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Abstract

An approximate analytical technique is developed for bounding the first-passage

probability of lightly damped nonlinear and hysteretic oscillators endowed with

fractional derivative elements and subjected to imprecise stationary Gaussian loads.

In particular, the statistical linearization and stochastic averaging methodologies
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are integrated with an operator norm-based approach to formulate a numerically

efficient proxy for the first-passage probability. This proxy is employed to de-

termine the realizations of the interval-valued parameters of the excitation model

that yield the extrema of the failure probability function. Ultimately, each failure

probability bound is determined in a fully decoupled manner by solving a standard

optimization problem followed by a single evaluation of the first-passage proba-

bility. The proposed approximate technique can be construed as an extension of

a recently developed operator norm scheme to account for oscillators with frac-

tional derivative elements. In addition, it can readily treat a wide range of nonlin-

ear and hysteretic behaviors. To illustrate the applicability and effectiveness of the

proposed technique, a hardening Duffing and a bilinear hysteretic nonlinear oscil-

lators with fractional derivative elements subject to imprecise stationary Gaussian

loads are considered as numerical examples.

Keywords: Uncertainty quantification, First-passage probability, Imprecise
probabilities, Fractional derivative, Stochastic averaging, Statistical linearization

1. Introduction1

Stochastic excitation models furnish a versatile probabilistic tool to assess the2

effect of uncertain dynamic loads on structural systems [1–4], where Gaussian3

processes have been employed in numerous engineering applications [5–7]. In4

this setting, the first-passage probability [8] constitutes a suitable performance5

measure for structural dynamical systems under stochastic excitation whose be-6

havior can be classified as acceptable (safe) or unacceptable (failed). From a7

practical perspective, however, a crisp definition of the corresponding excitation8
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model parameters remains challenging due to, for instance, lack of knowledge,9

scarce or noisy data, or conflicting evidence [9]. Thus, evaluating the effect of10

these parametric uncertainties on the first-passage probability is pivotal for relia-11

bility assessment purposes.12

In light of this, employing interval-valued excitation model parameters repre-13

sents a standard approach for developing uncertainty quantification frameworks14

[10]. Hence, the stochastic response process becomes interval-valued, and there-15

fore the corresponding failure probability also becomes an interval variable [11].16

Bounding the latter can be computationally demanding even for small-scale linear17

systems, since reliability assessment must be performed for different realizations18

of the interval model parameters [12]. To address this issue, several approaches19

have been proposed to bound first-passage probabilities (e.g., [13–16]). In the20

context of linear structural systems under Gaussian excitation, the operator norm-21

based decoupling framework proposed in [17, 18] allows estimating the failure22

probability bounds in a fully decoupled manner with the solution of two standard23

optimization problems, followed by two reliability analyses. Such an approach24

has been extended recently in [19] to account for nonlinear systems by resorting25

to the statistical linearization method [20].26

Further, fractional calculus has become the focal point of research for the ef-27

ficient modeling of diverse systems [21]. In terms of engineering applications, it28

has been extensively used to construct, for instance, accurate models for captur-29

ing the viscoelastic behavior of materials [22, 23], or for describing the impedance30

of electrical systems [24]. In this regard, several approaches with different advan-31
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tages and limitations have been developed to assess the stochastic response of sys-32

tems endowed with fractional derivative elements (e.g., [25–29]). Nevertheless,33

a persisting challenge in the field of stochastic dynamics relates to determining34

the first-passage probability of nonlinear single-degree-of-freedom (SDOF) sys-35

tems with fractional derivative elements; see, indicatively, [30–34]. To this end,36

methods such as stochastic averaging [35, 36] and statistical linearization [20, 37]37

have been proven as rather efficient and versatile tools. Their extensive use over38

the last decades relates to their capacity to treat systems exhibiting a wide range39

of nonlinear and hysteretic behaviors under diverse types of stochastic excitation40

(e.g., [38–40]).41

In this paper, an analytical approximate technique is proposed for bounding42

the first-passage probability of nonlinear oscillators with fractional derivative ele-43

ments and subject to stationary Gaussian loads, in which the corresponding excita-44

tion model parameters are interval-valued. Specifically, the statistical linearization45

and stochastic averaging methodologies are combined with the operator norm-46

based framework proposed in [18] to develop a numerically efficient proxy for the47

first-passage probability. The parameter values that yield the minimum and max-48

imum of the proxy function are used to determine the lower and upper bounds,49

respectively, of the first-passage probability. Hence, the repeated evaluation of50

the failure probability is circumvented, and the sought bounds can be estimated51

in a fully decoupled manner. The proposed technique can be construed as an52

extension of the operator norm-based linearization scheme developed in [19] to53

account for systems with fractional derivative elements. Its advantage relates to54
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the fact that it can readily treat diverse nonlinear and hysteretic behaviors while55

exhibiting relatively low computational cost. Two numerical examples are used56

to assess the efficacy of the technique. Namely, a hardening Duffing and a bi-57

linear hysteretic nonlinear oscillators with fractional derivative elements subject58

to imprecise Gaussian loading are considered, while comparisons with reference59

values computed by a direct double-loop implementation are used to validate the60

obtained results.61

2. Problem description62

2.1. Nonlinear oscillator with fractional derivative elements63

The governing equation of motion of a class of stochastically excited nonlinear64

oscillators endowed with fractional derivative elements is given by65

ẍ(t) + βDα
0,tx(t) + g(x, ẋ) = q(t), (1)66

where x denotes the response displacement and a dot over a variable accounts for67

time differentiation. Further, β is a constant damping coefficient, g(x, ẋ) is an ar-68

bitrary nonlinear function that can account also for hysteretic response behaviors,69

and q(t) represents the system excitation modeled as a zero-mean stationary Gaus-70

sian process described by the power spectrum Sqq(ω). Finally, Dα
0,t(·) denotes the71

