The effect of the same defect area 1.385e5 µm2 is shown to its left by a blue
hexagon where a half order of magnitude reduction could be seen in fatigue strength for the total life of the specimens.
Combining both figures, the effect of strain rate can be distinguished in isolation from further effects which is an advantage460

of combining both numerical and experimental mechanics schemes. Crystal plasticity models directly considered based on
representative volume elements (RVE) focus on the variability of the microstructure and trade the property variability for
the statistical representation of the microstructure [85, 86, 7, 87, 88, 89, 90]. It renders the correlation process parameter
variability to property variability easier if a multitude of RVEs is virtually tested, which adds up the computational cost
of the modeling process.465

3.5. Physics-informed machine learning

The Γ distributions have been used extensively to describe and predict failure rate problems [53]. The weakest links
model based on the Weibull distribution was extensively used in fatigue literature to describe scatter in fatigue data
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Figure 17: The influence of potential energy loss on fatigue life under low-frequency testing for 1.385E5 µm2 total defect area in SLM Ti-6Al-4V

Figure 18: The influence of potential energy loss on fatigue life under high-frequency testing for 1.385E5 µm2 total defect area in SLM Ti-6Al-4V
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[19, 21, 91, 92, 93, 94, 95, 23, 22, 20]. These literature describe a varying aspect of the fatigue damage problem with
varying success based on the scheme in which they are integrated. In this study, we used plasticity parameter optimizations470

based on the instrumented indentations in which the optimization starts at the trivial cohesion energy coming out of the
first principle calculations. These physically modeled predictions have been used during the training phase of the model.
Experimental data from the fatigue tests have been used to validate the predictions of the machine learning models. Hence,
there was no data splitting of the same group for training and testing; on the contrary, the training and testing data come
from independent roots. The dispersion of fatigue data is accounted for in this multilayer learning by the probabilistic475

regression and uncertainty analysis within the Γ probability density function. The deterministic validity of the model
that can isolate microstructure and defect influences has been shown in Figures 17 and 18. We have solved numerous
scenarios such as these, starting from the cohesion energy of the first principles under the variability of the microstructures
indented and defects identified from µ-CT scans. Hence, we were able to establish the probabilistic regression activation
functions of the network and, with them, fit S−N curve percentiles from low cycle to very high cycle fatigue with varying480

asymptotes and dynamic biases in the extension of the work by [49] which was accurate only locally in the high cycle
fatigue regime based on the biases of available experimental data. However, due to the efficiency of the represented model
in this study, data can be provided as needed in terms of quantity and quality of variability until saturation or precision is
achieved. The performance of the implemented Weibull regression is compared to experimental data in Figure 19 for two
popular additive manufacturing alloys AlSi10Mg and Ti-6Al-4V. The prediction and validation represent the total life of485

the specimens.

The saturation of precision is presented in Figure 20 during the reinforcement learning algorithm, which relies on the
Metropolis Monte Carlo scheme. The saturation process optimizes the characteristic parameters of the Weibull and
Gumbel regression models such that the resulting parameters become more presentable of the population of the parameter
of interest. Figure 20a shows 100 withdrawals from the density function of the porosity. The process has a random490

footprint. However, in Figure 20b, we overwrite the current parameters if we encounter a withdrawal that has a higher
probability, thus reinforcing the new parameters on the old ones in preparation for the Weibull regression scheme where
the percentiles get tuned to the S − N relationship identified by the mechanistic function. Reinforcement learning has
been used since the 1990s to solve linear systems of equations by coupling what the authors call unorthodox Monte Carlo
methods [96]. They proved that for large-scale problems, the reinforcement learning technique has an efficiency advantage.495

The current study’s authors agree with this and show that fatigue as a highly random, physically complex problem can
be solved using reinforcement learning algorithms. Abbeel and Ng [97] used criteria to maximize an expressible reward
function as a linear combination of known features, and give an algorithm for learning the task, such as fatigue damage
demonstrated by the mechanistic function. Hence, in the current study, we inverse the reinforcement learning process by
extracting the most likely expected outcome given an optimal result provided by a mechanistic function such as what is500

shown by Ng and Russell [18].

