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Abstract10

The Bayesian failure probability inference (BFPI) framework provides a well-established Bayesian approach11

to quantifying our epistemic uncertainty about the failure probability resulting from a limited number of12

performance function evaluations. However, it is still challenging to perform Bayesian active learning of13

the failure probability by taking advantage of the BFPI framework. In this work, three Bayesian active14

learning methods are proposed under the name ‘partially Bayesian active learning cubature’ (PBALC),15

based on a cleaver use of the BFPI framework for structural reliability analysis, especially when small16

failure probabilities are involved. Since the posterior variance of the failure probability is computationally17

expensive to evaluate, the underlying idea is to exploit only the posterior mean of the failure probability18

to design two critical components for Bayesian active learning, i.e., the stopping criterion and the learning19

function. On this basis, three sets of stopping criteria and learning functions are proposed, resulting in20

the three proposed methods PBALC1, PBALC2 and PBALC3. Furthermore, the analytically intractable21

integrals involved in the stopping criteria are properly addressed from a numerical point of view. Five22

numerical examples are studied to demonstrate the performance of the three proposed methods. It is found23

empirically that the proposed methods can assess very small failure probabilities and significantly outperform24

several existing methods in terms of accuracy and efficiency.25
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1. Introduction28

Structural reliability analysis plays a critical role in assessing the ability of engineering structures and29

mechanical systems to perform their expected functions of safety, serviceability, durability, etc. One of the30

central problems in probabilistic reliability analysis is the computation of the so-called failure probability:31

Pf = P (g(X)) =

∫
X
I(g(x))fX(x)dx, (1)

where X = [X1, X2, · · · , Xd] ∈ U ⊆ Rd is a vector of d random variables with known joint probability32

density function (PDF) fX(x); g(·) : Rd → R is the performance function (also known as the limit state33

function), which takes a negative value when a failure occurs; I(·) : R → {0, 1} is the indicator function:34

I(g(x)) = 1 if g(x) < 0 and I(g(x)) = 0 otherwise. For a typical reliability analysis problem in practice, it is35

most unlikely to be possible to obtain the solution of Eq. (1) analytically. This is because, for example, the36

performance function g has a complicated mathematical structure or is even an implicit function. Therefore,37

one has to resort to a numerical method.38

Over the past few decades, various numerical methods have been developed to approximate the failure39

probability. Existing methods can be roughly divided into five categories: (1) stochastic simulation meth-40

ods, (2) asymptotic approximation methods, (3) moment based methods, (4) probability conservation based41

methods and (5) surrogate-assisted methods. Stochastic simulation methods include direct Monte Carlo sim-42

ulation (MCS) and its various variants (e.g., importance sampling [1, 2], subset simulation [3, 4], directional43

simulation [5, 6] and line sampling [7]). The MCS method is considered to be a universal reliability analysis44

method that is robust to the dimensionality and non-linearity of the problem at hand. However, it requires45

a significantly large number of g-function evaluations to evaluate a small failure probability. While other46

variants of MCS may have improved computational efficiency, they are still computationally prohibitive for47

many real-world problems and have limited applicability. Asymptotic approximation methods make use of48

asymptotic analysis to approxiamte the failure probability integral [8]. Two representatives of such methods49

are the first-order reliability method (FORM) [9] and second-order reliability method (SORM) [10]. These50
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methods have received considerable attention from researchers and practitioners and have shown to be ef-51

ficient in many practical applications. Nevertheless, it is still challenging to apply FORM and SORM to52

problems with, e.g., strong nonlinearity and multiple failure regions. Moment based methods approximate53

the failure probability by estimating the probability distribution of the output variable of the g-function54

from knowledge of its statistical moments. Examples of such methods are the fourth-order moment methods55

[11, 12] and fractional moments based maximum entropy methods [13, 14]. Compared to FORM and SORM,56

they are more convenient to use because they do not require searching for the most probable point. However,57

moment based methods need to estimate the statistical moments using numerical integration techniques and58

assume the distribution type of the output variable of the performance function, making it difficult to assess59

the underlying numerical errors. Probability conservation based methods also aim to capture the probability60

distribution of the output variable of the g-function, but based on the principle of probability conservation61

without knowing its statistical moments. Such methods consist of the probability density evolution method62

[15, 16] and direct probability integral method [17, 18]. These methods have a sound theoretical basis, but63

depend on the partitioning of probability space in the numerical implementation, which becomes difficult64

in high dimensions. To reduce the computational cost, surrogate-assisted methods attempt to construct a65

simplified model as a substitute for the original performance function. A representative example in this66

group is the active learning Kriging methods [19, 20]. In fact, active learning methods have received a lot67

of attention in the reliability analysis community in the last decade.68

More recently, the first author and his collaborators have developed a special class of active learning69

methods that emphasize the use of Bayesian principles. For convenience, we will refer to this type of70

methods as Bayesian active learning methods, although they may also have the characteristics of Bayesian71

probabilistic integration [21]. The reference [22] initialized the idea of turning the problem of the failure72

probability integral estimation into a Bayesian active learning problem. Specifically, a Bayesian approach73

was first developed to express our epistemic uncertainty about the true value of the failure probability74

resulting from a limited number of observations of the performance function. In this context, by assigning75

a Gaussian process prior over the performance function, the posterior mean and an upper bound of the76
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failure probability were derived in analytic form. Then, based on these posterior statistics of the failure77

probability, a learning function and a stopping criterion were proposed to facilitate active learning. The78

resulting method was called ‘Active Learning Probabilistic Integration’ (ALPI). It was further improved79

by the ‘Parallel Adaptive Bayesian Quadrature’ (PABQ) method [23] in order to estimate small failure80

probabilities and enable parallel computing. Note that the upper bound of the posterior variance may81

overestimate the true variance in most cases. The Bayesian approach developed in [22] was thus enriched82

by the ‘Bayesian Failure Probability Inference’ (BFPI) framework [24], where the exact expression of the83

posterior variance of the failure probability was derived. However, it is computationally prohibitive to use84

in an active learning context. As a compromise, we developed a Bayesian active learning method called85

