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1. Introduction25

One of the major tasks in structural reliability analysis is evaluating the complement of reliability, known26

as the failure probability. This involves solving a multi-dimensional probability integral, which is defined as:27

Pf = Pr {g(X) < 0} =

∫
ΘX

I(x)fX(x)dx, (1)

where Pr{·} represents the probability operation; X = [X1, X2, . . . , Xd] ∈ ΘX ⊆ Rd is a vector of d28

continuous random variables with support ΘX ; fX(x) is the joint probability density function (PDF) of29

X; g(X) denotes the performance function (also known as the limit state function); I(x) is the indicator30

function, which equals 1 if g(x) < 0 and 0 otherwise.31

In most real-world scenarios, obtaining an analytical solution to Eq. (1) is intractable. To overcome32

this obstacle, various reliability analysis methods have been developed over the past few decades. Existing33

methods generally fall into four categories: (i) simulation methods, including Monte Carlo simulation (MCS)34

[1], importance sampling (IS) [2, 3], subset simulation (SS) [4], line sampling [5] and directional simulation35

(DS) [6]; (ii) approximate analytical methods, such as first-order reliability method [7] and second-order36

reliability method [8]; (iii) moment based methods, including integer moments-based methods [9, 10] and37

fractional moments-based methods [11, 12]; (iv) surrogate-assisted methods, including Kriging [13], response38

surface [14], support vector machine [15], polynomial chaos expansion (PCE) [16].39

Among recent developments, surrogate-assisted methods have received increasing attention in structural40

reliability analysis, particularly when integrated with active learning. Active learning reliability (ALR)41

methods, such as efficient global reliability analysis [17] and adaptive Kriging-MCS (AK-MCS) [18], substitute42

a computationally expensive performance function with a Kriging model. This statistical model, based on43

Gaussian processes, not only provides predictions but also quantifies uncertainty. In the ALR framework,44

the Kriging model is iteratively refined through a sequential experimental design, where candidate sample45

points are progressively added to the training dataset based on the model’s prediction uncertainty. This46

process continues until a predefined convergence criterion is met. Active learning ensures that the surrogate47

model focuses on the most important regions of the random-variate space, thereby avoiding unnecessary48
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evaluations of the true performance function. For a comprehensive review of recent developments in ALR49

methods, interested readers can refer to [19, 20].50

The focus of ALR methods primarily centers on the following four aspects [20]: (i) surrogate models; (ii)51

numerical integrators; (iii) stopping criteria; and (iv) learning functions.52

• Surrogate models serve as simplified emulators of the original performance function to alleviate53

computational burdens. These models are primarily categorized into two types. Probabilistic surrogate54

models, such as Kriging [18], Gaussian process regression [21], polynomial-chaos Kriging [22] and55

Bayesian support vector machine (SVM) [23], can provide built-in prediction uncertainty. In contrast,56

deterministic surrogate models, including PCE [24] and SVM [25], offer deterministic approximations57

without directly quantifying prediction uncertainty. However, techniques such as cross-validation and58

bootstrapping can be employed to estimate uncertainty for these models.59

• Numerical integrators in ALR are crucial for estimating the failure probability based on the surrogate60

model, while also providing a candidate pool and/or evaluating the stopping criterion or learning61

function. Representative methods include MCS [18], IS [26], SS [27, 28], DS [29], variance-amplified62

importance sampling (VAIS) [30], and hyper-shell simulation [31], among others.63

• Learning functions guide the selection of the most informative points at which to evaluate the true64

performance function. Examples of such learning functions include expected feasibility function [17]65

and U function [18], expected risk function [32], least improvement function [33], and so on. Recent66

research has introduced new learning functions based on the posterior statistics of the failure probability67

from a Bayesian perspective, such as upper-bound posterior variance contribution [21, 34], right-68

shifted contribution [35], weighted misclassification probability [31] and weighted epistemic uncertainty69

contribution [36]. To enable parallel computing, several multi-point selection strategies have also been70

proposed, including clustering-based methods [37–39], Kriging believer method [40], and many others71

[31, 41–43].72

• Stopping criteria determine when to terminate the active learning process and typically fall into two73
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categories. The first category is based on the extrema of the learning function, such as min(U) > 2 [18],74

max(EFF ) < 0.001 [18] and max(ERF ) < 0.001 [32]. However, these criteria are not directly tied to75

the error of the failure-probability estimate. The second category, by contrast, directly assesses this error,76

including error-based stopping criterion [44], uncertainty function measure [33] and ε stopping criterion77

[45]. Besides, other notable stopping criteria have been developed based on the posterior statistics78

of the failure probability from a Bayesian perspective, such as upper bound posterior coefficient of79

variation (COV) of failure probability [21], relative difference between posterior mean and right-shifted80

posterior mean of failure probability [35], and quasi posterior COV of failure probability [42].81

Despite the significant progress, there remains room for further development of ALR methods especially82

when addressing real-world challenges. First, most existing approaches use the Kriging model, which83

means that other flexible surrogate models have received insufficient attention. Second, powerful numerical84

integrators are still needed to solve the analytically intractable integrals involved. Third, it is crucial to85

establish new stopping criteria that can achieve an optimal balance between avoiding premature convergence86

and preventing unnecessary evaluations. Finally, further advancements in learning functions and multi-point87

selection strategies are still desired.88

To partially address the existing research gap, this paper introduces a novel active learning method for89

structural reliability analysis based on the extreme gradient boosting (XGBoost) model [46]. The method is90

called ‘parallel active learning XGBoost’ (PALX), which can estimate (extremely) small failure probabilities91

and support parallel computing. The primary contributions of the present study are summarized as follows:92

• First, to the best of the authors’ knowledge, this work introduces the XGBoost model into the ALR93

methods for the first time. XGBoost is widely recognized in machine learning for its robust and accurate94

predictive capabilities, but its application in structural reliability analysis has received limited attention.95

By integrating with the cross-validation technique, the resulting XGBoost models can not only provide96

a prediction mean but also the prediction variance, thereby making it a promising tool for developing97

advanced active learning schemes.98
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• Second, we introduce a pragmatic assumption that the XGBoost models derived from cross-validation99

behave as a GP. This assumption enables us to develop the failure probability estimator and stopping100

criterion by adapting results from a recently developed Bayesian active learning method [21]. The101

analytically intractable integrals involved are solved using a sequential VAIS approach [30].102

• Third, we propose a novel learning function, which simultaneously accounts for both the epistemic103

uncertainty in the failure probability and prediction variance of the XGBoost models. This enhancement104

facilitates more effective selection of the evaluation points and accelerates convergence.105