Caputo fractional derivative operator of order α defined as [21]72

Dα
0,tx(t) =

1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ, (2)73
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where 0 < α < 1 and Γ(·) denotes the Gamma function.74

2.2. Interval-valued first-passage probability75

Choosing appropriate model parameter values in Eq. (1) is usually associated76

with considerable uncertainty levels due to, for instance, lack of knowledge or77

conflicting evidence [9]. To address this issue, it is often preferred to represent78

these parameters using the so-called non-traditional models for uncertainty quan-79

tification [10]. In this regard, assume that a set of parameters θ ∈ Rnθ associated80

with the excitation model are represented as interval variables. That is, they are81

bounded by the hyper-rectangle82

Θ =
{
θ ∈ Rnθ : θLi ≤ θi ≤ θUi , i = 1, 2, . . . , nθ

}
, (3)83

where θLi and θUi denote, respectively, the lower and upper bounds between which84

the true value for the i-th parameter is expected to lie. Note that, in this set-85

ting, the power spectrum of the excitation process satisfies Sqq(ω) = Sqq(ω,θ).86

Hence, Eq. (1) involves both random and interval variables, and thus, the dynamic87

response becomes an interval stochastic process [10]. This must be properly ac-88

counted for to assess the performance of the corresponding oscillator.89

The first-passage probability [8], denoted as PF , constitutes a suitable measure90

of performance when the structural behavior can be qualified as acceptable or91

unacceptable. Specifically, the corresponding first-passage event is defined as92

F = max
t∈[0,T ]

max
ℓ=1,2,...,nh

∣∣∣∣hℓ(t)h∗ℓ

∣∣∣∣ > 1, (4)93
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where T denotes the simulation period and hℓ(t), ℓ = 1, 2, . . . , nh, are the re-94

sponses of interest with corresponding thresholds h∗ℓ > 0. Thus, failure occurs95

when the magnitude of any response of interest obtained by solving Eq. (1) ex-96

ceeds its maximum allowable level at any instant of the simulation period. In this97

context, the first-passage probability can be explicitly defined as98

PF = P (hℓ(t) > h∗ℓ for some t ∈ [0, T ] and some ℓ ∈ {1, 2, . . . , nh}) , (5)99

where P (·) denotes the probability of the event inside the parentheses. Since the100

interval-valued parameters θ affect the characteristics of the stochastic excitation,101

then PF (θ) = P (F |θ). Moreover, the first-passage probability satisfies [10]102

PF (θ) ∈
[
PL
F , P

U
F

]
=

[
min
θ∈Θ

PF (θ),max
θ∈Θ

PF (θ)

]
, (6)103

where PL
F and PU

F denote the lower and upper bounds of PF (θ), respectively.104

Therefore, the evaluation of the bounds for PF (θ) involves, in principle, the solu-105

tion of two optimization problems with the failure probability as objective func-106

tion. A straightforward solution treatment leads to the so-called double-loop ap-107

proaches, where reliability analysis is performed in the inner loop and the outer108

loop comprises an optimization procedure (with respect to the parameters θ) [12].109

3. Proposed linearization framework to bound first-passage probabilities110

While the bounds on the first-passage probability in Eq. (6) provide valu-111

able information for decision-making processes, their direct determination using112
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double-loop approaches often proves computationally challenging [11]. To ad-113

dress this issue, a novel approach has been proposed in [19] by combining the114

statistical linearization method [20] with an operator norm-based solution treat-115

ment [17]. In this setting, the computationally demanding problem of bounding116

the first-passage failure probability of a class of nonlinear structural systems under117

Gaussian excitation has been simplified significantly. Specifically, each bound in118

Eq. (6) can be computed by considering a single deterministic optimization prob-119

lem in conjunction with a single reliability analysis. Building on some of the120

previous ideas, an approximate analytical technique based on the integration of121

the statistical linearization and stochastic averaging methodologies with an oper-122

ator norm-based decoupling framework is proposed next to account for nonlinear123

oscillators with fractional derivative elements.124

3.1. Equivalent linear oscillator determination125

For a given realization of the interval parameters θ, and considering that the126

oscillator in Eq. (1) is lightly damped, its response follows a pseudo-harmonic127

behavior described by [20, 41]128

x(t) = A(t) cos(ω(A)t+ ψ(t)) (7)129

and130

ẋ(t) = −ω(A)A(t) sin(ω(A)t+ ψ(t)). (8)131
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In Eqs. (7) and (8), ω(A) denotes the amplitude-dependent natural frequency,132

and A(t) and ψ(t) correspond to the response amplitude and phase, respectively.133

These are considered as slowly-varying with respect to time processes, and thus,134

constant over one cycle of oscillation [20]. Therefore, assuming that A(t) = A135

and ψ(t) = ψ, and manipulating Eqs. (7) and (8) leads to136

A2 = x2(t) +

(
ẋ(t)

ω(A)

)2

. (9)137

Next, Eq. (1) is written for simplicity as [32]138

ẍ(t) + β0ẋ(t) + g0(x, ẋ) = q(t), (10)139

where140

g0(x, ẋ) = βDα
0,tx+ g(x, ẋ)− β0ẋ. (11)141

In Eq. (11), β0 = 2ζ0ω0, where ω0 and ζ0 denote the natural frequency and damp-142

ing ratio of the corresponding linear oscillator. Further, applying a statistical lin-143

earization treatment, Eq. (10) is approximated by the equivalent linear oscillator144

[20, 41, 42]145

ẍ(t) + (β0 + β(A)) ẋ(t) + ω2(A)x(t) = q(t), (12)146

where β(A) and ω2(A) denote the amplitude-dependent equivalent elements of the147

linearized system. For the determination of the equivalent elements, the difference148

between Eqs. (10) and (12) is formulated and minimized in the mean-square sense149
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over one cycle of oscillation [20]. This leads to150