‘Parallel Bayesian Probabilistic Integration’ (PBPI) [25], in which a pseudo posterior variance inspired by86

the upper bound was proposed. In addition to these studies, the Bayesian active learning idea has also been87

successfully pursued in the context of line sampling, see for example [26, 27]. The Bayesian active learning88

paradigm has demonstrated many attractive features over several existing paradigms, including the active89

learning paradigm, but considerable effort is needed to make it an effective tool for practical reliability90

analysis.91

The main objective of this work is to develop a novel Bayesian active learning method through a clever92

use of the BPFI framework [24] for assessing extremely small failure probabilities, which is one of main93

challenges in the context of structural reliability analysis. To achieve this goal, the key lies in developing the94

two critical components for Bayesian active learning from the posterior statistics of the failure probability,95

namely the stopping criterion and the learning function. Since the posterior variance of the failure probability96

is computationally expensive to evaluate, our key idea is to leverage only the posterior mean, in contrast to97

the previous studies [22, 23, 25] . On this basis, we first propose three new stopping criteria that can decide98

when to stop the active learning process. The intractable integrals involved are then tackled by a robust99

numerical integration scheme. In addition, three new learning functions are extracted from the proposed100

stopping criteria. These developments form three reliability methods under the name of ‘Partially Bayesian101

Active Learning Cubature’ (PBALC). The proposed methods are expected to further advance the use of102
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Bayesian active learning in the field of structural reliability analysis.103

The rest of this paper is organized as follows. Section 2 is devoted to a general overview of the BFPI104

framework. The three proposed PBALC methods are introduced in section 3. Several numerical examples105

are examined in section 4 to demonstrate the performance of the proposed methods. Section 5 concludes106

the main findings of this study.107

2. Bayesian failure probability inference108

This section gives a brief overview of the BFPI framework developed in [24]. Note that the original109

framework is defined in the physical space, i.e., X . Here it is presented in the standard normal space110

(denoted as U) to facilitate the development of the proposed methods in the next section. To this end, we first111

introduce a transformed performance function G(U) = g(T−1(U)), where U = [U1, U2, · · · , Ud] ∈ U ⊆ Rd is112

a vector of d independent standard normal variables and T : U = T (X) is an appropriate transformation113

that can transform the physical random vector X into the standard normal vector U . The joint PDF of U114

is denoted as ϕU (u).115

2.1. Prior distribution116

The essence of the BFPI framework is that the transformed performance function G(·) should be treated117

as an unknown function. This is reasonable in the sense that very often the G-function is complicated in its118

inner structure, and even is a black box in practical problems. Moreover, the value of the G-function at a119

given location u is not even known until we actually evaluate it. To express our epistemic uncertainty, we120

can therefore formulate a prior distribution for the G-function. Among many possible options, a Gaussian121

process (GP) prior can be adopted such that:122

G0(u) ∼ GP(mG0
(u), kG0

(u,u′)), (2)

where G0 denotes the prior distribution of G; mG0
(u) and kG0

(u,u′) are the prior mean and covariance123

functions, respectively. Without loss of generality, the prior mean and covariance functions can be assumed124
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to a constant and a Gaussian kernel, receptively:125

mG0(u) = β, (3)

126

kG0(u,u
′) = σ2

0 exp

(
−1

2
(u− u′)⊤Σ−1(u− u′)

)
, (4)

where β ∈ R; σ0 > 0 is the standard deviation of the process; Σ = diag
(
l21, l

2
2, · · · , l2d

)
with li > 0 being the127

length scale in the i-th dimension. The d + 2 parameters collected in ϑ = [β, σ0, l1, l2, · · · , ld] are referred128

to as hyperparameters.129

2.2. Estimating hyperparameters130

Suppose that now we have an observation dataset D = {U ,Y}, where U =
{
u(j)

}n
j=1

is an n× d matrix131

with its j-th row being u(j) and Y =
[
y(1), y(2), · · · , y(n)

]⊤
is an n × 1 vector with its j-th element being132

y(j) = G(u(j)). The hyperparameters in ϑ can be specified by maximizing the log-marginal likelihood:133

log p(Y |U ,ϑ) = −1

2

[
(Y − β)⊤K−1

G0
(Y − β) + log |KG0

|+ n log 2π
]
, (5)

where KG0
is an n× n covariance matrix with (i, j)-th entry being kG0

(u(i),u(j)).134

2.3. Posterior statistics135

The posterior distribution of G conditional on the data D is again a GP:136

Gn(u) ∼ GP(mGn
(u), kGn

(u,u′)), (6)

where Gn stands for the posterior distribution of G after seeing n observations; mGn
(u) and kGn

(u,u′) are137

the posterior mean and covariance functions respectively, which can be expressed as:138

mGn
(u) = mG0

(u) + kG0
(u,U)⊤K−1

G0
(Y −mG0

(U)) , (7)

139

kGn
(u,u′) = kG0

(u,u′)− kG0
(u,U)⊤K−1

G0
kG0

(U ,u′), (8)

in which mG0
(U) is an n× 1 mean vector with j-th element being mG0

(u(j)); kG0
(u,U) and kG0

(U ,u′) are140

two n× 1 covariance vectors with j-th element being kG0(u,u
(j)) and kG0(u

(j),u′), respectively.141
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Through some mathematical derivation, we can obtain the posterior mean and variance of the failure142

probability:143

mPf,n
=

∫
U
Φ

(
−mGn(u)

σGn
(u)

)
ϕU (u)du, (9)

144

σ2
Pf,n

=

∫
U

∫
U

[
Φ2

(
[0, 0]⊤;mGn

(u,u′),KGn
(u,u′)

)
− Φ

(
−mGn

(u)

σGn
(u)

)
Φ

(
−mGn

(u′)

σGn
(u′)

