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• Fractional moments are estimated analytically from polynomial chaos expansion.
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Abstract

Fractional statistical moments are utilized for various tasks of uncertainty quantification, includ-

ing the estimation of probability distributions. However, an estimation of fractional statistical mo-

ments of costly mathematical models by statistical sampling is challenging since it is typically not

possible to create a large experimental design due to limitations in computing capacity. This paper

presents a novel approach for the analytical estimation of fractional moments, directly from polyno-

mial chaos expansions. Specifically, the first four statistical moments obtained from the deterministic

coefficients of polynomial chaos expansion are used for an estimation of arbitrary fractional moments

via Hölder’s inequality. The proposed approach is utilized for an estimation of statistical moments

and probability distributions in four numerical examples of increasing complexity. Obtained results

show that the proposed approach achieves a superior performance in estimating the distribution of

the response, in comparison to a standard Latin hypercube sampling in the presented examples.

Keywords: Polynomial chaos expansion, Fractional moments, Statistical analysis, Hölder’s

inequality

1. Introduction

Mathematical models of the response Y of physical systems can be generally represented by func-

tions M of input vectors X, which provide a mapping M : Rnx 7→ Rny , X → Y. Input variables X

representing physical quantities (e.g. material parameters, geometrical properties, applied loads)

may be affected by a certain level of uncertainty. Therefore, it is necessary to propagate the un-

certainty associated with input variables described by specific probability distributions through the
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mathematical model in order to obtain realistic results predicting the model’s response Y and its

uncertainty. The task of the analyst is then in this case to perform uncertainty quantification (UQ)

of the model response Y, also called quantity of interest (QoI). In the simplest case, UQ can be based

on pseudo-random sampling of the input random vector and performing corresponding repetitive

evaluations of the deterministic model M(X). Obtained set of results can be further statistically

processed to get statistical moments, and ultimately probability distribution of the QoI. The esti-

mation of probability distribution function (PDF) or cumulative distribution function (CDF) from

given set of statistical moments is not a trivial task and thus, there are various specialized methods

for this purpose. On the one hand, it is possible to assume a known specific family of probability

distributions and fit a PDF to given data. Although this is a simple approach requiring typically low

number of statistical samples, an assumption of a probability distribution may significantly affects

obtained results in further steps of UQ and/or reliability analysis. On top, it inherently introduces

a measure of subjectivity into the analysis, which might not be warranted for critical applications.

On the other hand, one can construct an arbitrary distribution function numerically, e.g. by ker-

nel density estimation [1]. Numerically constructed distributions offer high versatility, though it is

typically necessary to optimize hyper-parameters associated with them. Usually, an optimal balance

between numerical efficiency and flexibility is offered by artificial distribution models parameterized

by statistical moments. Classic representatives of parameterized distributions are Gram-Charlier ex-

pansion or Edgeworth series expansion based on perturbation of a Gaussian probability distribution.

Unfortunately, it is well-known that both distributions have severe limitations in their flexibility and

their convergence is not guaranteed for general distributions [2]. More recent developments offer

for example three-parameter lognormal distribution [3], Hermite model [4], cubic normal distribu-

tion [5], generalized lambda distribution [6] or distribution functions that are parametrized by a

higher number of moments or even fractional moments [7]. In this paper, we adopt the M-EIGD-

LESND function, which is in essence a mixture of an extended inverse Gaussian distribution and a

log extended skew-normal distribution (note that underlined letters explain the acronym M-EIGD-

LESND). It is fully characterised by a set of eight parameters, making it highly flexible, and hence,

powerful to fit any type of distribution on Y.

Despite the flexibility of the approaches described above, they require a significant number of

samples to allow them to represent the real distribution of Y accurately. Unfortunately, a combina-

tion of sampling-based methods with costly mathematical models is highly time-consuming or even
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not feasible in industrial applications and surrogate models are often utilized as computationally

efficient approximations of the original mathematical model. There are various types of surrogate

models (eg. artificial neural networks, Kriging, support vector machines), with polynomial chaos

expansion (PCE) being a very popular method for UQ. PCE was originally proposed by Norbert

Wiener [8] and further investigated in the context of engineering problems by many researchers,

e.g. [9, 10], and it provides an efficient tool for estimation of statistical moments and sensitivity

indices. Especially the PCE in its non-intrusive form (spectral projection and regression) possesses

significant potential for industrial applications, since it offers a convenient way to perform advanced

probabilistic analysis of any black-box model without any modifications of existing numerical solvers.

In practice, it becomes often necessary to employ sparse PCEs that yield efficient solutions for real-

world physical systems. Regression-based non-intrusive PCE [11] offers large variety of solvers [12],

sampling schemes [13, 14, 15, 16] and adaptive algorithms [17, 18, 19, 20] leading to a large variety

of methods. Once a PCE is available for a given mathematical model, the constructed explicit func-

tion can be exploited to obtain additional information about that model. This information includes

integer statistical moments[9], probability distribution of QoI or sensitivity indices [6, 21], which

can be calculated without additional evaluations of the underlying numerical model M, which is

especially beneficial in industrial applications [22, 23]. Therefore PCE is especially suitable for its

relative computational efficiency in training and usefulness for UQ tasks including moment estima-

tion and sensitivity index computation, which derive from its orthogonality properties with respect

to the probability measures of the input variables.

Despite many recent advances in the field of PCE, the challenge of estimating the distribution of

Y, especially in its tails, is still open. A particularly interesting route to estimate this distribution is

through the estimation of fractional moments of Y, since it can be shown that they carry information

about an infinite number of integer moments [7]. This, in its turn, could potentially allow for a

more accurate estimation of the distribution of Y following a moment matching procedure, see e.g.

[24]. Although there are several methods for estimation of fractional moments by direct sampling

of the mathematical model [25, 26], they might be too costly in case of complex stochastic analysis

including sensitivity and moment analysis. In this case, it is often preferred to create a surrogate

model which can be efficiently analyzed in order to obtain various characteristics of quantity of

interest. This paper is therefore focused on estimation of fractional moments directly from PCE,

and their further utilization for an approximation of probability distribution of QoI by adopting a
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recently proposed distribution parameterized by fractional moments.The proposed approach thus

further extends broad pallet of methods for post-processing of PCE surrogate models allowing for

extensive analysis of the approximated quantity. Section 2 gives a brief introduction of the main

mathematical concepts concerning PCE that are required to understand the developments later in

the paper. Secion 3 introduces the concept of fractional moments, and how they can be estimated

analytically from a trained PCE. Section 4 illustrates the developments and their efficacy using three

numerical examples, ranging from an analytical function, over a finite element model of a plate in

bending, to a dynamically loaded mass-spring system. Section 6 lists the conclusions of the work.