β(A) =
ω2
0

Aω(A)
F1(A) +

β

ω1−α(A)
sin
(απ

2

)
− β0 (13)151

and152

ω2(A) =
ω2
0

A
F2(A) + βωα(A) cos

(απ
2

)
, (14)153

with154

F1(A) = −
1

π

∫ 2π

0

g(A cosϕ,−Aω(A) sinϕ) sinϕdϕ, (15)155

156

F2(A) =
1

π

∫ 2π

0

g(A cosϕ,−Aω(A) sinϕ) cosϕdϕ (16)157

and ϕ = ω(A)t+ψ. The interested reader is directed to [32, 38, 41] for a detailed158

derivation of Eqs. (10)-(16).159

The amplitude-dependent equivalent elements in Eqs. (13) and (14) are then160

approximated by corresponding time-dependent equivalent elements. Specifi-161

cally, taking expectations on Eqs. (13) and (14), the equivalent elements are given162

by [20]163

βeq =

∫ ∞

0

β(A)p(A)dA (17)164

and165

ω2
eq =

∫ ∞

0

ω2(A)p(A)dA, (18)166

where p(A) denotes the response amplitude probability density function (PDF).167
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In this context, the equivalent linear system in Eq. (12) becomes168

ẍ(t) + (β0 + βeq) ẋ(t) + ω2
eqx(t) = q(t). (19)169

Clearly, the response amplitude PDF is required for the computation of βeq170

and ω2
eq in Eqs. (17) and (18). Thus, following the standard stochastic averaging171

method, the stochastic differential equation governing the slowly varying response172

amplitude process is constructed, and the associated Fokker-Planck equation is173

formulated (e.g., [35])174

∂p(A)

∂t
=− ∂

∂A

{(
−1

2
(β0 + βeq)A+

πSqq(ωeq)

2ω2
eqA

)
p(A)

}
+

1

4

∂

∂A

{
πSqq(ωeq)

ω2
eq

∂p(A)

∂A
+

∂

∂A

(
πSqq(ωeq)

ω2
eq

p(A)

)}
.

(20)175

Notably, for the general case of linear systems subject to stationary excitation,176

i.e., when ∂p(A)
∂t

= 0, a straightforward solution of Eq. (20) is readily available in177

the form of a Rayleigh distribution (e.g., [43, 44]). This result has been recently178

extended in [45] and a closed-form expression for the response amplitude PDF179

p(A) corresponding to oscillators with fractional derivative elements has been180

proposed. This has the form181

p(A) =
sin
(
απ
2

)
A

ω1−α
0 σ2

exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
, (21)182
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where183

σ2 =
πSqq(ωeq)

(β0 + βeq)ω2
eq

. (22)184

In passing, it is noted that Eqs. (21) and (22) have been further generalized to185

account for both standard oscillators and oscillators with fractional derivative el-186

ements subject to non-stationary excitation; the interested reader is directed to187

[27, 33, 40, 42, 44] for a relevant discussion.188

3.2. Operator norm-based solution treatment189

To exploit the linearity of the equivalent oscillator given by Eq. (19), an op-190

erator norm-based solution treatment [17, 19] is implemented for determining the191

failure probability bounds in Eq. (6). Without loss of generality, the zero-mean192

discrete Gaussian load in Eq. (19) is modeled by adopting the Karhunen-Loève193

expansion [46]. Specifically,194

q(tk,θ, ξ) = ψ
T
k (θ)ξ, (23)195

k = 1, 2, . . . , nT , represents the loading at time tk = (k−1)∆t, where ∆t denotes196

the time step, nT = T/∆t + 1 is the number of time instants, and ξ ∈ Rnξ is a197

standard Gaussian random variable vector. Further, ψk(θ) corresponds to the k-th198

column of the matrix Ψ(θ) = Λ1/2(θ)ΥT(θ), where Λ(θ) denotes the diagonal199

nξ × nξ matrix comprising the nξ largest eigenvalues of the stochastic load co-200

variance matrix Σ(θ), and Υ(θ) denotes the nT ×nξ matrix of the corresponding201

eigenvectors, i.e., Σ(θ)Υ(θ) = Υ(θ)Λ(θ).202
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Next, assume that the vector containing the nT discrete values of the ℓ-th nor-203

malized response of interest is defined as204

h̄ℓ(θ, ξ) =
1

h∗ℓ

[
hℓ(t1,θ, ξ) · · · hℓ(tnT

,θ, ξ)

]T
, (24)205

for ℓ = 1, 2, . . . , nh. Further, defining the vector206

h̄(θ, ξ) =

[
h̄T
1 (θ, ξ) . . . h̄T

nh
(θ, ξ)

]T
, (25)207

and since the equivalent oscillator in Eq. (19) enables a linear relationship be-208

tween the system response and the excitation, a linear relationship between the209

responses of interest at discrete time instants and the basic random variables is210

also established as [47, 48]211

h̄(θ, ξ) = M(θ)ξ. (26)212

In Eq. (26), M(θ) ∈ RnTnh×nξ is obtained in terms of the response thresholds,213

the matrix Ψ(θ), and the adopted integration rule for the equation of motion.214

The linear mapping M(θ) depends on the parameters θ since the latter affect the215

stochastic excitation model. In this context, the induced (p1, p2)-norm of M(θ) is216

given by217

∥M(θ)∥p1,p2 = sup
ξ ̸=0

∥M(θ)ξ∥p1
∥ξ∥p2

= sup
ξ ̸=0

∥h̄(θ, ξ)∥p1
∥ξ∥p2

, (27)218

where ∥·∥pi denotes the pi-norm of a vector (i = 1, 2). Following the presentation219
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in [17, 19], the values p1 = ∞ and p2 = 2 are adopted in the ensuing analysis.220