)]
ϕU (u)ϕU (u′)dudu′,

(10)

where Pf,n denotes the posterior distribution of the failure probability Pf conditional on D; Φ is the145

cumulative distribution function (CDF) of the standard normal variable; σGn
(u) is the posterior standard146

deviation function of G, i.e., σGn(u) =
√

kGn(u,u); Φ2 denotes the bivariate normal CDF, which is not147

analytically available; mGn
(u,u′) is the posterior mean vector of G, i.e., mGn

(u,u′) = [mGn
(u),mGn

(u′)]
⊤
;148

KGn
(u,u′) is the posterior covariance matrix of G:149

KGn(u,u
′) =

 σ2
Gn

(u) kGn(u
′,u)

kGn
(u,u′) σ2

Gn
(u′)

 . (11)

The posterior distribution Pf,n provides a probabilistic descriptor for our uncertainty about the true150

value of the failure probability Pf . This uncertainty arises from the fact that the G-function is only ob-151

served at a finite number of discrete locations. Although the analytical solution of Pf,n is not yet known,152

several numerical investigations in [24] suggest that it can be well approximated by a normal distribution153

N (mPf,n
, σ2

Pf,n
). In fact, one may be more interested in the posterior mean and variance of the failure154

probability than its full distribution in practical applications. This is because that the posterior mean mPf,n
155

can be used as a failure probability predictor, while the posterior variance σ2
Pf,n

can provide a measure of156

the prediction uncertainty. Note, however, that both mPf,n
and σ2

Pf,n
cannot be solved analytically, and a157

numerical integrator must be used. Compared to mPf,n
, σ2

Pf,n
is much harder to approximate numerically158

due to its underlying complexity.159

3. Partially Bayesian active learning cubature160

In this section, we further frame the failure probability estimation in a Bayesian active learning setting161

based on the BFPI framework. To achieve this, the key is to develop two crucial components: stopping162
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criterion and learning function. The stopping criterion is used to determine when to stop the learning163

process, while the learning function is used to suggest where to evaluate the G-function if the stopping164

criterion is not met. Therefore, they both can significantly affect the performance of the resulting method.165

Our basic idea is to use only the posterior mean of the failure probability to construct the stopping criterion166

and the learning function because the posterior variance is not easy to handle from a numerical perspective.167

Along this line of thought, three sets of learning functions and stopping criteria are creatively proposed,168

leading to three novel methods, called PBALC1, PBALC2 and PBALC3.169

3.1. Three stopping criteria170

The posterior mean of the failure probability (mPf,n
defined in Eq. (9)) represents the updated average171

value of the failure probability, given both some observed dataD and a GP prior of the G-function. Therefore,172

it alone cannot give any information about its accuracy as a predictor of the failure probability. However,173

it is still possible to make strategic use of the structure of mPf,n
to construct a measure of the accuracy of174

our predictor.175

Note that the integrand of mPf,n
involves a term Φ

(
−mGn (u)

σGn (u)

)
, which is related to both the posterior176

mean and standard derivation functions of G. If mGn
(u) on the numerator is replaced by the upper and177

lower credible bounds of Gn, then we can define two new quantities:178

mPf,n
=

∫
U
Φ

(
−mGn

(u) + bσGn
(u)

σGn(u)

)
ϕU (u)du

=

∫
U
Φ

(
−mGn

(u)

σGn(u)
− b

)
ϕU (u)du,

(12)

179

mPf,n
=

∫
U
Φ

(
−mGn(u)− bσGn(u)

σGn
(u)

)
ϕU (u)du

=

∫
U
Φ

(
−mGn

(u)

σGn
(u)

+ b

)
ϕU (u)du,

(13)

where 0 < b < ∞ implies that [mGn(u)− bσGn(u),mGn(u) + bσGn(u)] is a 100(1−2Φ(−b))% credible bound180

of Gn. We have the following proposition:181

Proposition 1. For b > 0, there exists mPf,n
< mPf,n

< mPf,n
.182
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Proof. We first prove that the first inequality mPf,n
< mPf,n

holds true. For this purpose, the following183

equation is given:184

mPf,n
−mPf,n

=

∫
U
Φ

(
−mGn(u)

σGn
(u)

− b

)
ϕU (u)du−

∫
U
Φ

(
−mGn(u)

σGn
(u)

)
ϕU (u)du

=

∫
U

[
Φ

(
−mGn(u)

σGn
(u)

− b

)
− Φ

(
−mGn(u)

σGn
(u)

)]
ϕU (u)du.

(14)

Recall that Φ is a monotonically increasing function and ϕU (u) > 0 for ∀u ∈ U . Under the condition b > 0,185

we have the following inequality:186 [
Φ

(
−mGn

(u)

σGn
(u)

− b

)
− Φ

(
−mGn

(u)

σGn
(u)

)]
ϕU (u) < 0. (15)

Combining Eq. (14) and inequality (15) leads to mPf,n
−mPf,n

< 0. Hence, mPf,n
< mPf,n

is proved.187

Analogous to the proof of the first inequality, the second inequality mPf,n
< mPf,n

can also be proved.188

Combining mPf,n
< mPf,n

and mPf,n
< mPf,n

completes the proof.189

Proposition 1 suggests that as long as b > 0, mPf,n
is always larger than mPf,n

and smaller than mPf,n
.190

Therefore, we shall refer to mPf,n
as the ‘left-shifted posterior mean (LSPM) of the failure probability’, and191

to mPf,n
as the ‘right-shifted posterior mean (RSPM) of the failure probability’. One might be interested192

in the asymptotic properties of mPf,n
, mPf,n

and mPf,n
. We first give the asymptotic property of mPf,n

by193

the following proposition:194

Proposition 2. When σGn(u) → 0+ and mGn(u) → G(u), there exists mPf,n
→ Pf .195

Proof. In case that σGn
(u) → 0+ and mGn

(u) → G(u), it is easy to show that:196

Φ

(
−mGn(u)

σGn
(u)