• Fourth, a novel multi-point selection strategy called ‘lower confidence bound believer’ (LCBB) is106

proposed. The core idea of LCBB is to trust the predictions provided by the lower confidence bound,107

which allows for the selection of multiple informative evaluation points in each iteration.108

• Fifth, unlike most existing ALR methods, which are typically validated only using simple academic109

examples, the proposed method is applied to a practical engineering problem—specifically, an onshore110

wind turbine tower. This application demonstrates the method’s effectiveness and its potential benefits111

for real-world engineering challenges.112

The remainder of this paper is organized as follows. Section 2 provides a brief review of the XGBoost113

model and cross-validation. The proposed PALX method is introduced in Section 3. Three numerical114

examples are examined in Section 4 to demonstrate the performance of the proposed method. Section 5115

applies the proposed method to an onshore wind turbine tower. The paper concludes with some final remarks,116

which are given in Section 6.117

2. Brief overview of XGBoost and cross-validation118

In this section, we provide an overview of the XGBoost model that underpins our proposed method. We119

also introduce the cross-validation approach used to evaluate the prediction uncertainty of the XGBoost120

model.121
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2.1. XGBoost model122

XGBoost is an advanced supervised algorithm proposed by Chen et al. [46] under the tree boosting123

framework, which constructs an ensemble of decision trees to approximate input-output relationships. By124

leveraging ensemble learning and gradient boosting, XGBoost achieves high predictive accuracy, capturing125

non-linear data patterns while mitigating overfitting through built-in regularization mechanisms. In this126

paper, XGBoost is employed as the surrogate model for structural reliability analysis. Based on the dataset127

Dn = {(x(1), g(x(1))), (x(2), g(x(2))), . . . , (x(n), g(x(n)))}, the performance function y = g(x) is approximated128

using XGBoost as follows:129

ĝn(x) =

K∑
k=1

fk(x), fk ∈ F , (2)

where ĝn(x) represents the predicted value at input x; K denotes the total number of decision trees; F is an130

ensemble model comprising a total of K trees; fk(x) corresponds to the prediction from the k-th tree. The131

overall prediction ĝn(x) is obtained by aggregating the outputs from all individual regression trees. The132

optimal number of trees and the structure of each tree are determined by optimizing the objective function133

Γobj , which is expressed as follows:134

Γobj =

n∑
i=1

l(gn(x)i, ĝn(x)i) +

K∑
k=1

Ω(fk), (3)

where l(gn(x)i, ĝn(x)i) represents the loss function that quantifies the discrepancy between predicted and135

true values; Ω(fk) denotes a regularization term that penalizes model complexity to prevent overfitting,136

which is defined as:137

Ω(fk) = γV +
1

2
δ ∥ ω ∥2, (4)

where V denotes the number of leaf nodes; ω represents the node weight; γ and δ are two constants that138

regulate the model’s complexity to avoid overfitting. Optimizing Γobj using traditional optimization methods139

is generally impractical due to the complexity of the objective function and the large number of parameters140

involved. Thus, XGBoost employs an additive learning strategy. In this approach, the objective function141
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Γobj for the k-th iteration can be described as follows:142

Γt
obj =

n∑
i=1

l(gn(x)i, ĝn(x)
t
i) +

t∑
k=1

Ω(fk)

=

n∑
i=1

l(gn(x)i, ĝn(x)
t−1
i + ft(xi)) + Ω(ft) + C0,

(5)

where C0 is a constant that represents a fixed offset in the objective function. By performing the second-order143

Taylor expansions, the Γ̂t
obj can be approximated by:144

Γ̂t
obj =

n∑
i=1

[
l(gn(x)i, ĝn(x)

t−1
i ) + gift(xi) +

1

2
hif

2
t (xi)

]
+Ω(ft) + C0, (6)

where gi = ∂
ĝn(x)

(t−1)
i

l(gn(x)i, ĝn(x)
(t−1)
i ) and hi = ∂2

ĝn(x)
(t−1)
i

l(gn(x)i, ĝn(x)
(t−1)
i ) represent the first and145

second-order partial derivatives of the loss function, respectively. Since the constant C0 has no influence on146

the optimization process, Γ̂t
obj can be further reformulated as follows:147

Γ̂t
obj =

n∑
i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+Ω(ft). (7)

The optimal model parameters for the k-th tree can be determined by optimizing the objective function Γ̂t
obj148

(Eq. (7)). This optimization process continues until the predefined stopping criterion is met, after which the149

final predictions are obtained. In tree learning, determining the optimal split point is crucial. Both exact and150

approximate algorithms are used to determine the best split points among potential options, as illustrated in151

Fig. 1. For a comprehensive explanation of the XGBoost algorithm, please refer to [46].152

Random
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Wrong 
PredictionsPredictions

Random

Model

Wrong 
PredictionsPredictions

Random

Model

Wrong 
PredictionsPredictions

Random

Model

Predictions

Aggregate all predictions

Voting

Final Prediction

Instance Misclassified instances Test using Test data Test using Train data Updates dataset with new weights

Test set

Figure 1: Framework of XGBoost algorithm.
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2.2. Cross-validation for uncertainty estimation153

XGBoost is effective for making predictions, but it does not directly provide prediction uncertainty. To154

address this limitation, k-fold cross-validation can be used, which is crucial for informed decision-making155

during the active learning process. In this procedure, the training dataset is divided into k roughly equal-sized156

subsets. One subset is used as the validation set, while the remaining k − 1 are used for training. This157

process is repeated k times, with each subset serving as the validation set exactly once, ensuring that the158

model is tested on all points. To fully capture prediction uncertainty and reduce potential biases due to data159

partitioning, multiple rounds of k-fold cross-validation are employed.160

By averaging the results from these iterations, the prediction mean and standard deviation functions can161

be obtained as follows:162

mĝn(x) =
1

M

M∑
m=1

[
1

k

k∑
q=1

ĝn(x)
(m)
q

]
, (8)

163

σĝn(x) =

√√√√√ 1

M

M∑
m=1

1
k

k∑
p=1

(
ĝn(x)

(m)
p − 1

k

k∑
q=1

ĝn(x)
(m)
q

)2
, (9)

where mĝn(x) denotes the predicted mean of ĝ(x); σĝn(x) represents the predicted standard deviation; M164

is the number of cross-validation rounds. To ensure robustness while maintaining computational efficiency,165

and in line with common practices in the literature [40, 47], we set k = 6, M = 5. Fig. 2 illustrates the166

6-fold cross-validation process. We identified three key parameters in XGBoost that are crucial for this167

study: the number of trees (K), maximum tree depth, and learning rate [48]. Based on empirical testing and168

considerations of computational constraints, we defined their search ranges as K ranging from 10 to 100,169

maximum depth within the range 3 to 10, and learning rate ranging from 0.01 to 0.3. These parameters were170

optimized by minimizing the objective function, and two widely used evaluation metrics—mean square error171

(MSE) and coefficient of determination (R2)—were employed. For parameter selection, an exhaustive grid172

search was conducted over a subset of possible values. After repeating the training-validation procedure, we173

found that a consistent set of model parameters delivered strong and reliable performance across different174

cases. Consequently, the following parameters were selected: K = 30, the maximum depth is 5 and the175

learning rate is 0.05. Other parameters were set to their default values (e.g., Minimum child weight=1 and176
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L1 regularization=0).177
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Figure 2: Framework of 6-fold cross-validation.