2. Polynomial Chaos Expansion

Assume a probability space (Ω,F ,P), where Ω is an event space, F is a σ-algebra on Ω and

P is a probability measure on F . If the input variable of a mathematical model, M, is a random

variable X (ω),ω ∈ Ω, the model response Y (ω) is also a random variable. Assuming that Y has

a finite variance, PCE represents the output variable Y as a function of an another random variable

ξ called the germ with given distribution

Y =M(X ) = gPC E(ξ), (1)

and representing the function M(X ) via polynomial expansion in a manner similar to the Fourier

series of a periodic signal. A set of polynomials, orthogonal with respect to the distribution of the

germ, are used as a basis of the Hilbert space L2 (Ω,F ,P) of all real-valued random variables of

finite variance, where P takes over the meaning of the probability distribution. The orthogonality

condition for all j ̸= k is given by the inner product of L2 (Ω,F ,P) defined for any two functions

ψ j and ψk with respect to the weight function pξ (probability density function of ξ) as:

〈ψ j,ψk〉=
∫
ψ j(ξ)ψk(ξ)pξ(ξ) dξ= 0. (2)

This means that there are specific orthogonal polynomials associated with the corresponding

distribution of the germ via its weighting function. For example, Hermite polynomials orthogonal

to the Gaussian measure are associated with normally distributed germs. Orthogonal polynomials

corresponding to other distributions can be chosen according to Wiener-Askey scheme [27]. For

further processing, it is beneficial to use normalized polynomials (orthonormal), where the inner

product is equal to the Kronecker delta δ jk, i.e. δ jk = 1 if and only if j = k, and δ jk = 0 otherwise

〈ψ j,ψk〉= δ jk. (3)
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In the case of X and ξ being vectors containing M independent random variables, the polynomial

Ψ(ξ) is multivariate and it is built up as a tensor product of univariate orthogonal polynomials as

Ψα(ξ) =
M∏

i=1

ψαi
(ξi), (4)

where α ∈ NM is a set of integers called the multi-index. The quantity of interest (QoI), i.e., the

response of the mathematical model Y = g(X), can then be represented, according to Ghanem and

Spanos [10], as

Y =M(X) =
∑

α∈NM

βαΨα(ξ), (5)

where βα are deterministic coefficients and Ψα are multivariate orthogonal polynomials.

The main step in the solution procedure of determining the relation in Eq. (5) is to determine the

deterministic coefficients βα to provide an accurate estimator. In a practical context, an analyst usu-

ally only has access to input-output pairs that are generated by M, rather than the full internal solver

machinery (such as, e.g., mass or stiffness matrices). Therefore, without losing generality, the rest

of the text focuses on non-intrusive forms of PCE. Nonetheless, note that the ensuing developments

are equally applicable to the intrusive PCE formulations.

For practical computation, PCE expressed in Eq. (5) must be truncated to a finite number of terms

P. Although it is generally possible to create a basis set using a tensor product of 1D polynomials, it

leads to an extremely high number of basis functions. This in its turn leads to a slow convergence

of PCE construction. Therefore, the truncation is commonly achieved by retaining only terms whose

total degree |α| is less than, or equal to a given p.

Moreover, in engineering applications, it is beneficial to prefer only basis functions with lower-

order interaction terms. This reduction of basis set is motivated by sparsity-of-effects principle,

which states that a physical system is mostly affected only by main effects and low-order interac-

tions. Therefore, it was proposed by Blatman and Sudret [11] to create a PCE basis by a hyperbolic

truncation scheme:

AM ,p,q =

¨
α ∈ NM : ||α||q ≡

� M∑
i=1

α
q
i

�1/q ≤ p

«
. (6)

Using this truncation scheme can be graphically represented by selection of terms under the

hyperbola parameterized by q < 1. Such an approach leads to a dramatic reduction in the cardinality

of the truncated set for high total polynomial orders p and high dimensions M .

Note that the number of terms P is highly dependent on the number of input random variables

M and the maximum total degree of polynomials p. Estimation of β by regression then needs at
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least the number of samples O(P ln(P)) for stable solution [28, 29]. Therefore, in case of a large

stochastic model, the problem can become computationally highly demanding. However, one can

utilize advanced model selection algorithms such as Least Angle Regression (LAR) [30] to find an

optimal set of PCE terms and thus reduce the number of samples needed to compute the unknown

coefficients if the true coefficient vector is sparse or compressible as proposed by Blatman and Sudret

[11]. Note that beside LAR, there are other best model selection algorithms such as orthogonal

matching pursuit [31] or Bayesian compressive sensing [32] with comparable numerical results.

2.1. Post-processing of PCE

The specific form of PCE together with the orthogonality of the polynomials allows for a powerful

and efficient post-processing. Once a PCE approximation is created, it is possible to analytically

obtain statistical moments or sensitivity indices of the QoI. Generally, a statistical moment of mth

order is defined as:



Y m
�
=

∫ �
g
�
X
��m

pX

�
x
�
dx=

∫ � ∑
α∈NM

βαΨα(ξ)
�m

pξ
�
ξ
�
dξ=

=

∫ ∑
α1∈NM

...
∑
αm∈NM

βα1
...βαm

Ψα1
(ξ)...Ψαm

(ξ)pξ
�
ξ
�
dξ=

=
∑
α1∈NM

...
∑
αm∈NM

βα1
...βαm

∫
Ψα1
(ξ)...Ψαm

(ξ)pξ
�
ξ
�
dξ.

As can be seen from the final part of the formula, in case of PCE, it is necessary to integrate over

basis functions (orthonormal polynomials), which leads to dramatic simplification in comparison to

the integration of the original mathematical function. Moreover, it is well known that PCE allows for

analytical solution of the associated integral. Besides well known formulas for mean (µY = β0) and

variance (σ2
Y =
∑

α∈A β
2
α − β2

0 ), higher statistical central moments skewness γY (3rd moment) and

kurtosis κY (4th moment) can be also obtained using analytical formulas for Legendre and Hermite

polynomials [21]. Note that PCE is in the identical form as Hoeffding-Sobol decomposition of a func-

tion and thus it is possible to easily derive also conditional variances of any order and corresponding

Sobol indices [33, 9].

Finally, the PCE approximation can be also exploited for an estimation of a probability distribution

of QoI. A first possible approach to build the PDF of QoI consists in directly evaluating a PCE for a

large number of samples of input random vector and processing of the corresponding results by
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kernel density estimation (KDE) [34]. Although the combination of PCE and KDE is often utilized

for UQ [35, 36], it might be complicated to selected appropriate kernel function and band-width

hyper-parameter leading to accurate identification of PDF.