Thus, it can be argued that the operator norm expression in Eq. (27) quantifies the221

maximum amplification of the response magnitude, in terms of the maximum ab-222

solute value of the normalized responses over time, with respect to the magnitude223

of the input vector ξ, in terms of its Euclidean distance. This choice also enables224

the analytical evaluation of the operator norm [49].225

The key idea of the proposed framework is that the values of θ that yield the226

minimum (maximum) amplification of the response magnitude will also yield the227

lower (upper) bound for the failure probability [17]. In other words, the function228

∥M(θ)∥p1,p2 is employed as a numerically efficient proxy for the failure prob-229

ability function PF (θ). Hence, the values of θ that determine the extrema of230

∥M(θ)∥∞,2 are employed to determine the bounds of PF (θ) in Eq. (6). This231

leads to232 [
PL
F , P

U
F

]
≈
[
PF

(
θ∗,L

)
, PF

(
θ∗,U

)]
, (28)233

where234

θ∗,L = argmin
θ∈Θ

∥M(θ)∥∞,2 (29)235

and236

θ∗,U = argmax
θ∈Θ

∥M(θ)∥∞,2 . (30)237

Clearly, the solution of two deterministic optimization problems to derive the238

parameter values that yield the extrema of the operator norm, followed by two239

corresponding reliability analyses, are sufficient for estimating the failure proba-240

bility bounds PL
F and PU

F in Eq. (28). In other words, the repeated evaluation of241
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the failure probability associated with the direct solution of Eq. (6) is bypassed by242

virtue of the proposed framework.243

3.3. Summary of the proposed approach244

The herein proposed approach comprises the following key aspects to bound245

the first-passage probability of nonlinear oscillators with fractional derivative el-246

ements. First, the statistical linearization and stochastic averaging methodologies247

are combined to determine an equivalent linear system for any given realization248

of the interval-valued model parameters. Based on this linearization an associ-249

ated operator norm function is defined. The resulting mapping is employed as250

a proxy function to estimate the parameter values that determine the bounds of251

the first-passage probability via Eq. (28). Ultimately, the bounds in Eq. (6) are252

approximated in a two-step process as follows:253

1. Solve Eqs. (29) and (30) to determine the parameter values θ∗,L and θ∗,U254

that yield the failure probability bounds. It is noted that the evaluation255

of ∥M(θ)∥∞,2 at any given value of θ involves two main tasks, namely,256

(i) finding an equivalent linear oscillator according to Section 3.1, and (ii)257

computing the corresponding matrix M(θ) in Eq. (26). Since the function258

∥M(θ)∥∞,2 is non-smooth, suitable search algorithms must be adopted for259

the solution of the related optimization problems.260

2. Estimate the failure probability bounds, that is, PL
F ≈ PF (θ

∗,L) and261

PU
F ≈ PF (θ

∗,U). This is done by considering the nonlinear oscillator in262

Eq. (1) in conjunction with any suitable reliability assessment method.263
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The proposed approach encompasses some attractive features pertaining to its264

practical implementation. First, the numerical cost of solving Eqs. (29) and (30)265

is relatively low, since evaluating the corresponding objective function is sig-266

nificantly less computationally intensive than estimating the corresponding first-267

passage failure probability. In addition, by virtue of the proposed two-step imple-268

mentation, failure probability bounds are computed in a fully decoupled manner.269

That is, a single estimation of the failure probability by means of any suitable270

reliability analysis method is sufficient to determine each bound in Eq. (28). Fi-271

nally, the adoption of the statistical linearization and averaging methodologies272

allows to treat diverse nonlinear and hysteretic response behaviors, while exhibit-273

ing low computational cost. Overall, the developed framework can be regarded as274

a versatile and computationally efficient alternative for bounding the first-passage275

probability of a class of nonlinear oscillators endowed with fractional derivative276

elements.277

4. Numerical examples278

In this section, two numerical examples are considered to assess the efficacy279

of the proposed framework. Specifically, first-passage probability bounds are de-280

termined for a hardening Duffing and a bilinear hysteretic nonlinear oscillators281

endowed with fractional derivative elements. For both examples, the load q(t) in282

Eq. (1) is modeled as a zero-mean Gaussian stochastic process characterized by283
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the Clough-Penzien spectrum [50]284

Sqq(ω) =
ω4
(
ω4
g + (2ζgωgω)

2
)
S0[

(ω2
g − ω2)2 + (2ζgωgω)2

] [
(ω2

f − ω2)2 + (2ζfωfω)2
] , (31)285

with S0 denoting the intensity of the excitation, ωg and ωf representing the natu-286

ral circular frequencies of the filter, and ζg and ζf representing the corresponding287

damping ratios. These parameters are modeled as interval variables in the sub-288

sequent examples, with reference values given by Sref
0 = 0.50, ωref

g = 12.47,289

ωref
f = 5.43, ζ ref

f = 0.80 and ζ ref
g = 0.68.290

In all cases addressed herein, the first-passage failure event is defined in terms291

of the displacement response x(t) as292

F = max
t∈[0,T ]

|x(t)|
x∗

> 1, (32)293

where T = 18 s is the reference period and x∗ is the maximum admissible dis-294

placement level. Further, a time step of ∆t = 0.03 s is assumed. For illustration295

purposes, the entire set of eigenvalues of the covariance matrix is considered in296

Eq. (23). Therefore, the discrete representation of the stochastic excitation in-297

volves a total of nξ = 601 random variables for the examples in the ensuing298

analysis. It is noted that alternative responses of interest, such as the oscillator ve-299

locity or acceleration, can also be considered in the definition of the failure event300