3. Parallel Active Learning XGBoost178

This section introduces the proposed PALX method for structural reliability analysis, which builds upon179

the XGBoost model using k-fold cross-validation. In Section 3.1, a brief overview of the proposed method is180

provided, followed by the definition of the failure probability estimator in Section 3.2. Section 3.3 introduces181

the stopping criterion and its numerical treatment. A new learning function and a multi-point selection182

method are presented in Section 3.4. Finally, Section 3.5 summarizes the implementation procedure of the183

proposed method.184

3.1. Overview of the PALX method185

The core idea of PALX is to accelerate the active learning process by strategically selecting multiple186

informative evaluation points based on the XGBoost model with k-fold cross-validation. Initially, a small187

training dataset is generated to construct a preliminary XGBoost surrogate model of the performance function.188

k-fold cross-validation is then employed to assess the prediction uncertainty. In subsequent iterations, multiple189

informative evaluation points are selected using a learning function to enrich the training dataset, and the190

model is updated. This iterative refinement continues until a stopping criterion is satisfied.191

It should be mentioned that all the subsequent developments are based on the assumption that aggre-192

gating predictions from an XGBoost model using k-fold cross-validation follow a Gaussian process (GP)193

GP(mĝn(x), σ
2
ĝn
(x)). Although this Gaussian assumption is not theoretically guaranteed, our computational194
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experiments suggest that it is generally reasonable. Moreover, adopting this assumption facilitates the195

development of a novel active learning scheme.196

3.2. Failure probability estimator197

In existing Bayesian active learning reliability methods (e.g., [21, 30, 34]), the posterior mean of the198

failure probability is used as its estimator. This idea can be adapted to our context by resorting to the199

assumption that predictions from cross-validated XGBoost models behave as a GP. The resulting failure200

probability estimator is given by:201

mP̂f,n
=

∫
ΘX

Φ

(
−mĝn(x)

σĝn(x)

)
fX(x)dx, (10)

where Φ is the cumulative distribution function (CDF) of the standard normal distribution. Under the GP202

assumption, mP̂f,n
represents the mean value of the failure probability. Instead of mP̂f,n

, a more straight-203

forward estimator for the failure probability can be formulated by simply replacing the true performance204

function with its prediction mean mĝn(x). However, using mP̂f,n
enables the development of a stopping205

criterion with clear physical interpretation and incurs minimal additional computational cost. Note that206

the failure probability estimator mP̂f,n
entails numerical integration, which will be introduced in the next207

subsection.208

3.3. Stopping criterion and its numerical solution209

The stopping criterion determines when to terminate the active learning process by assessing whether the210

failure probability estimate has reached a desired level of accuracy. In [21], a robust stopping criterion is211

developed using the upper bound of the posterior COV of the failure probability. Under the GP assumption,212

this approach can be conveniently adapted to our PALX method. The stopping criterion is expressed as213

follows:214

δP̂f,n
=

σP̂f,n

mP̂f,n

< ϵ, (11)

where δP̂f,n
can be interpreted as the upper-bound of the COV of the failure probability; σP̂f,n

represents215

the upper-bound of the standard deviation of the failure probability; ϵ is a user-specified threshold. The216
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expression for σP̂f,n
is given by the following integral:217

σP̂f,n
=

∫
ΘX

√
Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
mĝn(x)

σĝn(x)

)
fX(x) dx, (12)

which can be viewed as an uncertainty measure for the failure probability estimator mP̂f,n
. A straightforward218

approach to estimate mP̂f,n
and σP̂f,n

is the crude MCS. However, in problems involving small failure219

probabilities, obtaining an acceptable level of accuracy would require prohibitively large computational220

cost, rendering this approach impractical. To balance accuracy and efficiency, this paper employs the VAIS221

method, originally developed in [30], and implements it in a sequential manner. The VAIS estimators of222

mP̂f,n
and σP̂f,n

can be given by:223

m̂P̂f,n
=

1

N

N∑
i=1

[
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

h(x(i))

]
, (13)

224

σ̂P̂f,n
=

1

N

N∑
i=1

√
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
Φ

(
mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

h(x(i))
, (14)

where
{
x(i)

}N
i=1

denotes a set of N random samples generated according to h(x), which represents the225

importance sampling density (ISD). The ISD is constructed by amplifying the standard deviations σX of226

X, while keeping the means mX unchanged. Consequently, hX(x) is defined as fX(x;mX , ασX), where227

α ≥ 1 is the amplification factor for the standard deviations. Notably, if Xi follows a uniform distribution,228

amplification of the standard deviations is not necessary. The variances of the estimators m̂Pf,n
and σ̂Pf,n

229

are expressed as follows:230

V
[
m̂P̂f,n

]
=

1

N − 1

{
1

N

N∑
i=1

[
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

h(x(i))

]2
− m̂2

P̂f,n

}
, (15)

231

V
[
σ̂P̂f,n

]
=

1

N − 1

 1

N

N∑
i=1

[√
Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
Φ

(
mĝn(x

(i))

σĝn(x
(i))

)
fX(x(i))

h(x(i))

]2
− σ̂2

P̂f,n

 , (16)

where V [·] denotes the variance of the argument.232

Determining the appropriate sample sizes for m̂P̂f,n
and σ̂P̂f,n

is crucial. To balance accuracy and233

computational cost, the sample size should be gradually increased. As outlined below, we assume that the234

same sample size N0 for each enrichment. At the j step,
{
x(i)

}N0

i=1
samples are generated from h(x). For235
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each sample x(i), let ξ(i) and δ(i) be defined as follows:236

ξ(i) = Φ

(
−mĝn(x

(i))

σĝn(x
(i))

)
, (17)

237

δ(i) =
fX(x(i))

h(x(i))
. (18)

Following this, we proceed to evaluate the four quantities listed below:238

m(j) =
1

N0

N0∑
i=1

ξ(i)δ(i), (19)

239

σ(j) =
1

N0

N0∑
i=1

√
ξ(i)(1− ξ(i))δ(i), (20)

240

ψ(j) =
1

N0

N0∑
i=1

[
ξ(i)δ(i)

]2
, (21)