A second general approach, further extended in this study, is based on approximations of PDF/CDF

by analytical functions parameterized by statistical moments derived directly from PCE. Analytical

forms of distribution functions offer significant benefit for UQ, e.g. sensitivity measures based on

conditional distributions and thus it is often preferred over numerical solutions. A simple approxi-

mation can be in form of Gram-Charlier (G-C) expansion or similar Edgeworth series containing one

more Hermite polynomial than G-C, both based on the first four statistical moments [2]. Similarly

as in case of Sobol indices, conditional distributions can be easily obtained from PCE [37] as well

as advanced distribution-based sensitivity indices [38, 21]. The analytical approach has also three

main drawbacks: flexibility of analytical approximations of PDF/CDF is typically limited, analytical

formulas for direct estimation of statistical moments from PCE are known only for some polyno-

mials. Moreover it is computationally efficient to estimate only the first four statistical moments,

which significantly limits utilization of the advanced analytical PDF approximations typically based

on higher number of statistical moments.

3. Fractional Moments from Polynomial Chaos Expansion

In this section, we introduce our proposed method to determine the probability density function

fY (y) of a random variable Y based on the post-processing of the PCE in the form of fractional

moments. Recall in this context that the r-th absolute fractional moment of the random variable Y

is defined as [39]:

E [|Y |r] =
∫ ∞

−∞
|y|r fY (y) d y, (7)

where r can be any real number. Clearly, when r in Eq. 7 takes an integer value, the equation

reduces again to the description of a general moment, making Eq. 7 in essence a generalization of

the well-known concept of statistical moments.

The main advantage of working with fractional moments, is that E [|Y |r] carries information

about an infinite number of discrete moments. This can be understood by first performing a Taylor

series expansion of |Y |r around its mean value µY = E[|Y |]:

|Y |r =
∞∑
i=0

�
r
i

�
µ(r−i)

y (y −µY )
i , (8)
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with i any non-negative integer, µ(r−i)
y the expected value of |Y |(r−i) and the fractional binomial

�r
i

�

given by: �
r
i

�
=

r(r − 1)(r − 2) . . . (r − i + 1)
i(i − 1)(i − 2) . . . 1

. (9)

Taking the expectation of both sides of Eq. 8 yields:

E [|Y |r] =
∞∑
i=0

�
r
i

�
µ(r−i)

y E
�
(y −µY )

i
�

, (10)

from which can be seen that the right-hand side indeed contains an infinite number i = 1, . . . ,∞
of integer moments while the left-hand side of the equation is the r th fractional moment of Y . In

this equation, the term
�r

i

�
µ(r−i)

y can be thought of as a sort of weight that is assigned to the integer

moment in the series expansion that describes the fractional moment. In this context, observe that

when i is fixed,
�r

i

�
µ(r−i)

y increases as r increases, whereas when r is fixed, the value of
�r

i

�
µ(r−i)

y

decreases when i increases. This indicates that the higher the fractional order r, the greater the

contribution of higher-order integer moments to the r th fractional moment value. To effectively

estimate fY (y) from the PCE, it is as such important to estimate higher-order fractional moments.

At the same time, it is important to keep in mind that these higher-order fractional moments are much

more difficult to obtain than lower-order fractional moments. This trade-off needs to be addressed

case-by-case when applying the proposed technique.

3.1. Estimation of the Fractional Moments via Hölder’s inequality

Direct numerical estimation of fractional moments by Monte Carlo approach could be compu-

tationally expensive, especially in engineering applications. However, the estimation can be signifi-

cantly accelerated by approximation in form of Hölder’s inequality:

E
�|Y |r�⩽ �E�|Y |s��

r
s . (11)

Hölder’s inequality is often utilized for estimation of error bounds in various applications of theory

of probability, however it can be also utilized for an efficient estimation of fractional moments from

standard integer statistical moments.

However, it might be still computationally expensive to estimate higher integer moments by crude

Monte Carlo methods. Therefore we propose to combine Hölder’s inequality with PCE surrogate

model, as the latter is well-known for an accurate and an efficient statistical analysis of QoI. Such

approach should be significantly more stable in comparison to sampling methods, since the first four
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statistical moments can be obtained analytically from PCE coefficients, i.e. s ∈ [1,2, 3,4]. It is clear

that the error of the approximation grows with the difference |s− r|. Therefore, an integer moment

E
�|Y |s� utilized for the estimation of a fractional moment should be selected as close as possible to

the selected r. Note that Hölder’s inequality according to Eq. (11) is valid only for 1 < r < s <∞
and thus, for the sake of clarity, it is necessary to use Eq. (12), if the nearest integer moment s > r.

E
�|Y |s�⩾ �E�|Y |r��

s
r . (12)

Naturally it is possible to reliably estimate fractional moments only in the interval between integer

moments obtained from PCE, i.e. r ∈ (1, 4). The error caused by Hölder’s inequality can be seen in

Fig. 1 presenting a typical behavior of the algorithm (MPCE and MMC are moments estimated from

PCE and by Monte Carlo sampling respectively). It can be seen, that the relative error is growing

with a distance from integer moments. From the figure, it is also clear it is beneficial to use the

closest integer moment for the derivation of a fractional moment. The red and blue lines represent

estimations based on upper and lower integer moments. The numerical results were obtained from

the first example presented in the next section.

The proposed framework has several benefits in comparison to standard approach based on sta-

tistical sampling. First of all, fractional moments are obtained from PCE without additional sampling

as a part of analytical post-processing (including statistical and sensitivity analysis). The computa-

tional cost of the whole process is thus associated to construction of a surrogate model which can

be further used for additional tasks in contrary to a standard approach. Moreover, the analytical

post-processing could be more stable as will be investigated in the first numerical example. Natu-

rally, the proposed approach is highly sensitive to an accuracy of the surrogate model affected by

various sources, and thus one could use various advanced algorithms for construction of PCE, e.g.

sparse solvers [12], domain decompositions [40, 41], active learning [18, 20] or recently proposed

physics-informed PCE [42, 43]. Moreover, one can easily use the proposed approach to derive also

conditional fractional moments similarly as in the commonly used approach for integer-moments

based sensitivity analysis [21, 9]. Comparison to standard numerical methods will be presented also

in Discussion section.