)
→ I(G(u)), (16)

where197

I(G(u)) =


1,G(u) < 0

0, otherwise

. (17)

It follows immediately that198

mPf,n
=

∫
U
Φ

(
−mGn

(u)

σGn(u)

)
ϕU (u)du → Pf =

∫
U
I(G(u))ϕU (u)du. (18)

This completes the proof.199
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Proposition 2 implies that the failure probability predictor mPf,n
can theoretically approach the true200

value of the failure probability. The asymptotic properties of mPf,n
and mPf,n

can be given by the following201

proposition:202

Proposition 3. When σGn
(u) → 0+, mGn

(u) → G(u) and 0 < b < ∞, there exist mPf,n
→ m−

Pf,n
and203

mPf,n
→ m+

Pf,n
.204

Proof. We first prove that mPf,n
→ m−

Pf,n
holds true. Given that σGn

(u) → 0+, mGn
(u) → G(u) and205

0 < b < ∞, it is easy to know that206

Φ

(
−mGn

(u)

σGn
(u)

− b

)
→ Φ

(
−mGn

(u)

σGn
(u)

)−

. (19)

Then it follows immediately that:207

mPf,n
=

∫
U
Φ

(
−mGn(u)

σGn
(u)

− b

)
ϕU (u)du → m−

Pf,n
=

∫
U
Φ

(
−mGn(u)

σGn
(u)

)
ϕU (u)du (20)

Therefore, mPf,n
→ m−

Pf,n
is proved.208

Analogous to the proof of mPf,n
→ m−

Pf,n
, mPf,n

→ m+
Pf,n

can also be proved. Combing these results209

completes the proof of the proposition.210

Proposition 3 indicates that the LSPM of the failure probability mPf,n
will approach to the posterior211

mean mPf,n
from the left and the RSPM of the failure probability mPf,n

will approach to the posterior212

mean mPf,n
from the right when the GP posterior approaches to the G-function. In the meantime, the213

posterior mean of the failure probability mPf,n
will approach to the true failure probability Pf as reflected214

by proposition 2. Despite the inclusion of the harsh condition (i.e., σGn
(u) → 0+ and mGn

(u) → G(u)),215

propositions 2 and 3 will provide us with a sound basis for developing the stopping criteria and even the216

learning functions.217

In this study, we propose the following three stopping criteria:218

Stopping criterion 1:
mPf,n

−mPf,n

mPf,n

< ϵ1, (21)

219

Stopping criterion 2:
mPf,n

−mPf,n

mPf,n

< ϵ2, (22)
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220

Stopping criterion 3:
mPf,n

−mPf,n

mPf,n

< ϵ3, (23)

where ϵ1, ϵ2 and ϵ3 are three user-specified tolerances. Stopping criterion 1 means that the learning process221

is terminated when the relative difference between mPf,n
and mPf,n

falls below a certain threshold ϵ1. The222

other two stopping criteria can also be interpreted similarly. It should be emphasized that the three stopping223

criteria have a parsimonious form and their validity is theoretically guaranteed. Implementing the above224

three stopping criteria, however, requires the treatment of the analytically intractable integrals involved. In225

this study, we employ the variance-amplified importance sampling (VAIS) technique developed in [24] in a226

sequential manner.227

Taking stopping criterion 1 as an example, we have to approximate two integralsmPf,n
andmPf,n

−mPf,n
.228

For notational simplicity, let ∆Pf,n
= mPf,n

− mPf,n
. The VAIS estimators of mPf,n

and ∆Pf,n
can be229

expressed as:230

m̂Pf,n
=

1

N

N∑
i=1

Φ

(
−mGn

(u(i))

σGn
(u(i))

)
ϕU (u(i))

h(u(i))
, (24)

231

∆̂Pf,n
=

1

N

N∑
i=1

[
Φ

(
−mGn(u

(i))

σGn
(u(i))

)
− Φ

(
−mGn(u

(i))

σGn
(u(i))

− b

)]
ϕU (u(i))

h(u(i))
, (25)

where h(u) is the sampling density, which is equal to the joint PDF of n independent normal variables with232

a mean of zero and a standard deviation of λ > 1;
{
u(i)

}N
i=1

is a set of N random samples generated from233

h(u). The variances associated with m̂Pf,n
and ∆̂Pf,n

are given by:234

V
[
m̂Pf,n

]
=

1

N − 1

{
1

N

N∑
i=1

[
Φ

(
−mGn

(u(i))

σGn(u
(i))

)
ϕU (u(i))

h(u(i))

]2
− m̂2

Pf,n

}
, (26)

235

V
[
∆Pf,n

]
=

1

N − 1

{
1

N

N∑
i=1

[(
Φ

(
−mGn

(u(i))

σGn
(u(i))

)
− Φ

(
−mGn

(u(i))

σGn
(u(i))

− b

))
ϕU (u(i))

h(u(i))

]2
−∆2

Pf,n

}
. (27)

To speed up the computation and avoid the computer memory problem when a large N must be used,236

the VAIS method should be implemented sequentially. Moreover, we can also reuse information in the237

sequential process. The details of the algorithm are briefly explained as follows. Assume that the sample238

size is the same for each batch, say N0. At the j-th iteration, first generate N0 random samples from h(u),239
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denoted as
{
u(i)

}N0

i=1
. Then, evaluate the following two terms:240

q(i) = −mGn
(u(i))

σGn(u
(i))

, (28)

241

p(i) =
ϕU (u(i))

h(u(i))
. (29)

After that, we evaluate the following four terms:242

m̂
(j)
Pf,n

=
1

N0

N0∑
i=1

Φ
(
q(i)
)
p(i), (30)

243

∆̂
(j)

Pf,n
=

1

N0

N0∑
i=1

(
Φ
(
q(i)
)
− Φ

(
q(i) − b

))
p(i), (31)

244

s(j) =
1

N0

N0∑
i=1

[
Φ
(
q(i)
)
p(i)
]2

, (32)