241

λ(j) =
1

N0

N0∑
i=1

[√
ξ(i)(1− ξ(i))δ(i)

]2
. (22)

Subsequently, the estimators for m̂P̂f,n
and σ̂P̂f,n

, along with their corresponding variances given in Eqs.242

(13)-(16), are reformulated as:243

m̂P̂f,n
=

1

j

j∑
t=1

m(t), (23)

244

σ̂P̂f,n
=

1

j

j∑
t=1

σ(t), (24)

245

V
[
m̂P̂f,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

ψ(t) − m̂2
P̂f,n

]
, (25)

246

V
[
σ̂P̂f,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

λ(t) − σ̂2
P̂f,n

]
. (26)

The sequential sampling process continues until the conditions
√
V
[
m̂P̂f,n

]
/m̂P̂f,n

< τ1 and
√
V
[
σ̂P̂f,n

]
/σ̂P̂f,n

<247

τ2 are met, where τ1 and τ2 are two user-specified tolerances.248

In the stopping criterion outlined in Eq. (11), the terms mP̂f,n
and σP̂f,n

are replaced by the final249

estimates m̂P̂f,n
and σ̂P̂f,n

. Given that m̂P̂f,n
and σ̂P̂f,n

may each have some degree of error depending on τ1250

and τ2, the stopping criterion must be met twice in a row to prevent fake convergence.251
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3.4. Learning function and multi-point selection252

By evaluating the informativeness of each candidate point, a learning function helps in identifying one253

or multiple informative points to evaluate the true performance function, thereby accelerating the learning254

process. To enhance the computational efficiency through parallel computing, an effective multi-point255

selection strategy is also crucial.256

In this study, we propose a new learning function called ‘prediction variance-weighted epistemic uncertainty257

contribution’ (PVWEUC), which is expressed as:258

PVWEUCn(x) = σ2
ĝn(x)︸ ︷︷ ︸
1

√
Φ

(
−mĝn(x)

σĝn(x)

)
Φ

(
mĝn(x)

σĝn(x)

)
fX(x)︸ ︷︷ ︸

2

, (27)

where term 2 is the integrand of the upper bound of the standard deviation of the failure probability,259

referred to as the epistemic uncertainty contribution; term 1 is the prediction variance of g, serving as the260

weight of term 2 . The learning function is maximized when mĝn(x) is near to zero, σĝn(x) is high and261

fX(x) is large. As a result, the larger the values of the PVWEUC function, the more promising are the262

corresponding candidate points.263

In addition to the PVWEUC function, we also propose a new multi-point selection method called ‘lower264

confidence bound believer’ (LCBB), which is inspired by the Kriging believer in the context of parallel265

Bayesian optimization [49]. The key idea behind LCBB is to select a batch of points by applying a lower266

confidence bound criterion. Suppose that we are at the beginning of a new iteration with training data267

size n and want to identify another na evaluation points. The first point x(n+1) is simply determined by268

x(n+1) = argmaxx∈ΘX
PVWEUCn(x). Instead of directly computing the true g function value, we adopt its269

lower confidence bound value, i.e., ŷ(n+1) = mĝn(x
(n+1))− bσĝn(x

(n+1)). Subsequently, x(n+1) and ŷ(n+1)
270

are added to the dataset Dn (ŷ(n+1) is temporarily added). XGBoost models are trained on the enriched271

data with k-fold cross-validation to obtain the updated prediction mean mĝn+1
(x) and standard deviation272

σĝn+1(x) for g, hence also the learning function PVWEUCn+1(x). The second point x(n+2) can be identified273

using the updated learning function. The process is repeated until the desired na points have been selected.274

Finally, the true g function values at
{
x(n+l)

}na

l=1
are then evaluated in parallel, and the corresponding275
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entries in the training dataset are replaced accordingly.276

Compared to the traditional Kriging believer method [49], the primary difference in LCBB lies in the277

consideration of prediction uncertainty. Compared to the prediction mean, the lower confidence bound278

provides a more conservative estimate of the g-function value. Thus, LCBB allows us to avoid overconfidence279

in the prediction mean, especially when the prediction uncertainty is large, and to select more informative280

evaluation points.281

3.5. Implementation of the proposed PALX method282

The implementation procedure for the proposed PALX method is outlined below and is illustrated with a283

flowchart provided in Fig. 3.284

Step 1: Generate the initial training dataset285

Generate a small set of uniformly distributed samples X = [x(1),x(2), . . . ,x(n0)]⊤ within a d-dimensional286

hyper-rectangle ∆0 =
∏d

i=1[Li, Ui] in ΘX using the Hammersley sequence. The lower and upper bounds Li287

and Ui in the i-th dimension can be specified by: Li = F−1
Xi

(v0) and Ui = F−1
Xi

(1− v0), where FXi
represents288

the marginal CDF of Xi and v0 is a small truncation probability. These samples are then evaluated on the289

g-function in parallel to obtain the corresponding output values Y =
[
y(1), y(2), · · · , y(n0)

]⊤
. Finally, form290

the initial training dataset as Dn = {X ,Y} and set n = n0.291

Step 2: Train the XGBoost models292

In this step, multiple XGBoost surrogate models are generated through multiple rounds of 6-fold cross-293

validation based on the training dataset Dn, which provides the prediction mean and standard deviation.294

This process is implemented using the XGBoost library integrated into MATLAB.295

Step 3: Compute the statistics of the failure probability296

At this stage, the failure probability estimate m̂P̂f,n
and the estimate of an upper bound on the standard297

deviation σ̂P̂f,n
need to be computed using the sequential VAIS method. This method iteratively refines the298

estimates until the convergence criteria
√
V
[
m̂P̂f,n

]
/m̂P̂f,n

< τ1 and
√
V
[
σ̂P̂f,n

]
/σ̂P̂f,n

< τ2 are met. Then,299

proceed to the next step. Refer to Section 3.3 for a detailed description of the sequential VAIS method.300

Step 4: Check the stopping criterion301
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If
σ̂P̂f,n

m̂P̂f,n

< ϵ is satisfied in two consecutive iterations, proceed to Step 6. If not, go to Step 5.302

Step 5: Enrich the training dataset303

Initialize the parameter l = 1.304

Step 5.1: Generate the first candidate point x(n+l) by optimizing the learning function using the genetic305

algorithm. This algorithm searches for optimal points within another hyper-rectangle ∆1, which is specified306

similarly to ∆0, but with v0 being replaced by v1.307

Step 5.2: Obtain the predicted value ŷ(n+l) from the trained surrogate models, where ŷ(n+l) =308

mĝ(n+l)
(x(n+l)) − bσĝ(n+l)

(x(n+l)). This predicted value is then used as the temporary g-function value309

for the point x(n+l).310

Step 5.3: Add the pair (x(n+l), ŷ(n+l)) to Dn and then calibrate XGBoost models using 6-fold cross-311

validation based on the enriched dataset. If l = na, the multi-point selection process ends. Otherwise, return312

to Step 5.1 and let l = l + 1.313

Step 5.4: After obtaining na points X+ = {x(n+l)}na

l=1, evaluate the g-function in parallel at X+ to314

obtain the corresponding responses Y+ = {y(n+l)}na

l=1. let D+ = {X+,Y+}, and update the dataset Dn by315

Dn = Dn ∪D+. Finally, set n = n+ na and return to Step 2.316

Step 6: End the method317

The proposed method concludes, and the final failure probability estimate m̂P̂f,n
is returned.318
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Figure 3: Flowchart of the proposed PALX method.