3.2. Description of the PDF based on the fractional moments

Fractional moments are especially important for estimation of the most suitable probability dis-

tribution of the QoI. Although it might be sufficient to fit a selected well-known distribution in simple
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Figure 1: Error analysis of the moments derived from PCE using Hölder’s inequality.

applications, artificial distributions parametrized by statistical moments are more flexible and can

capture more complicated shapes of probability distributions. Some of the simplest parametrized

distributions are the Gram-Charlier expansion or Edgeworh series based on perturbation of Gaus-

sian distribution exploiting information from the first four statistical moments [2]. It was shown,

that Gram-Charlier expansion is efficient especially in combination with PCE, since we can obtain

necessary statistical moments analytically [21]. However, once the fractional moments are estimated

directly from PCE, it is possible to use more advanced and flexible distribution models such as re-

cently proposed mixture of extended inverse Gaussian and log extended skew-normal distributions

(M-EIGD-LESND) [7], which is described as:

fM−EIGD−LESN D(x;ϑ) =

wη

√√ b
2π

x−η/2−1 exp
�
− b(xη − a)2

2xηa2

�
+ (1−w)

1
d x
φ

�
log(x)− c

d

�
Φ(τ
p

1+ θ 2 + θ log(x)−c
d )

Φ(τ)
,

with x > 0, (13)

where φ(·) and Φ(·) are the probability density and cumulative density functions associated with

a standard Gaussian distribution, respectively, and log(·) denotes natural logarithm. The M-EIGD-

LESND contains a set of 8 free parameters, {w,η, a, b, c, d,θ ,τ}, which are obtained by a matching of

estimated fractional moments and fractional moments of M-EIGD-LESND. This task requires to solve

system of non-linear equations by any numerical solver (see [7] for more details). It is noteworthy

that the r th fractional moment of the M-EIGD-LESND function, M r
XM−EIGD−LESN D

can be analytically
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determined as [7]:

M r
XM−EIGD−LESN D

= w exp
�

b
a

�√√2b
π

ar/η−0.5K0.5−r/η

�
b
a

�
+ (1− w)exp
�
cr + 0.5d2r2
�Φ
�
τ+ θdrp

1+θ2

�

Φ(τ)
,

(14)

with Kα(β) the modified Bessel function of the second kind. The thus approximated distribution

function can then be used further for reliability analysis or distribution-based sensitivity analysis. The

M-EIGD-LESND is adopted in numerical examples to measure the error of the proposed method in

comparison to a traditional Monte Carlo-type approach. However, note that this model was adopted

just for the sake of illustration of the whole framework and it is generally possible to adopt any

artificial distributions parametrized by fractional moments, which should be selected with respect to

the analyzed problem at hand.

3.3. Numerical Algorithm

The proposed approach allows for significant extension of a statistical or sensitivity analysis of

costly mathematical models. Specifically, estimated fractional moments can be used for an approxi-

mation of probability distribution of QoI as summarized in the following pseudo-algorithm employed

in the numerical examples. In the algorithm, the vector r contains all fractional moments considered

in the analysis (whose dimensionality is 8) and ⌈·⌋ denotes rounding to the closest integer.

Algorithm 1 Estimation of fractional moments by PCE and construction of a probability distribution

Input: experimental design (ED) with samples of X and Y =M(X), set of basis functions A

1: get β by OLS

2: get µY , σ2
Y , γY and κY analytically from β

3: for r in r do

4: find a nearest integer moment s = ⌈r⌋
5: get approximated rth fractional moment by Eq. (11) (or Eq. (12) if r > s)

6: end for

7: get parameters of M-EIGD-LESND from fractional moments [7]

Output: E
�|Y |r� and corresponding PDF/CDF of M-EIGD-LESND
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4. Numerical Examples

The proposed approach (referenced as PCE in figures) is presented in three numerical exam-

ples of increasing complexity and which illustrated different aspects of the approach. The first toy

example represents a proof of concept and convergence of the proposed method. The second ex-

ample shows a typical application of the proposed method and its clear benefits over other existing

techniques. In the third example, we investigate the impact of the bi-modal distribution on the con-

vergence of the proposed technique. And finally, the last example shows the performance of the

methodology in a finite element model of considerable dimension.

The proposed approach is utilized for estimation of the following fractional momentsE [|Y |r] , r ∈
r = [1.1,1.2, 1.8,1.9, 2.1,2.2, 2.9,3]. Note that the fractional moments are close to the integer mo-

ments obtained analytically from PCE in order to reduce the error of approximation by Hölder’s

inequality. Fractional moments are further used for identification of the most suitable probability

distribution as described in the previous section. The PCE is constructed using the UQPy package

[44]. The obtained results of the proposed approach are compared to approximation based on stan-

dard sampling approach represented by Latin Hypercube Sampling (LHS) [13, 45]. Naturally, one

can use various advanced or adaptive sampling schemes [46, 47, 20] instead of LHS for achieving

higher accuracy, however this task is beyond the scope of this paper. Also note that, the sampling

technique should be selected with respect to stability of PCE construction [12], and thus it might be

problematic to use sampling techniques developed specifically for numerical integration or estima-

tion of fractional moments. The reasoning is that the estimation of fractional moments is just a part

of UQ and thus we need general statistical sample covering the whole design domain further used

for statistical and sensitivity analysis or construction of various surrogates.

Additionally, results are also compared to classic G-C expansion derived from PCE [20] (PCE-GC)

to show the benefits of advanced and flexible distribution models represented by M-EIGD-LESND in

this paper. To compare the methods, we estimate error by non-negative Kullback-Leibler divergence

DKL

�
Y ||Ỹ � of a reference CDF FY and an approximated CDF FỸ . The error is calculated on CDF for

improved numerical stability [48] as implemented in SciPy [49]:

DKL

�
Y ||Ỹ �= FY (χ) ln

FY (χ)
FỸ (χ)

+ FỸ (χ)− FY (χ), (15)

where χ ∈ R. The total error ε is than obtained by integration of DKL simply as:
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ε=

∫

R
DKL

�
Y ||Ỹ � dχ (16)

All approximations are constructed for increasing number of simulations. In order to get reliable

statistical information on convergence, we run nstat = 100 repetitions of the algorithm and plot

E[ε]±σ interval of the obtained errors.

4.1. Academic Example: Gaussian Distribution

The very first example shows the convergence of the proposed method. This toy example is

represented by a simple analytical function of input random vector containing three independent

Gaussian variables X ∼ N (µ = 10,σ2 = 4) and thus the quantity of interest is also a Gaussian

variable Y ∼N (µ= 50,σ2 = 12):

Y = 20+ X1 + X2 + X3. (17)

Typical realizations of identified probability distributions based on fractional moments estimated

by LHS and the proposed approach for incresing size of ED can be seen in Fig. 2. Since it is pos-

sible to analytically obtain reference distribution, there is not any error caused by approximation

of the probability distribution for a reference solution. Although the resulting distribution of QoI

is very simple, the estimated distributions converge slower then expected due to over-parametrized

approximating function taking 8 fractional moments into account. The convergence of LHS is fur-

ther affected by sensitivity to outliers, while the proposed method via PCE is clearly more stable.

General convergence of both methods can be seen in Fig. 7 a). Note that besides higher accuracy in

mean values, the variance of the proposed method is significantly smaller in comparison to LHS for

nsim > 35 samples. Utilized M-EIGD-LESND approximation is universal parametrized distribution

suitable for various types of distribution, nonetheless it might be over sophisticated for approxima-

tion of a simple distribution and a simple models should be preferred, e.g. the well-known G-C

expansion [2] as can be seen in this example. Since the resulting distribution of QoI is a Gaussian

distribution, G-C leads very fast to the exact solution, though as can be seen for nsim = 10 it could

lead to unstable approximations of PDF/CDFs.