Monte Carlo simulations are well suited to solve the fatigue problem because it has a lot of combinatorial factors related
to complicated interconnected damage mechanisms. Therefore they describe the influence of stochastic structural features
on net fatigue properties. To remain within efficient computational boundaries on the main aims of this study, we need
to determine if our Markov chain has been running long enough to be stable enough to equilibrium. The irreducibility of505

the finite discrete-time Markov chain leads to an exponential convergence to the equilibrium. The spectral gap identifies
the engine values much better in comparison to the constants of the theory, as shown in Figure 21a. Until a stationary
distribution of the feature is reached and its transition matrix becomes irreducible, the fatigue process based on the Γ
distribution jumps from a damaged state to a damaged state based on the transition matrix as shown in Figure 21b. These
transition probabilities of features can be isolated, combined, or handled by Bayes’ rule. The presentation of the wide510

spectral gap is proportional to the exponential conversion of the chain as proof that Markov sampling from this probity
distribution has been stable enough. We repeat these processes for microstructure in addition to the shown spectral
gap and transition probability of porosity. We also combine all available measurands of energy input like temperature,
microstructure, and porosity to produce fatigue design maps based on this metadata in a Bayesian model. In Figure
22, we show two maps representing influences of heat energy input based on porosity and microstructure variability,515

respectively. The maps and their extension of the complete data set enable optimized design against fatigue damage using
the metadata before processing and accelerate the process qualification lead time to serial production. Additionally, with
high throughput measurement techniques, manufacturing faults can be detected online and corrected from information
provided by the heat map.

4. Conclusions and outlook520

In this article, probabilistic regression has been coupled with reinforcement learning to achieve nonlinear regression of
additive manufacturing processes’ physical parameters with fatigue strength. For the first time:
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Figure 19: Validation of the probabilistic regression model that forms the elementary activation function of the machine learning model on
SLM: a) AlSi10Mg; b) Ti-6Al-4V

Figure 20: Progression of Γ parameters by comparison between a) Current probability and b) Reinforced probability
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Figure 21: Visualization of Markov chain of the porosity of Ti-6Al-4V: a) Eigenvalues and b) Transition probability

Figure 22: Fatigue lifetime property map based on the metadata of phenomenological modeling and machine learning process concerning the
variability of: a) Porosity and b) Microstructure; (Lifetime in cycles)
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1. The fatigue design process could start before processing through mechanistic machine learning and the coupling of
deep neural layers of diverse regression schemes with numerical techniques of high dimensional integrals that highly
embrace multi-scale multi-physics.525

2. The introduced machine learning methodology is effective in a specific predetermined process window corresponding
to the problem’s boundary conditions.

3. More control can be achieved over properties by targeting strictly quantitative process-property conjugates and
higher production efficiency in using energy and materials.

4. Fatigue-damage tolerant materials can be designed in advance to actual production based on the historical metadata530

of the production processes and the in-service damage characteristics.

5. By applying a machine learning model on a mechanistic function that represents the physics of the fatigue problem
within specific boundary conditions, fatigue-resistant designs can be introduced in the process development phase.

6. If the physical boundary conditions are to be changed, the mechanistic model can be used to generate training data
for the machine learning model with a physical boundary space, enabling fatigue lifetime predictions to be made535

computationally efficient without explicitly solving the physics behind it.

7. The authors advise the reader to focus on the idea that the machine learning model remains valid within its trained
physical space provided by the mechanistic function.

8. Property control of Ti-6Al-4V in a selective laser melting machine can be realized with various second exposure
treatments.540

9. The effect of secondary exposure on fatigue strength induced by microstructural modification has been quantitively
estimated.

10. The current standard experimental qualification is expensive when it has to cope with the flexibility of modern
manufacturing processes.

11. State-of-the-art numerical techniques alone are not computational or time-efficient.545

12. Combining local instrumented indentation testing to calibrate mechanistic functions that get the best first-guess
solutions from density functional theory can increase the efficiency of testing procedures.

13. Generation of artificial outcomes as training data for the machine learning model in the calibrated physical space
can make online predictions and provide feedback.

14. The control of metadata of the manufacturing process enables fatigue meta designs that were impossible to obtain550

previously.