4. Numerical examples319

In this section, the effectiveness of the proposed PALX method is demonstrated through three numerical320

examples of varying complexity. The parameters for the proposed method are set as follows: n0 = 12, α = 2,321

b = 1, N0 = 106, v0 = 1× 10−8, v1 = 1× 10−10, τ1 = 2%, τ2 = 5%, and ϵ = 0.15. For comparison, several322

existing non-parallel methods (i.e., AK-MCS [18], PBALC [35], ALK-KDE-IS [50], AK-MCMC [51]) and323

parallel methods (i.e., QBALC [42], SBALQ [31]) from the literature are also conducted.324

In these reliability methods, na represents the number of points added in each iteration. Multiple values325

of na are tested for the proposed method, and its effects on the results are systematically analyzed. For each326
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comparison method, a single value of na is used for evaluation. Each method is independently executed 20327

times, and all statistical results—including mean values and COVs—are computed based on these repeated328

runs. The efficiency and accuracy are assessed using four metrics: the average number of iterations Niter, the329

average number of g-function calls Ncall, the average failure probability P̂f and its relative error δP̂f
with330

respect to the reference failure probability. To further evaluate robustness, the means and COVs of Ncall are331

calculated. For all methods except MCS and IS, the COVs of P̂f are also computed from these 20 repetitions.332

When applicable, a crude MCS with a large sample size is performed to obtain a reference failure probability.333

4.1. Example 1: Four-branch series system334

The first example involves a series system comprising four branches [18, 31], which has been extensively335

used in various studies. The performance function is given by:336

g (X) = min



a+ 0.1(X1 −X2)
2 − (X1+X2)√

2

a+ 0.1(X1 −X2)
2
+ (X1+X2)√

2

X1 −X2 +
b√
2

X2 −X1 +
b√
2


, (28)

where X1 and X2 are two independent standard normal variables; a and b are two constant parameters,337

specified as a = 6 and b = 12.338

The proposed PALX method is compared to several other parallel and non-parallel methods, as listed339

in Table 1. The reference failure probability, obtained through the MCS method with 1012 samples, is340

3.01× 10−9 with a COV of 1.82%. In the non-parallel case (na = 1), the proposed PALX method requires an341

average of 24.1 iterations and 35.1 function calls, resulting in a mean failure probability of 3.03× 10−9 with a342

COV of 3.07%. Compared to non-parallel methods like ALK-KDE-IS (with an average of 75.1 iterations) and343

PBALC (with an average of 39.1 iterations), the proposed method demonstrates competitive performance in344

terms of the number of iterations. In the parallel case (e.g., na = 4), the PALX method achieves a mean345

failure probability of 3.01× 10−9 with a relative error δP̂f
of 0.00% and a COV of 1.76%, while requiring only346

9.6 iterations and 46.4 function calls on average. In contrast, the SBALQ and QBALC methods produce347

mean failure probability estimates with errors below 1% and COVs under 5%, but they require slightly more348
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iterations and function calls, indicating the superior performance of the proposed method. Additionally, it is349

evident for the proposed method that Ncall increases with na, while the average number of iterations Niter350

decreases with na until na = 7 , after which Niter slightly increases. This observation suggests that choosing351

an excessive number of points in each iteration might not necessarily reduce the total number of iterations352

required.353

To visually illustrate the proposed method, Fig. 4 shows the points identified at each iteration of the354

PALX method (na = 4) along with the true limit-state curve. In the first iteration, the initial points are355

evenly distributed in the safe domain. Most added points from the active learning phase approach to the356

four key regions of the true limit state curve.357
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Figure 4: Selected points by the PALX method (na = 4) for Example 1.

4.2. Example 2: Liquid hydrogen tank358

As a second example, we analyze the reliability of liquid hydrogen fuel tanks for space launch vehicles [52].359

The tank employs a honeycomb sandwich structure, with the top and bottom plates made from aluminum360

alloy AL2024 and the core composed of Hexcell 1/8-in.-5052.0015. It is segmented longitudinally into ten361

sections, each further divided into four panels, as illustrated in Fig. 5. The pressure on the fuel tank results362

from air pressure, head pressure, axial force due to acceleration, and the bending and shear stress caused by363

the fuel weight. The tank is vulnerable to failure in three ways: von Mises strength, isotropic strength, or364
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Table 1: Reliability analysis results of Example 1.

Method Niter

Ncall P̂f

δP̂f
(%) Reference

Mean COV (%) Mean (×10−9) COV (%)

MCS - 1012 - 3.01 1.82 - [35]

ALK-KDE-IS na = 1 75.1 84.1 - 3.03 0.55 0.67 [35]

PBALC1 (ϵ1 = 2.5%) na = 1 35.8 44.8 - 3.04 3.82 1.00 [35]

PBALC2 (ϵ2 = 2.5%) na = 1 41.1 50.1 - 3.04 1.39 1.00 [35]

PBALC3 (ϵ3 = 5%) na = 1 40.5 49.5 - 3.03 1.99 0.67 [35]

SBALQ(ϵ = 2%) na = 4 12.8 57.0 - 3.02 0.80 0.33 [31]

QBALC(
√
ρ̃ = 0.50) na = 4 13.1 58.4 - 3.03 1.50 0.67 [42]

na = 1 24.1 35.1 3.5 3.03 3.07 0.67 -

na = 2 13.9 37.9 7.1 3.02 2.43 0.33 -

na = 3 10.7 41.2 6.2 3.04 1.39 1.00 -

Proposed PALX na = 4 9.6 46.4 4.8 3.01 1.76 0.00 -

na = 5 8.7 50.6 9.1 2.99 1.69 0.67 -

na = 6 8.4 56.3 9.4 3.00 1.90 0.33 -

na = 7 8.5 64.6 10.2 3.02 1.58 0.33 -

na = 8 8.4 71.2 8.7 3.01 2.15 0.00 -

honeycomb buckling. The limit state function can be formulated as follows:365

g(X) = min



84000tplate√
N2

x +N2
y −NxNy + 3N2

xy

− 1

84000tplate
|Ny|

− 1

0.847 + 0.96X1 + 0.986X2 − 0.216X3 + 0.077X2
1 + 0.11X2

2

+0.007X2
3 + 0.378X1X2 − 0.106X1X3 − 0.11X2X3


, (29)

where X1, X2, X3 are defined as: X1 = 4(tplate − 0.075), X2 = 20(tnc − 0.1), X3 = −6000
(

1
Nxy

+ 0.003
)
.366

The random variables, including the thickness of the plate (tplate), the thickness of the honeycomb (tnc), and367
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the loads (Nx, Ny, Nxy ) on the tank, are listed in Table 2.368

1 10

Top

Side

Botton

Aluminum Plate

Hexcell

Figure 5: Schematic of liquid hydrogen tank.