Although the main purpose of the proposed method lies in efficient post-processing of the existing

surrogate model, it is also more stable and robust in comparison to standard sampling techniques.

The stability of the proposed method can be seen in Fig. 3 showing obtained distributions for nsim =
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Figure 2: Typical realization of results for the first example (Gaussian distribution). The rows show estimated PDFs,

CDFs and errors in approximations respectively. Each column corresponds to increasing number of simulations used for

estimation of fractional moments and probability distributions.

200 simulations. Although PCE leads to a slight error near the mean value, it leads to almost perfect

accuracy at both tails of the CDF. Although LHS is very efficient method for estimation of mean values,

it has clearly worse performance in estimation of higher moments affected by tails and thus also

fractional moments. Note that although PCE is based on identical samples, it is an approximation

of QoI over the whole input space and thus its result is less affected by outliers. This fact is also

supported by results obtained from 107 samples genereated by LHS sampling using PCE surrogate

model instead of the original mathematical model (PCE-LHS). The results of PCE-LHS are identical

to LHS with original model, which clearly shows that although the surrogate model is accurate, LHS

sampling adds additional error to estimated fractional moments and thus it is beneficial to employ

the proposed approach instead of numerical estimation if a PCE is available. The PCE-LHS with 107

samples will be used for comparison of estimated fractional moments also in the following examples.

This result further supports our intention to derive probability distribution directly from PCE

instead of utilization of standard sampling techniques in combination with existing surrogate model.
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Naturally, G-C expansion identified the exact solution of the QoI’s distribution as can be expected,

since the G-C expansion is based on perturbation of Gaussian distribution and thus very suitable for

this example. Nevertheless, it shows very high accuracy of the integer statistical moments estimated

directly from PCE coefficients.
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Figure 3: Convergence study for nsim = 200.

4.2. Finite Element model of a Plate

The second case study deals with a model of a thin steel plate of 1 [m] by 1 [m] that is fully

clamped at one side. The plate is subjected to a distributed load over the top surface, and its dis-

placement u is computed using a finite element model consisting of 100 evenly distributed linear

shell elements, resulting in 121 nodes. As such, there are 110 active nodes in the model. In the

analysis, the degrees of freedom per node correspond to one translation and two rotations. The QoI

for this problem is the vertical displacement of one of the corner nodes of the plate. Fig. 4 illustrates

schematically the problem under consideration

1 [ m]1 [ m]

node of interest

clamped edge

Figure 4: Schematic representation of clamped plate.

The corresponding equilibrium equation associated with the finite element model of the plate is

represented as:

K(θ)u= f , (18)
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with K ∈ R330×330 the stiffness matrix of the plate; θ = [E, t], with E representing Young’s modulus

and t the thickness of the plate; ν Poisson’s ratio, f ∈ R330 is a vector collecting the forces acting

on the nodes of the FE model; and u ∈ R330 the resulting displacement vector. We assume E, t,ν to

be (truncated) Gaussian variables with vector of mean values µT = [2.1× 1011, 5× 10−3, 0.3] with

vector of coefficients of variation v = [0.15, 0.1,0.1]. It is assumed that the degrees-of-freedom of

the finite element model have been ordered such that the first 110 components of u correspond to

vertical displacements.

The selected realizations of approximations are compared in Fig. 5. In contrast to the previ-

ous example, a reference solution cannot be obtained analytically and thus we use empirical CDF

obtained by LHS with nsim = 106 simulations. The proposed approach leads to accurate approxima-

tion of the target distribution already for nsim = 20 samples in contrast to standard LHS. Moreover

the convergence of the accuracy for increasing nsim is stable, while standard LHS approach achieves

lower accuracy for nsim = 60 in comparison to nsim = 40. Identical behavior of both methods can be

seen also in statistical results compared in Fig. 7 b). The proposed approach achieves both lower

mean and variance of the estimated total error. Note that both methods converge to the identical

mean accuracy, though the convergence of PCE is significantly faster. The obtained results clearly

show the main benefits of PCE: numerical efficiency, consistency in the estimated moments even

for low nsim and analytical post-processing accelerating UQ of QoI. For more detailed comparison

of a typical simulation, the relative errors of numerical values of estimated fractional moments for

nsim = 40 can be found in Table 1.

Interestingly, G-C expansion doesn’t converge to the reference distribution and its solutions also

do not represent valid PDFs/CDFs. This fact is clearly caused by the fact that the QoI’s distribution is

significantly different from Gaussian distribution (non-negative, high skewness etc.). The divergence

of the G-C expansion can be seen also in Fig. 7 b) for increasing nsim. From the numerical results,

it can be concluded that G-C expansion is not suitable for general distributions of QoI. Note that,

the well-known limitations of G-C expansions [2] are mitigated by the proposed approach based on

the identical training data and the identical surrogate model in form of PCE. The proposed method-

ology can be further combined with various field-dependent distribution models parameterized by

fractional moments, which will be investigated in further research.
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r 1.1 1.2 1.8 1.9 2.1 2.2 2.9 3

PCE 0.011 0.019 0.006 0.006 0.034 0.050 0.038 0.060

LHS 0.008 0.011 0.035 0.042 0.057 0.066 0.159 0.178

PCE-LHS 0.020 0.024 0.056 0.063 0.078 0.086 0.156 0.167

Table 1: Relative errors of fractional moments estimated by PCE, LHS and PCE-LHS methods in the second example for

nsim = 40.
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Figure 5: Typical realization of results for the second example (FEM of a plate). The rows show estimated PDFs, CDFs and

errors in approximations respectively. Each column corresponds to increasing number of simulations used for estimation

of fractional moments and probability distributions.

4.3. Dynamic Car Model

The third case study in this paper considers a so-called quarter-car model. This is a 2 degree

of freedom idealisation of the dynamics of the suspension of a moving car. Specifically, this case

study is concerned with assessing the distribution of the comfort of the vehicle suspension, given the

uncertainty in some of the properties of the system. The quarter-car dynamics can be represented
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as a set of two ordinary differential equations:

ms ẍs + cs( ẋs − ẋus) + ks(xs − xus) = 0, (19)

mus ẍus − cs( ẋs − ẋus)− ks(xs − xus) + ct( ẋus − ẋ0) + kt(xus − x0) = 0, (20)

with •̇ denoting the time derivative of •, xus the displacement of the unsprung mass (i.e., the sus-

pension components, wheel and other components directly connected to them); xs the displacement

of the sprung mass (i.e., all components resting on the suspension); mus and ms the unsprung and

sprung mass of a quarter of the car; cs and ct respectively the damping coefficients of the suspension

and tire; ks and kt respectively the stiffness coefficients of the suspension and tire. We assume cs, ks, kt

to be (truncated) Gaussian variables with vector of mean values µT = [1× 104, 4.8× 104, 2× 105]

with identical coefficient of variation v = 10%. Finally, x0 and ẋ0 are the displacement and velocity

in vertical direction that excite the bottom of the wheel (i.e., the road profile). The complete road

profile is denoted by x0(t), with t denoting the simulation time.