245

r(j) =
1

N0

N0∑
i=1

[(
Φ
(
q(i)
)
− Φ

(
q(i) − b

))
p(i)
]2

. (33)

Up to the j-th iteration, the estimates and variances for mPf,n
and ∆Pf,n

can be calculated as follows:246

m̂Pf,n
=

1

j

j∑
t=1

m̂
(t)
Pf,n

, (34)

247

∆̂Pf,n
=

1

j

j∑
t=1

∆̂
(t)

Pf,n
, (35)

248

V
[
m̂Pf,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

s(t) − m̂2
Pf,n

]
, (36)

249

V
[
∆Pf,n

]
=

1

jN0 − 1

[
1

j

j∑
t=1

r(t) −∆2
Pf,n

]
. (37)

The above sequential process is repeated until a stopping criterion is satisfied, i.e.,
√
V
[
m̂Pf,n

]
/m̂Pf,n

<250

δ1 and

√
V
[
∆̂Pf,n

]
/∆̂Pf,n

< δ2, where δ1 and δ2 are two user-defined thresholds. Note that the most251

time-consuming part is usually associated with the term q(i). Nevertheless, it can be reused in several252

places to reduce the overall computation time. This advantage comes mainly from the structure of the253

stopping criterion 1 that we propose. After the sequential VAIS procedure is completed, the numerator254

and denominator on the left-hand side of stopping criterion 1 should be replaced with their respective255

12



estimates. Also, the stopping criterion is thus required to be satisfied twice in a row to avoid possible256

spurious convergence.257

The other two stopping criteria (i.e., stopping criteria 2 and 3) can also be handled similarly to stopping258

criterion 1, and the computational benefits can also be reserved. Note that it is not necessary to use all259

three stopping criteria at the same time, but only one of them. The stopping criteria proposed in Eqs. (21)260

- (23) depend on the thresholds ϵ1, ϵ2 and ϵ3 respectively, and also on the parameter b. If a smaller b is261

chosen, we need to set a smaller threshold to ensure the accuracy of the failure probability estimate and262

vice versa.263

3.2. Three learning functions264

A point at which the G-function is evaluated next should be identified if the selected stopping criterion265

is not satisfied. This can usually be achieved by using a so-called learning (or acquisition) function. An266

appropriate learning function should be able to suggest promising points that cause the posterior mean of267

the failure probability to approach the true one, taking into account the trade-off between exploration and268

exploitation.269

In this study, according to the three stopping criteria we propose the following three learning functions,270

which are called ‘left-shifted contribution’ (LSC), ‘right-shifted contribution’ (RSC) and ‘left-shifted and271

right-shifted contribution’ (LSRSC), respectively:272

Learning function 1: LSC(u) =

[
Φ

(
−mGn

(u)

σGn(u)

)
− Φ

(
−mGn

(u)

σGn(u)
− b

)]
ϕU (u), (38)

273

Learning function 2: RSC(u) =

[
Φ

(
−mGn(u)

σGn
(u)

+ b

)
− Φ

(
−mGn(u)

σGn
(u)

)]
ϕU (u), (39)

274

Learning function 3: LSRSC(u) =

[
Φ

(
−mGn

(u)

σGn(u)
+ b

)
− Φ

(
−mGn

(u)

σGn(u)
− b

)]
ϕU (u). (40)

Take learning function 1 as an example. Note that mPf,n
− mPf,n

=
∫
U LSC(u)du holds. The learning275

function LSC(u) can thus be interpreted as a measure of the contribution at the point u to the difference276

between the posterior mean and the left-shifted posterior mean of the failure probability. This is why it is277

so named. The other two learning functions can be interpreted similarly.278
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The best next point u(n+1) at which to evaluate the G-function can be chosen by maximizing the selected279

learning function such that:280

u(n+1) = argmax
u∈U

LF(u), (41)

where LF(u) can refer to any of the three learning functions. The optimization problem involved in Eq.281

(41) can be solved by any suitable global optimization algorithm, e.g., genetic algorithm. In practice, it is282

unnecessary and infeasible to search the entire space U for a possible solution, and a reduced subspace could283

be sufficient, e.g., [−R,R]
d
with R > 0. In this study, the parameter R is specified by R =

√
χ−2
d (1− ρ)284

with ρ = 1 × 10−10, where χ2
d is the CDF of a chi-squared distribution of degree d. Here, we will use the285

learning function 1 to illustrate why our active learning scheme works. By choosing the point that maximizes286

the LSC(u) function as the next point to query the G-function, it is expected that the difference between287

mPf,n+1
and mPf,n+1

will be reduced significantly. Besides, note from Eq. (38) that LSC(u) consists of the288

product of two terms. Obviously, the second term prefers the point whose joint PDF value is large. The289

first term favors the point where
mGn (u)
σGn (u) equals − b

2 due to the property of Φ. This means that any point can290

be preferred, as long as the ratio between its posterior mean and standard deviation is a negative constant.291

From this perspective, the learning function LSC(u) allows a balance between exploration and exploitation292

through its first term. According to our computational experience, b = 1 might be a good choice.293

3.3. Implementation procedure of the proposed methods294

From the point of view of numerical implementation, the three proposed methods differ only in the stop-295

ping criterion and the learning function. For this reason, we will only present the implementation details of296

PBALC1, which involves six main steps and can be illustrated by the flowchart shown in Fig. 1.297

298

Step 1: Generating an initial observation dataset299

The first step involves generating an initial observation dataset by evaluating the G-function. First, a300

small number (denoted as n0) of uniformly distributed samples U =
{
u(j)

}n0

j=1
are generated within a d-ball301

of radius R0 by using the Sobol sequence. Herein, the radius R0 is determined by R0 =
√

χ−2
d (1− ρ0) with302
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ρ0 = 1×10−8. Then, the output values Y =
[
y(1), y(2), · · · , y(n0)

]⊤
of the G-function can be obtained, where303

y(j) = G(u(j)). At last, the initial observation dataset is formed as D = {U ,Y}. Let n = n0.304