F in Eq. (32).301

Following the presentation in Section 3, the implementation of the herein pro-302

posed approach requires the solution of Eqs. (29) and (30). In particular, the303
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stochastic search technique presented in [51] is adopted to this end. The latter has304

proved rather effective to address a class of optimization problems involving struc-305

tural dynamical systems under stochastic excitation. Nevertheless, alternative op-306

timization schemes can also be implemented to determine θ∗,L and θ∗,U . Further,307

first-passage probabilities are evaluated using subset simulation [52, 53], a well-308

established reliability analysis method. Specifically, failure probability estimates309

are obtained by averaging the results of ten independent subset simulation runs310

with 2000 samples per stage each. The number of independent runs and samples311

per stage can be certainly reduced for practical implementation purposes. More-312

over, alternative reliability analysis methods can also be implemented. Finally,313

reference values for the failure probability bounds are obtained using a direct314

double-loop approach that employs the stochastic optimization method in [51] to315

find the extrema of PF (θ), subset simulation [52] for estimating the first-passage316

probability corresponding to the oscillator in Eq. (1), and the customary strategy317

of employing the same sequence of pseudorandom numbers to evaluate the failure318

probability at different realizations of the interval-valued parameters [54].319

4.1. Duffing nonlinear oscillator with fractional derivative elements320

In this section, a hardening Duffing nonlinear oscillator with fractional deriva-321

tive elements is considered. Specifically, the nonlinear function in Eq. (1) is de-322

fined as323

g(x, ẋ) = ω2
0x(1 + εx2), (33)324
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where ε > 0 is a constant controlling the magnitude of the nonlinearity. Next,325

following the presentation in Section 3, the equivalent linear oscillator in Eq. (19)326

is determined for any given value of the interval parameter vector θ. Taking into327

account the nonlinear function given by Eq. (33), the quantities F1(A) and F2(A)328

are computed from Eqs. (15) and (16), respectively. This, in turn, allows deter-329

mining the amplitude-dependent equivalent element β(A) and ω2(A) in Eqs. (13)330

and (14). These expressions are then substituted into Eqs. (17) and (18) which, in331

conjunction with the stationary response amplitude PDF given by Eq. (21), lead332

to333

βeq = −β0 +
β sin2

(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

A

ω1−α(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA (34)334

and335

ω2
eq = ω2

0 +
β sin

(
απ
2

)
cos
(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

Aωα(A) exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

+
3εω1+α

0 sin
(
απ
2

)
4σ2

∫ ∞

0

A3 exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA,

(35)336

respectively. Clearly, Eqs. (34), (35) and Eq. (22) define a coupled system of337

nonlinear algebraic equations to be solved for determining the equivalent elements338

βeq and ω2
eq. This is done by resorting to the simple iterative scheme described in339

Appendix A. Nevertheless, alternative solution strategies can also be adopted.340

In the ensuing analysis, the system parameter values in Eqs. (1) and (33) are341

α = 0.5, ω0 = 10, β = 2ζ0ω
2−α
0 = 6.32 with ζ0 = 0.1, and ε = 2. In addition, the342
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response threshold in Eq. (32) is x∗ = 0.37.343

4.1.1. Case I: Clough-Penzien spectrum with two interval-valued parameters344

First, for demonstration purposes, the following values are considered for the345

parameters of the Clough-Penzien spectrum in Eq. (31): S0 = Sref
0 θ1, ωf = ωref

f θ2,346

ζf = ζ ref
f θ2, ωg = ωref

g and ζg = ζ ref
g , where θ1 and θ2 are interval variables such347

that 0.8 ≤ θi ≤ 1.2, i = 1, 2. Thus, it is assumed that ωg and ζg are equal to348

their reference values, whereas the parameters S0, ωf and ζf are bounded between349

80% and 120% of their corresponding reference values.350

The key idea of the herein proposed framework is to employ the operator norm351

∥M(θ)∥∞,2 defined in Eq. (27), which is associated with the equivalent linear352

oscillator corresponding to the excitation model defined by θ, as a numerically353

efficient proxy for the failure probability function. That is, PF (θ) is evaluated at354

the parameter values that minimize (maximize) ∥M(θ)∥∞,2 in order to obtain the355

lower (upper) bound of the first-passage probability. In this regard, Fig. 1 shows356

the contours of PF (θ) and ∥M(θ)∥∞,2, which have been generated by evaluating357

both functions at different values of θ distributed over [0.8, 1.2]2. The resulting358

curves for the failure probability function, which are fairly rugged due to the in-359

herent variability of sampling-based estimates, have been smoothed to provide a360

more clear representation of the function behavior. It is seen that an increase in θ1361

can be compensated by a decrease in θ2 to maintain the same failure probability362

level, and a similar behavior holds for the operator norm function. Hence, in-363

creasing the intensity of the excitation S0 can be compensated by also increasing364
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the natural frequency ωf and damping ratio ζf of the associated filter to achieve365

a similar reliability level. Furthermore, Fig. 1 shows that PF (θ) and ∥M(θ)∥∞,2366

are reduced (increased) for lower (higher) values of θ1 and higher (lower) values367

of θ2. Hence, the failure probability, which quantifies the plausibility of unaccept-368

able structural behavior, and the operator norm, which quantifies the amplification369

of the vector of basic random variables ξ, seem to be reduced for weaker and more370

damped excitations. Correspondingly, stronger and less damped excitations lead371

to higher values of these functions. Moreover, Fig. 1 also indicates that PF (θ) and372

∥M(θ)∥∞,2 are minimized for θ1 = 0.8 and θ2 = 1.2, while their corresponding373

maxima are obtained for θ1 = 1.2 and θ2 = 0.8. Thus, both functions achieve their374

extrema at the same values of θ. These aspects highlight the validity of employing375

the operator norm as a proxy for the failure probability in this example, since both376

functions present a similar behavior with respect to the interval parameters θ.377