To solve this coupled system of ODEs, a state-space model is employed:

d
d t




xus − x0

ẋus

xs − xus

ẋs



=A




xus − x0

ẋus

xs − xus

ẋs



+




−1
4ct
mus

0

0




ẋ0, (21)

with the matrix A equal to:

A=




0 1 0 0
−4kt
mus

−4(cs+ct )
mus

4ks
mus

4cs
mus

0 −1 0 1

0 4cs
ms

−4ks
ms

−4cs
ms




. (22)

Four state variables are considered, being respectively the tire deflection (xus− x0); the unsprung

mass velocity ẋus; the suspension stroke xs − xus, and sprung mass velocity ẋs. Typically, in the con-

text of assessing the dynamical comfort of a car, two parameters are of interest: the suspension

stroke (i.e., the relative displacement of the car body with respect to the unsprung mass) and the

acceleration of the sprung mass. In the proceeding study, the damping effect of the tire, ct is consid-

ered negligible. The limit state function in this example is based on the first excursion event of the

suspension stroke, and explicitly defined as:

1−max
t

�
1
xc
|xs(t)− xus(t)|
�

, (23)
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r 1.1 1.2 1.8 1.9 2.1 2.2 2.9 3

PCE 0.001 0.001 0.000 0.000 0.001 0.002 0.001 0.002

LHS 0.004 0.004 0.007 0.007 0.008 0.008 0.012 0.013

PCE-LHS 0.016 0.017 0.025 0.026 0.029 0.030 0.038 0.039

Table 2: Relative errors of fractional moments estimated by PCE, LHS and PCE-LHS methods in the third example for

nsim = 100.

with xc = 30 mm the threshold value for the stroke.

Similarly as in the previous examples, selected realizations of approximations for increasing nsim

can be seen in Fig. 6. Note that the distribution of QoI is bimodal (as can be clearly seen from

empirical CDFs) and thus it can not be accurately approximated by the adopted M-EIGD-LESND.

However, the obtained results show very fast convergence of the proposed approach to the optimal

solution with minimum possible error, while standard LHS converges to the optimum significantly

slower as can be seen in the last column showing the obtained distributions for nsim = 200. For more

detailed comparison of a typical simulation, the relative errors of numerical values of estimated

fractional moments for nsim = 100 can be found in Table 2.

Statistical results compared in Fig. 7 show stable accuracy of the proposed method for nsim > 60,

while LHS has significantly larger variance and lower mean accuracy. Although this general behavior

of standard LHS could be seen also in the previous example, it is amplified in the last example by

the fact that fractional moments of the investigated bimodal distribution are even more affected by

position of samples in the input random space. The convergence of G-C expansion has similar trend

as in the previous example, though it still leads to valid distribution functions of QoI. However, the

obtained accuracy has a very large variance and a diverging trend for increasing nsim. The behavior

of G-C expansion is clearly affected by the fact, that fractional moments play much higher role in this

example and thus it is not possible to get accurate approximations only from the first four integer

moments.

4.4. Case Study: Seepage under a Sheet Pile

This case study involves characterizing the uncertainty associated with the seepage flow Yflow

under a sheet pile. The physical problem is represented schematically in Figure 8.

The sheet pile retains a water column of 7 [m] and it is buried 8 [m] deep into a permeable silty

sand soil layer. The permeability of the soil is modeled as an isotropic log-normal random field, with
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Figure 6: Typical realization of results for the third example (dynamic car model). The rows show estimated PDFs,

CDFs and errors in approximations respectively. Each column corresponds to increasing number of simulations used for

estimation of fractional moments and probability distributions.

Figure 7: Convergence plots showing mean values and ±σ interval of the total error ε obtained by the proposed method

and standard LHS approach for a) Gaussian model, b) plate model and c) Dynamic car model.

mean value 5×10−6 [m/s], a coefficient of variation of 100% and a correlation modeled considering

a quadratic exponential function. The correlation is equal to e−d2/L2
, where d denotes Euclidean

distance between locations in the soil layer and L is the correlation length, considered here as L =

10 [m]. The random field is discretized using the mid-point method and is described through the

Karhunen-Loève expansion with 10 terms. This ensures that more than 95% of the variability of the
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sheet pile7 [m]

19 [m]

50 [m]

silty sand

upstream downstream

Figure 8: Scheme of the investigated example: Seepage under sheet pile

underlying Gaussian random field is retained. The seepage flow is assumed to follow Darcy’s law. The

associated partial differential equation that allows quantifying the seepage flow corresponds to the

Laplace type and it is solved using the finite element method. The finite element mesh involves 6090

quadratic triangular elements and 12427 nodes, as represented schematically in 8. For the boundary

conditions, it is assumed that all sides of the soil layer illustrated in Figure 8 are impermeable, except

for the sides marked as upstream (water inlet) and downstream (water outlet). The QoI is defined

as the following safety margin with given deterministic threshold Y = 20× 10−5 − Yflow.

This example represents very complicated task for the proposed approach, since the input ran-

dom vector contains 10 random variables (weights from Karhunen-Loève expansion) and thus the

PCE contains very large number of basis functions. Moreover, the resulting distribution of QoI is

highly non-Gaussian as can be seen from the reference empirical distribution obtained from 1000

simulations depicted in Fig. 9 (right) together with the typical realisation of the algorithm for

Figure 9: Convergence plots showing mean values and ±σ interval of the total error ε obtained by the proposed method

and standard LHS approach for the last example (left). A typical realization of the algorithm for nsim = 100 (right).
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nsim = 100. It can be seen that the fractional moments estimated from the experimental design

(LHS) are highly sensitive to outliers and thus the approximated distribution is significantly differ-

ent in comparison to the reference solution. This trend can be seen also in the error plots measuring

a difference between the approximated distribution and the empirical distribution for the increasing

nsim ∈ [50, 100,150, 200] shown in Fig. 9 (left).

5. Discussion

In the previous section, we presented thorough comparison of the proposed method to M-EIGD-

LESND based on fractional moments estimated directly from the experimental design generated by

LHS, and G-C expansion derived from the PCE. It was shown that although G-C expansion based on

the first four statistical moments derived analytically from PCE is superior in the first example, it can

become unstable for significantly non-Gaussian distributions and more suitable parametric distribu-

tions should be employed. Moreover, from the numerical results it can be concluded it is beneficial

to derive fractional moments analytically from PCE as a part of the post-processing instead of the

direct numerical estimation from training data. Moreover it was also shown in Tab. 1 and Tab. 2,

that analytical derivation of fractional moments directly from PCE is more accurate in comparison

to numerical estimation from large set of realizations generated from PCE approximation.