Step 2: Obtaining the posterior GP of the G-function305

At this stage, one needs to obtain the posterior GP (GP(mGn(u), kGn(u,u
′))) of the G-function con-306

ditional on the observation dataset D. This mainly involves tuning the hyper-parameters by the use of307

maximum likelihood estimation. In this study, we adopt the fitrgp function in the Statistics and Machine308

Leaning Toolbox of Matlab.309

Step 3: Computing the two terms in the stopping criterion310

The two estimates m̂Pf,n
and ∆̂Pf,n

that will be used in the stopping criterion are computed by using311

the sequential VAIS technique, as described in subsection 3.1.312

Step 4: Checking the stopping criterion313

If the stopping criterion,
∆̂Pf,n

m̂Pf,n
< ϵ1 is satisfied twice in a row, go to Step 6; Else, go to Step 5.314

Step 5: Enriching the observation dateset315

The best next point to evaluate the G-function is identified by maximizing the LSC(u) function such316

that u(n+1) = argmaxu∈[−R,R]d LSC(u). After that, the G-function is evaluated at u(n+1) to produce the317

corresponding output value y(n+1). The previous dataset D is enriched with
{
u(n+1), y(n+1)

}
. Let n = n+1,318

and go to Step 2.319

Step 6: Ending the algorithm320

Return m̂Pf,n
as the failure probability estimate and end the algorithm.321

4. Numerical examples322

This section investigates five numerical examples to demonstrate the performance of the three proposed323

methods, namely PBALC1, PBALC2 and PBALC3. The unspecified parameters involved are set as follows:324

n0 = 10, b = 1, λ = 2, N0 = 106, δ1 = 2%, δ2 = 5%, ϵ1 = 2.5%(5%), ϵ2 = 2.5%(5%), ϵ3 = 5%(10%).325

The reference failure probability for each example is obtained from the crude MCS with a sufficiently large326

number of samples, if applicable. For comparison purposes, three state-of-the-art methods, Active Learning327
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Start

Generate an initial observation dataset D = {U ,Y} and let n = n0

Obtain the posterior GP of the G-function conditional on D,
i.e., GP(mGn(u), kGn(u,u

′))

Compute the two estimates m̂Pf,n and ∆̂Pf,n
using the sequential VAIS method

Stopping criterion?

Identify u(n+1) using the LSC(u) function,
observe the correspoding G-fucntion value y(n+1),

enrich the previous dataset D with
{
u(n+1), y(n+1)

}
.

Let n = n+ 1

Return m̂Pf,n as the failure probability estimate

Stop

No

Yes

Figure 1: Flowchart of the proposed PBALC1 method.

Kriging Markov Chain Monte Carlo (AK-MCMC) [28], Active Learning Kriging-Kernel Density Estimation-328

Importance Sampling (ALK-KDE-IS) [29] and Bayesian Subset Simulation (BSS) [30], are also implemented329

in all examples. All methods except MCS (or its substitute) are run 20 independent times to test their330

robustness, and the average results are reported.331
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4.1. Example 1: A series system with four branches332

The first example considers a series system with four branches, which has been a common benchmark333

for the verification of structural reliability analysis methods [20]. The performance function is given by:334

g (X1, X2) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

a+ (X1−X2)
2

10 + (X+X2)√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2

, (42)

where X1 and X2 are two independent standard normal variables; a and b are two constant parameters,335

which are specified as 6 and 12, respectively.336

Table 1 summarizes the results obtained by several methods, i.e., MCS, AK-MCMC, ALK-KDEIS, BSS,337

PBALC1, PBALC2 and PBALC3. The reference value of the failure probability is 3.01× 10−9 with a COV338

of 1.82%, given by the crude MCS with 1012 samples. AK-MCMC produces an average failure probability339

(say 2.34 × 10−9) that is smaller than the reference value and with a large COV (say 33.11%), implying340

its inaccuracy in this example. However, it requires an average of 195.45 performance function evaluations,341

which is the most of the six competing methods. At the cost of 84.10 G-function calls on average, ALK-342

KDE-IS can produce an unbiased result for the failure probability with a COV of 0.55%. As for BSS, it343

generates a biased result for the failure probability with a very large COV (i.e., 47.64%), even at the cost344

of an average of 66.35 performance function evaluations. On the contrary, all three proposed methods are345

capable of producing fairly accurate failure probabilities with an average of only about 45 ∼ 50 performance346

function evaluations. Among them, PBALC1 requires the fewest G-function calls on average, but has the347

largest COV.348

To further illustrate the proposed methods, we show in Figs. 2-4 the learning curves (left panel) and349

selected points (right panel) generated from an exemplary run of the three methods. From the learning350

curves, we can see that the posterior mean estimate of the failure probability m̂Pf,n
eventually approaches351

the reference failure probability. Also, the left-shifted and right-shifted posterior mean estimates of the352
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Table 1: Reliability analysis results of Example 1 obtained by several methods.

Method P̂f COV
[
P̂f

]
Ncall

MCS 3.01× 10−9 1.82% 1012

AK-MCMC 2.34× 10−9 33.11% 195.45

ALK-KDE-IS 3.03× 10−9 0.55% 84.10

BSS 3.52× 10−9 47.64% 66.35

Proposed PBALC1 (ϵ1 = 2.5%) 3.04× 10−9 3.82% 44.75

Proposed PBALC2 (ϵ2 = 2.5%) 3.04× 10−9 1.39% 50.10

Proposed PBALC3 (ϵ3 = 5%) 3.03× 10−9 1.99% 49.50

failure probability (m̂Pf,n
and m̂Pf,n

) gradually approach m̂Pf,n
. On the other hand, it can be observed353

from the selected points that most of the added points are close to the four important parts of the limit354

state curve that are crucial for the failure probability estimation.355
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(a) Learning curves
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-2
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2

4

6

(b) Selected points

Figure 2: Illustration of the proposed PBALC1 method for Example 1.