Next, the herein proposed approach is employed to bound the first-passage378

probability. In this regard, the optimization problems stated in Eqs. (29) and (30)379

are first solved to determine θ∗,L and θ∗,U , respectively. These parameter values,380

which yield the extrema of the operator norm function ∥M(θ)∥∞,2, are then as-381

sumed to determine the extrema of the first-passage probability [17, 19]. Finally,382

the failure probability function is evaluated at θ∗,L and θ∗,U to estimate the lower383

and upper bounds of the failure probability according to Eq. (28).384

The parameter values obtained by the proposed approach are shown in Ta-385

ble 1, where reference results derived by a standard double-loop implementation386

are also included for comparison. The corresponding values of the operator norm387
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(a) (b)

Fig. 1: Contours of the objective functions of a Duffing nonlinear oscillator (ε = 2) with fractional
derivative elements (α = 0.5): (a) failure probability function PF (θ), (b) operator norm function
∥M(θθθ)∥∞,2.

function, ∥M(θ)∥∞,2, and of the failure probability function, PF (θ), are also388

shown in Table 1. It is seen that the minima of the failure probability and op-389

erator norm functions are achieved by minimizing θ1 and maximizing θ2, while390

the corresponding maxima are obtained by maximizing θ1 and minimizing θ2.391

These results agree with the contours presented in Fig. 1. Moreover, it is noted392

that the parameter values determined by applying the proposed method are very393

similar to the corresponding reference results. In fact, due to the inherent variabil-394

ity of sampling-based reliability estimates, the rather small differences observed395

between the bounds identified by the proposed method and their reference values396

can be neglected in practice. This highlights the validity of the proposed decou-397

pling strategy, in which a proxy for the failure probability function is developed398

by integrating the statistical linearization and stochastic averaging methodologies399
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with an operator norm-based solution treatment.400

Table 1: Failure probability bounds of a Duffing nonlinear oscillator (ε = 2) with fractional
derivative elements (α = 0.5) for nθ = 2; comparison with reference results obtained by a stan-
dard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.800 1.200 0.800 1.200
θ2 1.200 0.800 1.200 0.800

PF (θ) 6.54× 10−3 4.92× 10−1 6.27× 10−3 4.94× 10−1

∥M(θ)∥∞,2 2.08× 10−2 4.40× 10−2 2.08× 10−2 4.40× 10−2

4.1.2. Case II: Clough-Penzien spectrum with five interval-valued parameters401

The case of all user-defined parameters in Eq. (31) characterized as interval-402

valued and bounded between 80% and 120% of their reference values is con-403

sidered next. Thus, the excitation model parameters are given by S0 = Sref
0 θ1,404

ωg = ωref
g θ2, ωf = ωref

f θ3, ζg = ζ ref
g θ4, ζf = ζ ref

f θ5, where θi ∈ [0.8, 1.2],405

i = 1, 2, . . . , 5, are interval variables. In passing, it is noted that the dimen-406

sion of the vector θ ∈ Θ is higher than the corresponding vector in Section 4.1.1.407

Therefore, this case can be interpreted as the characterization of a higher degree408

of uncertainty in terms of the excitation model parameter values.409

To study the relationship between the failure probability function and the op-410

erator norm function, Fig. 2 presents a scatter plot of PF (θ) and ∥M(θ)∥∞,2411

evaluated at different values of θ. Specifically, 5000 realizations of θ ∈ Θ ob-412

tained by means of Latin Hypercube Sampling [55] are considered to generate413

Fig. 2. Despite the fact that the functional relationship between both quantities414
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is not injective, the results indicate that there is a clear trend between them; that415

is, higher (lower) values of ∥M(θ)∥∞,2 correspond to higher (lower) values of416

PF (θ). Moreover, the average time required to estimate PF (θ) is roughly 16417

times longer than that required to evaluate ∥M(θ)∥∞,2 for the different realiza-418

tions of θ. The previous outcomes highlight the suitability of the operator norm419

function as a numerically efficient proxy for the failure probability function in the420

context of this example.421

Fig. 2: Failure probability PF (θ) vs. operator norm ∥M(θθθ)∥∞,2 of a Duffing nonlinear oscillator
(ε = 2) with fractional derivative elements (α = 0.5) evaluated at different realizations of θ.

The results obtained by the proposed approach are presented in Table 2, where422

reference values obtained by a direct double-loop implementation are also in-423

cluded for comparison. It is readily seen that the herein developed framework for424

determining the failure probability bounds exhibits a high accuracy degree. No-425

tably, the decoupling strategy presented in Section 3.2 circumvents the repeated426

evaluation of PF (θ) at different realizations of θ, thereby requiring only two relia-427
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bility analyses to estimate such bounds. Furthermore, the model parameter values428

identified by the developed framework are almost identical to the corresponding429

reference values. In this regard, and following a similar pattern to the results430

presented in Table 1, increasing the excitation intensity and reducing the damp-431

ing levels in Eq. (31) leads to higher values of PF (θ), whereas weaker and more432

damped excitations tend to reduce the failure probability level. In addition, the433

failure probability bounds reported in Table 2 are wider than those determined in434

Table 1. This outcome is reasonable from a reliability viewpoint, since the dimen-435

sion of the vector θ considered in Case II is larger than in Case I. In other words,436

Case I can be regarded as a subset of Case II, reinforcing the fact that the prob-437

ability bounds are wider in the latter case. As anticipated, the herein proposed438

framework can effectively bound the first-passage probability for the example un-439

der consideration.440

Table 2: Failure probability bounds of a Duffing nonlinear oscillator (ε = 2) with fractional
derivative elements (α = 0.5) for nθ = 5; comparison with reference results obtained by a stan-
dard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.801 1.199 0.801 1.199
θ2 0.800 1.186 0.801 1.139
θ3 1.195 1.169 1.200 1.159
θ4 1.193 0.802 1.196 0.800
θ5 1.200 0.800 1.197 0.802