Table 2: Distribution types and parameters of the random variables in Example 2.

Random variables Distribution Mean COV

tplate Normal 0.07 0.10

tnc Normal 0.10 0.10

Nx Lognormal 13 0.10

Ny Lognormal 3051 0.10

Nxy Lognormal 404 0.10

Table 3 presents a comparison of the reliability analysis results obtained by various methods. The failure369

probability of 4.07× 10−5 with a COV of 0.54%, provided by MCS, is adopted as the reference result. In370

the sequential case (na = 1), the proposed PALX method, on average, requires 39.2 iterations and 50.2371

function calls, achieving a failure probability mean estimate with a relative error of 0.74% and a COV of372

2.72%. In contrast, AK-MCS demands over 240 iterations on average and exhibits a significantly larger error373

of approximately 4%, regardless of whether the U or EFF learning function is used. Similarly, although the374

PBALC2 method achieves a low relative error of 0.25%, it requires an average of 63.9 iterations—substantially375

more than that of PALX. For the parallel case na = 4, the proposed PALX method completes in an average376

of 17.4 iterations and 77.4 function calls, while maintaining a relative error of 0.25% and a COV of 2.57%.377

By comparison, the QBALC method requires 25.6 iterations on average. As na increases from 1 to 8, PALX378
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consistently maintains an error below 1.0% and a low COV, while notably reducing the average number of379

iterations required.380

Table 3: Reliability analysis results of Example 2.

Method Niter

Ncall P̂f

δP̂f
(%)

Mean COV (%) Mean (×10−5) COV (%)

MCS - 109 - 4.07 0.54 -

AK-MCS-U na = 1 242.1 253.1 24.9 4.26 4.14 4.67

AK-MCS-EFF na = 1 269.8 280.8 23.6 4.21 3.74 3.44

PBALC2 (ϵ2 = 5%) na = 1 63.9 72.6 10.3 4.08 2.01 0.25

QBALC(
√
ρ̃ = 0.50) na = 4 25.6 108.4 14.6 4.04 3.15 0.74

na = 1 39.2 50.2 8.2 4.10 2.72 0.74

na = 2 23.3 56.6 13.3 4.06 1.79 0.25

na = 3 18.7 65.1 9.9 4.03 3.12 0.98

Proposed PALX na = 4 17.4 77.4 10.3 4.06 2.57 0.25

na = 5 16.3 88.5 12.1 4.09 2.16 0.49

na = 6 15.0 96.0 11.8 4.08 1.98 0.25

na = 7 14.6 107.2 13.1 4.04 2.82 0.74

na = 8 14.1 116.8 10.5 4.08 2.20 0.25

4.3. Example 3: Two-bay four-storey spatial concrete frame381

The third example examines a two-bay, four-storey spatial concrete frame structure subjected to concen-382

trated loads [53]. This structure accounts for the complex nonlinear behaviors inherent to both concrete383

and rebar materials. To accurately simulate the system’s behavior, each structural member is modeled as a384

nonlinear beam-column finite element using the OpenSees software. In this example, node 8 is identified as385

the most critical point, with its horizontal displacement influenced by 15 independent random variables. As386
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shown in Fig. 6, the control index is defined by the horizontal displacement at node 8. The performance387

function is given by:388

g(X) = D̄ −D8(fc, εc, fu, εu, fy, Es, b, F6, F8, F5, F7, F11, F12, F19, F20), (30)

where D8 denotes the horizontal displacement of node 8; D̄ represents the allowable displacement, specified389

as D̄ = 60 mm. The physical meanings and statistical characteristics of the involved random variables are390

detailed in Table 4.391
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Figure 6: Two-bay four-story spatial concrete frame in Example 3.

Table 5 presents the reliability analysis results obtained from several methods. MCS with 1010 samples392
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Table 4: Distribution type and parameters of the random variables in Example 3.

Random variables Unit Description Distribution Mean COV

fc MPa Concrete compressive strength Lognormal 26.8 0.1

εc - Concrete strain at maximum strength Lognormal 0.0001 0.05

fu MPa Concrete crushing strength Lognormal 10.0 0.1

εu - Concrete strain at crushing strength Lognormal 0.0035 0.05

fy MPa Yield strength of rebar Lognormal 355 0.1

Es GPa Initial elastic modulus of rebar Lognormal 200 0.1

b - Strain-hardening ratio of rebar Lognormal 0.001 0.05

F6 kN External load Lognormal 54 0.2

F8 kN External load Lognormal 54 0.2

F5 kN External load Lognormal 42 0.2

F7 kN External load Lognormal 42 0.2

F11 kN External load Lognormal 30 0.2

F12 kN External load Lognormal 30 0.2

F19 kN External load Lognormal 18 0.2

F20 kN External load Lognormal 18 0.2

produces a reference failure probability of Pf = 3.23× 10−5, with a COV of 0.39%. In the case of na = 1, the393

AK-MCMC method [51] requires an average of 266.1 function calls and results in a substantial relative error394

of 10.22%. In contrast, the PBALC2 method achieves a significantly lower error of 1.24%, with an average of395

59.5 function calls. However, its failure probability COV reaches 7.31%, which remains higher than that396

of the proposed PALX method (5.03%), while the latter requires only 43.1 function calls on average. In397

the case of na = 4, the QBALC method yields a relative error of 0.62%, with a COV of 8.03%, which is398

notably higher than the 3.64% COV obtained by the proposed PALX method. Furthermore, PALX reduces399

the average number of function calls by approximately 22.1 calls compared to QBALC. Across all tested400
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configurations, the proposed method consistently provides nearly unbiased estimates of the failure probability,401

with COVs maintained below 7%. Overall, PALX substantially lowers computational cost while maintaining402

high levels of accuracy and robustness, offering a well-balanced and efficient alternative to conventional403

structural reliability analysis methods.404

Table 5: Reliability analysis results of Example 3.