15. Meta designs of materials contain sub-ensembles of material that perform specific functions like crack retardation or
deflection from critically loaded areas.

16. The meta-design has metadata of the structure and can recall it whenever the user defines new desired attributes
or the process encounters any malfunction, such as a fall of expectation of specific fatigue damage tolerances.555

In the following study, we will introduce the concept of cyber-physical additive manufacturing systems based on mechanistic
machine learning concepts:

1. This concept will mark a transformative phase in manufacturing because it will seamlessly blend the digital and
physical realms to enhance the efficiency and capabilities of digital manufacturing.

2. This interconnected system facilitates real-time data exchange, predictive analytics, and advanced automation,560

collectively steering traditional manufacturing into a new era of enhanced capabilities and efficiency.

3. Currently, the landscape of cyber-physical AM is at a critical juncture, where the integration of advanced technologies
aims to transform traditional manufacturing processes digitally.

4. The overarching objective is to optimize and streamline the entire AM workflow through intelligent connectivity.
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Appendix570

A. Introduction to density functional theory

The Born-Oppenheimer approximation reduces the time-independent anti-relativistic SE of a multi-body problem to [98]
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−h̄2

2m

N∑
i=1

∇2
i +

N∑
i=1

V (ri) +

N∑
i=1

∑
j<1

U(ri, rj)

Ψ = EΨ (57)

with m and N being the mass of the electron and the number of electrons, respectively. E is the electrons’ ground-
state energy, and Ψ = Ψ(r1, ..., rN ). The Hartree-Fock approximation applies the Slater determinant to account for the
antisymmetry of the wave function or, in other words, to prevent two electrons of the same spin from being situated at575

the same point in space [99] [
−h̄2

2m
∇2

i + Vion(xi) + V H
i + V x

i

]
Ψ = EΨ (58)

The Hartree-Fock method failed to consider the electronic correlation due to Coulomb interaction; solving this many-body
SE even with post-Hartree-Fock methods, is very expensive and sometimes not computationally tractable. DFT is an
exact reformulation of quantum mechanics based on two theorems: first, the ground state energy can uniquely determine
the ground state properties; hence, the ground state energy is functional of the density function n(r). Second, the actual580

electron density corresponding to the ground state energy is the density that minimizes the energy of the global functional.
The energy functional can be written as [100]

E[Ψ] = Eknown[Ψ] + EXC [Ψ] (59)

where the Eknown is [101]

Eknown[Ψ] =
−h̄2

m

∑
i

∫
Ψ∗

i∇2Ψi d
3r +

∫
V (r)

n(r) d3r +
e2

r

∫ ∫
n(r)n′(r′)

|(r)− (r′)|
d3r d3r′ + Eion

(60)

with the first term, in order, is the kinetic energy of the electron, the second term is the electrons-nuclei interaction, the
third term is the electron-electron interaction, and, finally, the last one is the nuclei interaction due to Coulomb potential.585

The second term, EXC , is the exchange-correlation functional containing all quantum mechanical effects not included in
the Eknown term. Finding this EXC functional is not easier than solving the many-body SE. KS reformulated this to
express each equation with a single electron. The single particles KS equation can be written as [100][

−h̄2

2m
∇2

i + V (r) + VH(r) + VXC(r)

]
Ψi(r) = ϵiΨi(r) (61)

with V is the potential that appeared in equation 57, the Hartree potential VH is [102]

VH(r) = e2
∫

n(r′)

|r− r′|
d3r′ (62)

and finally the exchange-correlation potential VXC which is the derivative of the exchange-correlation energy functional590

is [103]

VXC(r) =
δEXC(r)

δ(r)
(63)

Before solving EXC functional, DFT can not be used in practical applications. This method handles the exchange-
correlation effects within the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) for-
mulation. The Vienna ab initio simulation package (VASP) was employed using the projector augmented wave (PAW)
potential method [104] where the new charge density after going through the self-consistent loop is595

nKS(r) = 2
∑
i

Ψ∗
i (r)Ψi(r) (64)

and the exchange-correlation potential V GGA
XC is

V GGA
XC (r) = VXC [n(r),∇(n(r))] (65)
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