PF (θ) 1.32× 10−3 6.81× 10−1 1.20× 10−3 6.94× 10−1

∥M(θ)∥∞,2 1.75× 10−2 5.30× 10−2 1.76× 10−2 5.31× 10−2
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4.2. Bilinear hysteretic oscillator with fractional derivative elements441

Next, a bilinear hysteretic oscillator with fractional derivative elements is con-442

sidered. The governing equation of motion is given by Eq. (1) with [20, 56]443

g(x, ẋ) = γω2
0x(t) + (1− γ)ω2

0xyz. (36)444

In Eq. (36), γ denotes the post- to pre-yield stiffness ratio, xy is the critical value445

at which yielding occurs, and z is a state variable satisfying446

xyż = ẋ [1−H(ẋ)H(z − 1)−H(−ẋ)H(−z − 1)] , (37)447

where H(·) denotes the Heaviside step function. Considering Eq. (36), Eqs. (15)448

and (16) become449

F1(A) =


4xy
π

(
1− xy

A

)
, A > xy

0, A ≤ xy

(38)450

and451

F2(A) =


A

π

(
Λ− 1

2
sin(2Λ)

)
, A > xy

A, A ≤ xy

, (39)452
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respectively, with Λ = arccos
(
1− 2xy

A

)
. Then, considering Eqs. (38) and (39) in453

conjunction with Eq. (21), Eqs. (17) and (18) yield454

βeq =− β0 +
β sin2

(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

A

ω1−α(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

+
4xyω

2
0(1− γ) sin

(
απ
2

)
πω1−α

0 σ2

∫ ∞

xy

1− xy

A

ω(A)
exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

(40)455

and456

ω2
eq =ω

2
0 − (1− γ)ω2

0

{
exp

(
−
x2y sin

(
απ
2

)
2σ2ω1−α

0

)

−
sin
(
απ
2

)
πω1−α

0 σ2

∫ ∞

xy

(
Λ− 1

2
sin(2Λ)

)
A exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA

}

+
β sin

(
απ
2

)
cos
(
απ
2

)
ω1−α
0 σ2

∫ ∞

0

ωα(A)A exp

(
−
sin
(
απ
2

)
ω1−α
0

A2

2σ2

)
dA,

(41)457

respectively. Similar to the case examined in Section 4.1, Eqs. (40), (41) and458

(22) define a coupled system of nonlinear algebraic equations to be solved for459

determining the equivalent elements βeq and ω2
eq. To this end, the iterative scheme460

described in Appendix A is applied.461

The values α = 0.5, ω0 = 10 and β = 2ζ0ω
2−α
0 = 6.32 with ζ0 = 0.1 are used462

for the system parameters in Eq. (1), while in Eq. (36), γ = 0.2 and xy = 0.016.463

Finally, the response threshold in Eq. (32) is x∗ = 0.29.464
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4.2.1. Determination of first-passage failure probability bounds465

It is assumed that all parameters of the stochastic excitation model in Eq. (31)466

are interval-valued. They are given by S0 = Sref
0 θ1, ωg = ωref

g θ2,467

ωf = ωref
f θ3, ζg = ζ ref

g θ4 and ζf = ζ ref
f θ5, where θi ∈ [0.8, 1.2], i = 1, 2, . . . , 5, are468

interval variables. That is, each parameter of the excitation model is assumed to469

be bounded between 80% and 120% of its corresponding reference value.470

Subsequently, the first-passage failure probability of the bilinear oscillator de-471

fined by Eqs. (1), (36) and (37) is bounded by employing the framework described472

in Section 3 in conjunction with Eqs. (40) and (41). Table 3 reports the results ob-473

tained by the proposed approach, which are compared against reference values474

determined by a direct double-loop implementation. It is seen that the failure475

probability bounds obtained by the proposed method are quite similar to their ref-476

erence values. Moreover, given the inherent variability associated with sampling-477

based reliability estimates, the bounds estimated by both methods can be regarded478

as equivalent in practice. In addition, it is seen that the model parameter val-479

ues that yield the extrema of PF (θ), which are explicitly identified by the direct480

double-loop approach under consideration, are very similar to those that deter-481

mine the extrema of ∥M(θ)∥∞,2, which are explicitly obtained by means of the482

herein developed framework. Hence, the regions of the parameter space Θ that483

yield the minimum and maximum values of the operator norm function also seem484

to provide the minimum and maximum values of the failure probability function,485

respectively. In this regard, it is noted that the estimation of the first-passage486

probability bounds by the proposed decoupling approach requires, according to487
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Eq. (28), only two evaluations of the failure probability function. As already488

pointed out, this feature can yield significant computational savings since it cir-489

cumvents the repeated evaluation of PF (θ) at different realizations of θ.490

Table 3: Failure probability bounds of a bilinear hysteretic oscillator (γ = 0.2, xy = 0.016) with
fractional derivative elements (α = 0.5) for nθ = 5; comparison with reference results obtained
by a standard double-loop implementation.