Method Niter

Ncall P̂f

δP̂f
(%)

Mean COV (%) Mean (×10−5) COV (%)

MCS - 1010 - 3.23 0.39 -

AK-MCMC na = 1 257.1 266.1 27.1 3.56 6.31 10.22

PBALC2 (ϵ2 = 5%) na = 1 50.5 59.5 13.4 3.19 7.31 1.24

QBALC(
√
ρ̃ = 0.50) na = 4 16.2 72.9 14.6 3.21 8.03 0.62

na = 1 32.1 43.1 8.7 3.16 5.03 0.93

na = 2 18.1 46.1 11.2 3.22 4.26 0.31

na = 3 13.2 48.5 7.52 3.28 6.42 1.55

Proposed PALX na = 4 10.7 50.8 12.0 3.21 3.64 0.62

na = 5 11.4 64.2 11.3 3.19 4.30 1.24

na = 6 9.3 61.9 8.7 3.22 3.91 0.31

na = 7 8.2 62.4 11.5 3.29 3.85 1.86

na = 8 7.5 64.0 12.3 3.18 2.66 1.55

5. Application of the proposed PALX method to an onshore wind turbine tower405

With the rapid expansion of wind energy in recent years, ensuring the safety and operational reliability406

of wind turbines has become increasingly vital [54]. The reliability of wind turbine towers, particularly407

steel-concrete hybrid towers (SCHTs), is significantly influenced by various uncertain factors, such as material408

properties and external loads, with wind loads being a significant source of potential damage [55]. Therefore,409
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analyzing the reliability of this concrete section is crucial to ensure the structural integrity and safety of the410

wind turbine. Traditional methods for calculating reliability, particularly when applied to complex FEMs411

of wind turbine towers, can be extremely time-consuming due to the extensive computational resources412

required for simulations. Given the complexity of these models, minimizing the number of g-function calls413

and computational effort is essential. To address these challenges, we propose using the PALX method414

to analyze the reliability of the SCHT under wind loads. This approach aims to showcase the practical415

engineering applicability of PALX, as an efficient and effective solution for reliability assessment in real-world416

wind turbine systems.417

5.1. Description of the wind turbine tower418

A 5-MW SCHT wind turbine, located in Tongyu, China, is chosen as the research object due to its419

representative characteristics and relevance to practical engineering applications. The wind turbine model is420

composed of two primary sections: the upper section, which includes the blades and nacelle, and the lower421

section, known as the SCHT. Detailed structural parameters of the model are provided in Table 6. The422

actual model is depicted in Fig. 7(a), and a schematic diagram is shown in Fig. 7(b).423

(a) Actual model

Ground

Concrete 

tower section

Steel tower 

section

(b) Schematic model

F

M

G

(c) FEM

Figure 7: The onshore wind turbine model.
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Table 6: Design parameters and material properties of the wind turbine.

Part Property Value

Gross Rating 5 MW

Rotor orientation, configuration Upwind, 3 blades

Rotor diameter (m) 193

Hub height (m) 160

Rated rotor speed (rpm) 8

Impeller, hub and nacelle Mass (kg) 250,000

Concrete tower section Height (m) 112.05

Segment number (pcs) 31

Top diameter (m) 4.74

Bottom diameter (m) 8.25

Material C65

Transition section Height (m) 1.53

Material Q355

Steel tower section Height (m) 43.80

Top diameter (m) 3.38

Bottom diameter (m) 4.49

PT tendons Number 36

Nominal cross-sectional area (mm2) 140

Material Steel strand wire

Bolts and nuts Thread specification M56

For simplification, we assume the concrete foundation is a fixed support, and the impeller and nacelle are424

represented as a lumped mass concentrated at the top of the tower [56]. This approach reduces computational425
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complexity while still capturing the essential forces acting on the wind turbine. Additionally, the wind loads426

transmitted by the blades is represented by the thrust force F , which can be expressed as follows [57]:427

F =

(
1

2
ρV 2

)
CF (πR

2), (31)

where ρ is the air density; V is the wind speed; CF is the thrust coefficient; R is the rotor radius. As noted428

in [57], the bending moment at the tower base caused by blade wind loads is an order of magnitude larger429

than that induced by direct wind loads on the tower. Therefore, the direct wind loads on the tower are430

neglected in this analysis.431

Based on the detailed description above, the simplified FEM constructed using Abaqus software is shown432

in Fig. 7(c). In this model, the hexahedral solid element C3D8R is employed to simulate the concrete, bolts,433

and nuts, ensuring detailed and accurate simulations. The steel reinforcement and pre-stressing reinforcement434

are represented by the 3D truss element T3D2, effectively modeling the reinforcement’s structural behavior.435

The steel tower section is modeled with the shell element S4R, which is suitable for capturing the thin-walled436

nature of the tower. These modeling choices help achieve a balance between computational efficiency and437

accuracy. The FEM serves as the foundation for the subsequent reliability analysis.438

5.2. Reliability analysis of the wind turbine tower439

5.2.1. Description of the performance function440

In the real world, failure of wind turbines frequently occurs in the concrete tower section of the tower.441

Therefore, analyzing the reliability of this concrete tower section is crucial. The tensile and compressive442

stresses experienced by the concrete tower section result from the combined effects of wind loads, the top443

mass, and the tower’s self-weight. According to the GB 50010-2010 and GB 50135-2019 specifications [58, 59],444

concrete tower sections can fail through three distinct modes: compressive stress failure, tensile stress failure,445

and excessive top displacement. Consequently, the performance function for this problem is formulated as446
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follows:447

g(X) = min



∆Fpress − Fmax
press,

∆Utop_concrete − Umax
top_concrete,

∆Ftension − Fmax
tension

(32)

where the parameters are defined as follows according to the GB 50010-2010 and GB 50135-2019 specifications:448

• Fmax
press = 29.7MPa: the maximum permissible compressive stress in the concrete tower section,449

• Umax
top_concrete = 1.12m: the maximum permissible displacement at the top of the concrete tower section,450

• Fmax
tension = 2.04MPa: the maximum permissible tensile stress in the concrete tower section.451

Additionally, ∆Fpress, ∆Utop_concrete, and ∆Ftension represent the actual maximum compressive stress,452

displacement at the top, and tensile stress in the FEM of SCHT.453

The random variables of the wind turbine are listed in Table 7. Fig. 8(a) and Fig. 8(b) show the454

displacement and force diagrams in the FEM of SCHT under wind loads, respectively. By evaluating the455

maximum tensile and compressive stresses, along with the top displacement, we can determine whether the456

concrete tower section is at risk of failure by comparing the calculated values to the permissible limits set by457

the specifications.458

5.2.2. Analysis of reliability results459

Reliability analysis was conducted using a computer equipped with an AMD Ryzen 7 5800X 8-Core460

processor running at 3.80 GHz, 32 GB of RAM, and MATLAB® 2022b. Due to the excessively long461

computation time required for a crude MCS to obtain a reference solution, the IS method available in UQLab462