4.2. Example 2: A nonlinear oscillator356

As a second example, we consider a nonlinear, undamped, single-degree-of-freedom (SDOF) oscillator357

subject to a rectangular pulse load [31], as shown in Fig 5. The performance function is formulated as:358

g (m, k1, k2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

k1 + k2
sin

(
t1
2

√
k1 + k2

m

)∣∣∣∣∣ , (43)
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Figure 3: Illustration of the proposed PBALC2 method for Example 1.
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Figure 4: Illustration of the proposed PBALC3 method for Example 1.

where m, k1, k2, r, F1 and t1 are six random variables, as detailed in Table 2.359

The proposed three methods are compared in Table 3 with several other reliability analysis methods,360

i.e., MCS, AK-MCMC, ALK-KDE-IS and BSS. With 1012 samples, MCS can produce a failure probability361

estimate of 4.01× 10−8 with a rather small COV (say 0.50%), so it is used as a reference solution. All the362

other six methods except BSS are able to give quite good results. However, the three proposed methods363

significantly outperform other methods in terms of the average number of performance function calls. Note364

that PBALC1 has a sightly larger COV and requires a sightly fewer G-function calls on average than PBALC2365

and PBALC3.366
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Figure 5: A nonlinear SDOF oscillator under a rectangular pulse load.

Table 2: Random variables for Example 2.

Variable Description Distribution Mean COV

m Mass Lognormal 1.0 0.05

k1 Stiffness Lognormal 1.0 0.10

k2 Stiffness Lognormal 0.2 0.10

r Yield displacement Lognormal 0.5 0.10

F1 Load amplitude Lognormal 0.4 0.20

t1 Load duration Lognormal 1.0 0.20

4.3. Example 3: An I beam367

The third example involves a simply-supported I beam subjected to a concentrated force [32], as depicted368

in Fig. 6. The performance function is expressed as:369

g(X) = S − σmax, (44)

in which370

σmax =
Pa(L− a)d

2LI
, (45)

with371

I =
bfd

3 − (bf − tw)(d− 2tf )
3

12
. (46)

In this example, a total of eight random variables are considered, as listed in the table 4.372
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Table 3: Reliability analysis results of Example 2 obtained by several methods.

Method P̂f COV
[
P̂f

]
Ncall

MCS 4.01× 10−8 0.50% 1012

AK-MCMC 4.03× 10−8 0.76% 282.30

ALK-KDE-IS 4.03× 10−8 2.92% 84.60

BSS 4.53× 10−8 32.53% 77.75

Proposed PBALC1 (ϵ1 = 5%) 4.03× 10−8 4.29% 29.10

Proposed PBALC2 (ϵ2 = 5%) 4.07× 10−8 2.61% 31.90

Proposed PBALC3 (ϵ2 = 10%) 4.05× 10−8 3.66% 30.95

 

Figure 6: A simply-supported I beam subjected to a concentrated force.

Table 5 reports the reliability analysis results by several methods. The reference value of the failure373

probability is 1.69 × 10−7 with a COV of 0.77%, provided by MCS with 1011 samples. At the cost of an374

average of 376.70 performance function evaluations, AK-MCMC can produce an unbiased result for the375

failure probability with a small COV. The results of ALK-KDE-IS are missing because it cannot converge376

in multiple trials. BSS still gives a slightly biased result, even with 104.90 G-function calls on average. On377

the contrary, with an average of about 45-46 performance evaluations, the three proposed methods are able378

to produce desired results.379
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Table 4: Random variables for Example 3.

Variable Distribution Mean COV

P Lognormal 1500 0.20

L Normal 120 0.05

a Normal 72 0.10

S Normal 200,000 0.15

d Normal 2.3 0.05

bf Normal 2.3 0.05

tw Normal 0.16 0.05

tf Normal 0.26 0.05

4.4. Example 4: A spatial truss380

As a fourth example to illustrate the performance of the proposed methods, we consider a 56-bar space381

truss structure [33], which is shown in Fig. 7. The structure is modelled as a three-dimensional finite element382

model with 35 nodes and 56 truss elements using OpenSees. Nine vertical concentrated forces, P1 ∼ P9,383

are applied to the model along the negative of the z-axis. The cross-sectional area and Young’s modulus of384

each element are assumed to be the same and denoted as A and E respectively. The performance function385

is defined as:386

g(P1 ∼ P9, E,A) = ∆− V1(P1 ∼ P9, E,A), (47)

where V1 is the displacement of node 1 along the negative of the z-axis; ∆ is the threshold, which is set to387

be 50 mm; P1 ∼ P9, E and A are 11 random variables, as listed in Table 6.388

To obtain a reference solution for the failure probability, we implement the importance sampling (IS)389

method available in UQLab [34]. The results of several other methods are reported in Table 7, as well as390

the IS method. The failure probability estimate produced by IS is 4.83× 10−8 with a COV of 0.99%, at the391

cost of 67,107 g-function evaluations. Although AK-MCMC can produce an unbiased result, it has a COV392

up to 9.33% and requires an average of 453.80 model evaluations. At the cost of 176.45 G-function calls,393
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Figure 7: Schematic of a 56-bar space truss structure.
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Table 5: Reliability analysis results of Example 3 obtained by several methods.

Method P̂f COV
[
P̂f

]
Ncall

MCS 1.69× 10−7 0.77% 1011

AK-MCMC 1.71× 10−7 2.13% 376.70

ALK-KDE-IS - - -

BSS 1.88× 10−7 31.38% 104.90

Proposed PBALC1 (ϵ1 = 5%) 1.69× 10−7 3.14% 45.05

Proposed PBALC2 (ϵ2 = 5%) 1.67× 10−7 4.08% 45.00

Proposed PBALC3 (ϵ3 = 10%) 1.69× 10−7 2.71% 46.70

Table 6: Random variables for Example 4.