Naturally, the total accuracy of the estimated probability distribution is highly dependent on a

selected parametric distribution. Therefore, a comparison to general data-driven methods will be

presented in this section. The first standard data-driven method is based on well-known Kernel

Density Estimation (KDE) using the Gaussian kernel with the bandwidth given by the most common

Silverman’s rule of thumb based on 107 samples generated from PCE (PCE-KDE). The second ap-

proach for general comparison is Maximum Entropy Method using fractional moments (MEM) [50]

based on training data. The MEM is popular technique for approximation of the target probability

distribution, which could be further used for general UQ of physical systems [51], sensitivity analysis

[52] or combined with dimensional reduction method to perform reliability analysis [53]. Note that

for the sake of a fair comparison, training data were generated by LHS although more advanced

sampling methods could be used specifically for improvement of KDE and MEM [54, 55], or one can

use more advanced sampling techniques for construction of PCE [56].

The selected methods were compared in the second example – FEM of a plate. The obtained nu-

merical results of a typical realization can be seen in Fig. 10. Note that the errors are calculated with
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Figure 10: Typical realization of results for the second example (FEM of a plate). The rows show estimated PDFs,

CDFs and errors in approximations respectively. Each column corresponds to increasing number of simulations used for

estimation of fractional moments and probability distributions.

respect to the reference empirical PDF based on 107 simulations of the original mathematical model.

It can be seen that the proposed approach is very accurate and stable also for very low number of

simulations, while PCE-KDE is highly sensitive to the accuracy of PCE predictions (including outliers)

and its stability is improving with the size of ED. Moreover, it can lead to unrealistic approximations

due to the selected bandwith as can be seen in the third column. Although the MEM is generally

very accurate and efficient method, its results are significantly worse for very low number of sam-

ples as shown in this example. The statistical convergence graphs presented in Fig. 11 confirms the

previous results. While KDE-PCE starts with a very high variance of the error, it converges rapidly

to accurate results with increasing nsim and thus increasing accuracy of the PCE. On the other hand,

MEM doesn’t converge for such low sizes of ED due to the fact that it is purely data-driven approach,

though it achieves very high accuracy for large EDs.
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Figure 11: Convergence plots showing mean values and ±σ interval of the total error ε obtained by the proposed

method, LHS, PCE-KDE and MEM for the second example (FEM of a plate).

6. Conclusions & Further Work

A novel approach for estimation of fractional moments directly from polynomial chaos expan-

sion was proposed in this paper. The proposed method combines well-known formulas for estima-

tion of integer statistical moments from PCE coefficients together with Hölder’s inequality in order

to analytically obtain arbitrary fractional moments. The fractional moments were further used for a

construction of probability distribution based on adopted M-EIGD-LESND algorithm. Obtained re-

sults from the presented numerical examples clearly show that the proposed method leads to stable

and accurate estimations. Moreover, it achieves also a superior computational efficiency in compar-

ison to a standard method based on Latin hypercube sampling and higher flexibility in comparison

to classic Gram-Charlier expansion derived directly from PCE. Therefore, it can be concluded that

an error caused by an Hölder’s inequality approximation is typically lower than error caused by dis-

crete sampling methods, at least for low-size ED. Naturally, the benefits of the proposed method will

be crucial for distribution-based sensitivity measures typically based on differences between condi-

tional probability distributions, which can be accessed from a single PCE [21]. On the other hand,

it is well-known that PCE suffers from curse of dimensionality and thus the proposed approach is not

suitable for high-dimensional applications. There are also still some important topics for further re-

search. First of all, the accuracy of PCE is highly dependent on the type of sampling scheme [12] and

thus it will be necessary to investigate the most suitable sampling schemes and/or active learning

algorithms with respect to an estimation of statistical moments [20].

24



Acknowledgments

The first author acknowledges financial support provided by by the Czech Science Foundation

under project number 23-04712S. The international collaboration was supported by the Ministry of

Education, Youth and Sports of the Czech Republic under project No. LUAUS24260. The help of

Dr. Chao Dang (Chair for Reliability Engineering, TU Dortmund University, Germany) for preparing

some numerical implementations pertinent to this work is deeply appreciated.

References

[1] R. A. Davis, K.-S. Lii, D. N. Politis, Remarks on Some Nonparametric Estimates of a Den-

sity Function, Springer New York, New York, NY, 2011, pp. 95–100. doi:10.1007/

978-1-4419-8339-8_13.

URL https://doi.org/10.1007/978-1-4419-8339-8_13

[2] D. E. Barton, K. E. Dennis, The conditions under which Gram-Charlier and Edgeworth curves

are positive definite and unimodal, Biometrika 39 (3/4) (1952) 425–427. doi:10.2307/

2334037.

[3] Y.-G. Zhao, T. Ono, Moment methods for structural reliability, Structural Safety 23 (1) (2001)

47–75. doi:https://doi.org/10.1016/S0167-4730(00)00027-8.

URL https://www.sciencedirect.com/science/article/pii/S0167473000000278

[4] S. R. Winterstein, T. Kashef, Moment-Based Load and Response Models With Wind Engineering

Applications , Journal of Solar Energy Engineering 122 (3) (2000) 122–128. doi:10.1115/

1.1288028.

[5] Y.-G. Zhao, X.-Y. Zhang, Z.-H. Lu, A flexible distribution and its application in reliability engi-

neering, Reliability Engineering & System Safety 176 (2018) 1–12. doi:https://doi.org/

10.1016/j.ress.2018.03.026.

URL https://www.sciencedirect.com/science/article/pii/S0951832017311754

[6] X. Zhu, B. Sudret, Global sensitivity analysis for stochastic simulators based on generalized

lambda surrogate models, Reliability Engineering & System Safety 214 (2021) 107815. doi:

https://doi.org/10.1016/j.ress.2021.107815.