Proposed approach Reference results

PL
F PU

F PL
F PU

F

θ1 0.800 1.200 0.803 1.199
θ2 0.802 0.800 0.810 0.810
θ3 1.200 0.800 1.198 0.801
θ4 1.200 0.800 1.199 0.809
θ5 1.199 0.800 1.196 0.802

PF (θ) 2.25× 10−3 9.82× 10−1 2.00× 10−3 9.83× 10−1

∥M(θ)∥∞,2 2.11× 10−2 1.61× 10−1 2.15× 10−2 1.61× 10−1

4.2.2. Effect of the fractional derivative order on the first-passage probability491

bounds492

Next, the proposed framework is employed to investigate how the fractional493

order α affects the first-passage probability bounds. Firstly, the relationship be-494

tween the operator norm and the failure probability functions is shown in Fig. 3,495

where scatter plots of ∥M(θ)∥∞,2 vs. PF (θ) are depicted for various values of496

the fractional order; namely, for α = 0.25, α = 0.5 and α = 0.75. For each plot,497

5000 realizations of θ ∈ Θ were generated with Latin Hypercube Sampling [55].498

Note, in passing, that the damping coefficient in Eq. (1) is given by β = 2ζ0ω
2−α
0499

with ζ0 = 0.1. Figure 3 indicates that, despite the non-injective relationship be-500
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tween PF (θ) and ∥M(θ)∥∞,2, a positive trend between them exists for the con-501

sidered values of the fractional order. Hence, it is argued that the values of θ that502

minimize (maximize) the operator norm function also minimize (maximize) the503

failure probability function. This also agrees with the results presented in Table 3504

and supports the adoption of ∥M(θ)∥∞,2 as a numerically efficient proxy of the505

failure probability function for the cases under consideration.506

(a) (b) (c)

Fig. 3: Failure probability PF (θ) vs. operator norm ∥M(θθθ)∥∞,2 of a bilinear hysteretic oscillator
(γ = 0.2, xy = 0.016) with fractional derivative elements evaluated at different realizations of θ:
(a) fractional order α = 0.25, (b) fractional order α = 0.5, (c) fractional order α = 0.75.

Table 4 shows the failure probability bounds obtained by the proposed ap-507

proach for different values of the fractional order α. It is readily seen that in-508

creasing the value of α results in decreasing the failure probability levels for the509

example under consideration. Such behavior is expected from a structural dynam-510

ics viewpoint since, in general, larger values of the fractional order are associated511

with greater dissipation levels. This, in turn, may result in a reduction of the mag-512

nitude of the response displacement, and thus, shift the probability mass towards513

smaller response levels. In particular, the lower bound for the failure probability514
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appears more sensitive to the value of α than the corresponding upper bound. For515

instance, increasing the fractional order from α = 0.25 to α = 0.75 decreases516

the value of PU
F by approximately 3%, whereas the value of PL

F decreases by517

(roughly) one order of magnitude. Hence, the value of the fractional order can518

have a significant impact on the reliability of the considered bilinear hysteretic519

oscillator with fractional derivative elements. Finally, validation calculations in-520

dicate that the bounds shown in Table 4 agree satisfactorily well with reference521

values obtained from a direct double-loop implementation. These results, as well522

as the results presented in Tables 2 and 3, highlight the applicability of the herein523

developed framework, in the sense that it represents a versatile and computation-524

ally efficient alternative for bounding the failure probability of a class of nonlinear525

oscillators endowed with fractional derivative elements and subject to stationary526

Gaussian excitation.527

Table 4: Failure probability bounds of a bilinear hysteretic oscillator (γ = 0.2, xy = 0.016) with
fractional derivative elements for different values of the fractional order α.

Fractional order (α) Lower bound (PL
F ) Upper bound (PU

F )

0.25 1.81× 10−2 9.99× 10−1

0.50 2.25× 10−3 9.82× 10−1

0.75 7.16× 10−4 9.66× 10−1

5. Concluding remarks528

In this paper, an approximate analytical technique has been proposed for bound-529

ing the first-passage probability of lightly damped nonlinear and hysteretic oscil-530

lators endowed with fractional derivative elements, and subjected to imprecise531
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stationary Gaussian loads. Specifically, the statistical linearization and stochastic532

averaging methodologies have been integrated with an operator norm-based so-533

lution treatment, and a numerically efficient proxy function for the first-passage534

probability has been established. Then, the first-passage probability function has535

been evaluated at the parameter values that determine the minimum and maxi-536

mum of the proposed proxy to approximate the lower and upper bounds of the537

first-passage probability. A salient feature of the herein developed framework is538

that each first-passage probability bound is computed in a fully decoupled man-539

ner. That is, the repeated evaluation of the failure probability function at differ-540

ent realizations of the interval-valued parameters is effectively circumvented by541

virtue of the adopted solution treatment. Moreover, it can readily treat a wide542

range of nonlinear and hysteretic behaviors and can be extended, in principle,543

to account for non-stationary excitation loads. Overall, the proposed framework544

can be construed as an extension of a recently developed linearization-based de-545

coupling scheme to account for systems with fractional derivative elements. A546

hardening Duffing and a bilinear hysteretic nonlinear oscillators with fractional547

derivative elements subject to imprecise Gaussian loads have been considered in548

the numerical examples section to assess the efficacy of the proposed framework.549

Based on comparisons with reference values, it has been shown that the tech-550

nique represents a versatile and computationally efficient alternative to bound the551

first-passage probability of a class of nonlinear oscillators subject to stationary552

Gaussian loads.553
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Appendix A. Iterative procedure for determining the equivalent linear os-562

cillator563

The solution of Eqs. (17), (18) and (22) for a given value of θ, which yields564

the equivalent linear elements βeq and ωeq in Eq. (19), is carried out by means of565

the following iterative procedure:566

1. Initialize σ2
old with a small positive value. In this contribution, σ2

old ← 10−4
567

is considered.568

2. Substitute σ2
old into Eq. (21) to get the response amplitude PDF p(A).569

3. Obtain the equivalent linear elements βeq and ωeq by Eqs. (17) and (18),570

respectively.571

4. Use the values of βeq and ωeq obtained in step 3 to evaluate the variance572

σ2
cand according to Eq. (22).573
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5. If |σ2
cand − σ2

old|/σ2
old ≤ 10−5 stop the procedure and retrieve βeq and ωeq.574

Otherwise, set σ2
old ← σ2

cand and go back to step 2.575
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