[63] was employed instead. The failure probability determined by the IS method is 8.07× 10−4, with a COV463

of 3.56%. The reliability analysis results of the proposed PALX method, along with comparisons to other464

approaches, are summarized in Table 7. Among the non-parallel methods, AK-MCS-U and PBALC2 either465

exhibit excessive computational demands or insufficient robustness. Specifically, AK-MCS-U is extremely466

computationally intensive, requiring an average of 1396.2 minutes. PBALC2, although more efficient, still467

lacks robustness in terms of accuracy and consistency. In contrast, the proposed PALX method achieves468
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Table 7: Distribution type and parameters of the random variables in the wind turbine

Random variables Unit Distribution Mean COV Reference

Thrust force N Normal 7.75× 105 0.1 [60]

Bending moment N·mm Normal 1.2× 107 0.1 [60]

Rotor and nacelle assembly mass N Normal 2.5× 105 0.02 [60]

Young’s modulus of the Q355C Pa Lognormal 2× 1011 0.03 [61]

Young’s modulus of the concrete C65 Pa Normal 3.65× 1010 0.06 [61]

Young’s modulus of the concrete C70 Pa Normal 3.7× 1010 0.06 [61]

Young’s modulus of the rebar HRB400 Pa Normal 2× 1011 0.033 [62]

Young’s modulus of the steel strand Pa Normal 1.95× 1011 0.03 [62]

Initial tension of prestressed strand N Normal 1.28× 109 0.015 [62]

Steel strand diameter mm Normal 15.2 0.04 [62]

(a) Displacement

S,S22 

X 

+1.262e+06
+0.679e+06
+0.097e+06
-1.486e+06
-4.069e+06
-6.651e+06
-9.234e+06
-l.182e+07
-l.440e+07
-1.698e+07
-1.956e+07
-2.215e+07
-2.473e+07

Y 

(average: 75%)

(b) Stress

Figure 8: Abaqus simulation results for concrete segments under wind loads.
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substantial improvements in both efficiency and robustness, with an average computation time of 404.7469

minutes and a COV of 3.11%, representing a clear advantage over both AK-MCS-U and PBALC2. For470

parallel methods, both PALX and QBALC demonstrate enhanced computational performance. Notably,471

PALX further outperforms QBALC by requiring only 7.1 iterations on average and saving 153.4 minutes in472

average computation time, thereby confirming its superior overall effectiveness.473

These results highlight the superior performance of the PALX method in terms of both efficiency474

and accuracy for practical engineering reliability analysis of wind turbine towers. Specifically, the failure475

probabilities computed using PALX are approximately 8.09× 10−4 for na = 1 and 8.06× 10−4 for na = 4,476

demonstrating the method’s robustness across different levels of parallelism. However, it is worth noting477

that both values exceed the specification limit of 6.87× 10−4 as defined by the GB 50135–2019 standard.478

This suggests that the current structural design may not fully comply with the required safety criteria.479

Therefore, further structural optimization or the implementation of reliability enhancement measures may be480

necessary to ensure compliance with regulatory safety requirements. To address this issue, it is recommended481

to adopt higher-strength concrete in the tower section to enhance the pre-stressing effect throughout the482

wind turbine system. Alternatively, other effective reinforcement strategies may also be considered. These483

modifications are expected to enhance structural reliability and ensure compliance with safety standards. In484

addition, the findings of this study are significant for the wind energy sector as they can reduce computational485

costs in reliability analysis, making safety assessments more feasible for large-scale wind turbine systems.486

These results can also inform regulatory decisions and supporting the development of safety standards and487

contributing to the sustainable growth of the renewable energy sector.488
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Table 8: Reliability analysis results of the wind turbine.

Method Niter

Ncall P̂f

δP̂f
(%) Time (min)

Mean COV (%) Mean (×10−4) COV (%)

ISa - 1042 - 8.07 3.56 - 21070.2

AK-MCS-U na = 1 59.1 70.1 13.2 8.03 6.52 0.50 1396.2

PBALC2 (ϵ2 = 5%) na = 1 28.5 37.5 7.6 8.04 8.43 0.37 682.1

QBALC(
√
ρ̃ = 0.50) na = 4 12.3 54.8 8.3 8.08 4.11 0.12 343.6

Proposed PALX
na = 1 16.7 27.7 4.4 8.09 3.11 0.25 404.7

na = 4 7.1 36.5 7.4 8.06 2.28 0.12 190.2

a
The results of IS are calculated using UQLab [63].

6. Concluding remarks489

This paper presents a novel method, called ‘parallel active learning XGBoost’ (PALX), to address the490

challenge of computationally expensive structural reliability analysis. The proposed approach integrates XG-491

Boost—a gradient-boosting framework adept at modeling complex nonlinear relationships—whose predictive492

uncertainty is quantified via cross-validation. By introducing a Gaussian assumption, a convenient failure493

probability estimator is adapted from a Bayesian active learning method, as well as a stopping criterion to494

ensure reliable convergence. Furthermore, we propose a novel learning function, termed ‘prediction variance-495

weighted epistemic uncertainty contribution’ (PVWEUC), and develop a multi-point selection strategy termed496

‘lower confidence bound believer’ (LCBB), which supports parallel computing and significantly reduces the497

overall computational cost.498

The effectiveness of the proposed PALX method is demonstrated through three numerical examples and499

one practical engineering application involving a hybrid tower wind turbine. The results lead to the following500

key conclusions: (1) The proposed method is able to estimate extremely small failure probabilities, with501

magnitudes down to 10−9; (2) Selecting multiple points in each iteration, typically around na = 8, minimizes502

the total number of iterations required; (3) The PALX method performs well in a practical engineering503
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context, specifically in assessing the failure probability of hybrid tower wind turbines, demonstrating its504

potential for real-world structural reliability applications, especially in the wind power industry.505

Although PALX shows promising results, further improvements are possible. One challenge is the506

increased computational time resulting from the sequential VAIS technique, particularly as the problem507

dimensionality grows. Future work could focus on developing more advanced numerical integration methods508

to address this issue. In addition to these methodological advancements, extending the application of PALX509

to time-dependent reliability problems, in which performance functions depend on both random variables and510

time-varying parameters, represents a distinct and promising direction for future research. Such extensions511

would broaden the applicability of PALX to a wider range of engineering problems involving deterioration,512

fatigue, and evolving uncertainties.513
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