URL https://www.sciencedirect.com/science/article/pii/S0951832021003379

25

https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.1007/978-1-4419-8339-8_13
https://doi.org/10.2307/2334037
https://doi.org/10.2307/2334037
https://www.sciencedirect.com/science/article/pii/S0167473000000278
https://doi.org/https://doi.org/10.1016/S0167-4730(00)00027-8
https://www.sciencedirect.com/science/article/pii/S0167473000000278
https://doi.org/10.1115/1.1288028
https://doi.org/10.1115/1.1288028
https://www.sciencedirect.com/science/article/pii/S0951832017311754
https://www.sciencedirect.com/science/article/pii/S0951832017311754
https://doi.org/https://doi.org/10.1016/j.ress.2018.03.026
https://doi.org/https://doi.org/10.1016/j.ress.2018.03.026
https://www.sciencedirect.com/science/article/pii/S0951832017311754
https://www.sciencedirect.com/science/article/pii/S0951832021003379
https://www.sciencedirect.com/science/article/pii/S0951832021003379
https://doi.org/https://doi.org/10.1016/j.ress.2021.107815
https://doi.org/https://doi.org/10.1016/j.ress.2021.107815
https://www.sciencedirect.com/science/article/pii/S0951832021003379


[7] C. Ding, C. Dang, M. A. Valdebenito, M. G. Faes, M. Broggi, M. Beer, First-passage probability

estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-

based mixture distribution approach, Mechanical Systems and Signal Processing 185 (2023)

109775. doi:https://doi.org/10.1016/j.ymssp.2022.109775.

URL https://www.sciencedirect.com/science/article/pii/S0888327022008433

[8] N. Wiener, The homogeneous chaos, American Journal of Mathematics 60 (4) (1938) 897–936.

doi:10.2307/2371268.

[9] B. Sudret, Global sensitivity analysis using polynomial chaos expansions, Reliability Engineer-

ing & System Safety 93 (7) (2008) 964–979. doi:10.1016/j.ress.2007.04.002.

[10] R. G. Ghanem, P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer New

York, 1991. doi:10.1007/978-1-4612-3094-6.

[11] G. Blatman, B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle re-

gression, Journal of Computational Physics 230 (6) (2011) 2345–2367. doi:10.1016/j.jcp.

2010.12.021.

[12] N. Lüthen, S. Marelli, B. Sudret, Sparse polynomial chaos expansions: Literature survey and

benchmark, SIAM/ASA Journal on Uncertainty Quantification 9 (2) (2021) 593–649. doi:

10.1137/20M1315774.

[13] W. Conover, On a better method for selecting input variables, unpublished Los Alamos National

Laboratories manuscript, reproduced as Appendix A of “Latin Hypercube Sampling and the

Propagation of Uncertainty in Analyses of Complex Systems” by J.C. Helton and F.J. Davis,

Sandia National Laboratories report SAND2001-0417, printed November 2002. (1975).

URL https://prod-ng.sandia.gov/techlib-noauth/access-control.cgi/2001/

010417.pdf
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[41] L. Novák, M. D. Shields, V. Sadílek, M. Vořechovský, Active learning-based domain adaptive

localized polynomial chaos expansion, Mechanical Systems and Signal Processing 204 (2023)

110728. doi:https://doi.org/10.1016/j.ymssp.2023.110728.

URL https://www.sciencedirect.com/science/article/pii/S0888327023006362

29

https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://doi.org/10.1214/aoms/1177728190
https://www.sciencedirect.com/science/article/pii/S0021999119302220
https://www.sciencedirect.com/science/article/pii/S0021999119302220
https://doi.org/https://doi.org/10.1016/j.jcp.2019.03.039
https://doi.org/https://doi.org/10.1016/j.jcp.2019.03.039
https://www.sciencedirect.com/science/article/pii/S0021999119302220
https://www.sciencedirect.com/science/article/pii/S0045782521001912
https://www.sciencedirect.com/science/article/pii/S0045782521001912
https://doi.org/https://doi.org/10.1016/j.cma.2021.113854
https://www.sciencedirect.com/science/article/pii/S0045782521001912
https://doi.org/https://doi.org/10.1016/j.sbspro.2010.05.149
https://doi.org/https://doi.org/10.1016/j.sbspro.2010.05.149
https://doi.org/10.1081/STA-120018189
http://arxiv.org/abs/https://doi.org/10.1081/STA-120018189
http://arxiv.org/abs/https://doi.org/10.1081/STA-120018189
https://doi.org/10.1081/STA-120018189
https://doi.org/10.1081/STA-120018189
https://www.sciencedirect.com/science/article/pii/S0021999105001919
https://www.sciencedirect.com/science/article/pii/S0021999105001919
https://doi.org/https://doi.org/10.1016/j.jcp.2005.03.023
https://www.sciencedirect.com/science/article/pii/S0021999105001919
https://www.sciencedirect.com/science/article/pii/S0888327023006362
https://www.sciencedirect.com/science/article/pii/S0888327023006362
https://doi.org/https://doi.org/10.1016/j.ymssp.2023.110728
https://www.sciencedirect.com/science/article/pii/S0888327023006362


[42] H. Sharma, L. Novák, M. Shields, Physics-constrained polynomial chaos expansion for scientific

machine learning and uncertainty quantification, Computer Methods in Applied Mechanics and

Engineering 431 (2024) 117314. doi:https://doi.org/10.1016/j.cma.2024.117314.

URL https://www.sciencedirect.com/science/article/pii/S004578252400570X

[43] L. Novák, H. Sharma, M. D. Shields, Physics-informed polynomial chaos expansions, Journal of

Computational Physics 506 (2024) 112926. doi:https://doi.org/10.1016/j.jcp.2024.

112926.

URL https://www.sciencedirect.com/science/article/pii/S002199912400175X

[44] D. Tsapetis, M. D. Shields, D. G. Giovanis, A. Olivier, L. Novak, P. Chakroborty, H. Sharma,

M. Chauhan, K. Kontolati, L. Vandanapu, D. Loukrezis, M. Gardner, Uqpy v4.1: Uncertainty

quantification with python, SoftwareX 24 (2023) 101561. doi:https://doi.org/10.1016/

j.softx.2023.101561.

URL https://www.sciencedirect.com/science/article/pii/S2352711023002571

[45] A. B. Owen, A central limit theorem for Latin hypercube sampling, Journal of the Royal Statis-

tical Society. Series B (Methodological) 54 (2) (1992) 541–551. doi:10.2307/2346140.

[46] M. D. Shields, J. Zhang, The generalization of latin hypercube sampling, Reliability Engineering

& System Safety 148 (2016) 96–108. doi:https://doi.org/10.1016/j.ress.2015.12.

002.

URL https://www.sciencedirect.com/science/article/pii/S0951832015003543

[47] J. Hampton, A. Doostan, Basis adaptive sample efficient polynomial chaos (BASE-PC), Journal

of Computational Physics 371 (2018) 20–49. doi:10.1016/j.jcp.2018.03.035.

[48] S. Park, M. Rao, D. W. Shin, On cumulative residual kullback–leibler information, Statistics

& Probability Letters 82 (11) (2012) 2025–2032. doi:https://doi.org/10.1016/j.spl.

2012.06.015.

URL https://www.sciencedirect.com/science/article/pii/S016771521200226X

[49] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau, E. Burovski,

P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson, K. J. Millman,

N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, İ. Polat, Y. Feng, E. W.
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