Variable Distribution Mean COV

P1 Lognormal 150 kN 0.20

P2 ∼ P9 Lognormal 100 kN 0.20

E Normal 2.06 GPa 0.10

A Normal 2,000 mm2 0.05

ALK-KDE-IS produces a biased result with a considerably large COV (i.e., 24.06%). As for BSS, a biased394

result can be produced using an average of 81.70 G-function calls. It is noteworthy that the three proposed395

methods only require on average less than 30 model evaluations, while still maintaining a desired level of396

accuracy.397

4.5. Example 5: A dam seepage model398

The last example involves the study of the steady-state confined seepage flow below a dam (adopted399

from [35]), as shown in Fig. 8. The dam foundation consists of an impermeable layer and two permeable400

layers (silty sand and silty gravel). A cut-off wall is installed at the bottom of the dam to prevent excessive401

seepage. The upstream water has a height of hD m. Thus, the hydraulic hW over the impermeable layer402

is hW = hD + 20 m. It is assumed that the water only flows from the segment AB to the segment CD403
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Table 7: Reliability analysis results of Example 4 obtained by several methods.

Method P̂f COV
[
P̂f

]
Ncall

IS 4.83× 10−8 0.99% 67,107

AK-MCMC 4.83× 10−8 9.33% 453.80

ALK-KDE-IS 4.52× 10−8 24.06% 176.45

BSS 5.34× 10−8 24.90% 81.70

Proposed PBALC1 (ϵ1 = 5%) 4.86× 10−8 5.70% 27.20

Proposed PBALC2 (ϵ2 = 5%) 4.85× 10−8 4.61% 26.90

Proposed PBALC3 (ϵ3 = 10%) 4.87× 10−8 6.64% 26.30

through the two permeable layers (where the the vertical and horizontal permeabilities of the i-th layer are404

denoted as kxx,i and kyy,i, respectively). Five quantities (i.e., hD, kxx,1, kyy,1, kxx,2 and kyy,2) are considered405

as random variables, as given in Table 8. The hydraulic head of the seepage problem is governed by the406

following partial differential equation:407

kxx,i
∂2hW

∂x2
+ kyy,i

∂2hW

∂y2
= 0, i = 1, 2. (48)

The equation is numerically solved by using the finite element method with 1628 quadratic triangular408

elements, as depicted in Fig. 9. Once hW is solved, the seepage discharge q at the downstream side of the409

dam, measured in units of volume over time over distance, can be calculated:410

q = −
∫
CD

kyy,2
∂hW

∂y
dx. (49)

The performance function of this problem is formulated as:411

g(hD, kxx,1, kyy,1, kxx,2, kyy,2) = ∆− q(hD, kxx,1, kyy,1, kxx,2, kyy,2), (50)

where ∆ denotes a prescribed threshold for the seepage discharge q, which is set as 20 L/h/m.412

Table 9 lists the results of several reliability analysis methods. The reference value for the failure413

probability is adopted as 7.78 × 10−6, given by the IS method in UQLab [34]. With an average of 94.75414

performance function evaluations, AK-MCMC gives a failure probability mean that is close to the reference415
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Figure 8: Schematic illustration of the dam seepage problem.
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Figure 9: Finite-element mesh of the permeable layers.

one, while processing a small COV. ALK-KDE-IS requires more G function calls on average than AK-416

MCMC, but has slightly larger variability. The COV of the BSS is as high as 27.40%, even though the417

average number of model evaluations is only 43.85. All the three proposed PBALC methods can produce418

fairly good results for the failure probability at the cost of up to 77.55 performance function calls (average).419

Note that PBALC1 requires relatively fewer model evaluations than PBALC2 and PBALC3 on average in420

this example.421

Remark: The three proposed methods perform very similarly in all five numerical examples, except for422

the first and last two (where PBALC1 is clearly more efficient, but exhibits relatively larger variability in423

example 1). Therefore, PBALC1 is recommended when efficiency is more important than accuracy, and vice424
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Table 8: Random variables for Example 5.

Variable Distribution Parameter 1 Parameter 2

hD (m) Uniform 7 10

kxx,1
(
10−7m/s

)
Gumbel 5 0.20

kyy,1
(
10−7m/s

)
Gumbel 2 0.20

kxx,2
(
10−6m/s

)
Lognormal 5 0.20

kyy,2
(
10−6m/s

)
Lognormal 2 0.20

Note: Parameter 1 and Parameter 2 denote the lower and

upper bounds for a uniform distribution, while mean and

COV for a Gumbel/Lognormal distribution, respectively.

versa.425

5. Concluding remarks426

This study presents three novel Bayesian active learning methods under the name ‘partially Bayesian427

active learning cubature’ (PBALC) for structural reliability analysis, especially when small failure probabil-428

ities are involved. These methods are the result of extending the framework of Bayesian failure probability429

inference to Bayesian active learning of failure probabilities. The basic idea is to use only the posterior430

mean of the failure probability to design the stopping criterion and the learning function. Following this431

idea, we creatively propose three stopping criteria by exploring the structure of the posterior mean of the432

failure probability. In addition, the analytically intractable integrals encountered in the stopping criteria433

are numerically approximated by the sequential variance-amplified importance sampling, which also enables434

to assess very small failure probabilities. Motivated by the stopping criteria, we further develop three learn-435

ing functions that allow a balance between exploration and exploitation. The three stopping criteria and436

associated learning functions correspond to the three proposed methods PBALC1, PBALC2 and PBALC3.437

Numerical studies show that these proposed methods can accurately evaluate very small failure probabilities438
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Table 9: Reliability analysis results of Example 5 obtained by several methods.

Method P̂f COV
[
P̂f

]
Ncall

IS 7.78× 10−6 1.97% 16,218

AK-MCMC 7.78× 10−6 0.80% 94.75

ALK-KDE-IS 7.76× 10−6 2.55% 125.00

BSS 7.73× 10−6 27.40% 43.85

Proposed PBALC1 (ϵ1 = 5%) 7.76× 10−6 1.74% 62.60

Proposed PBALC2 (ϵ2 = 5%) 7.82× 10−6 1.88% 76.40

Proposed PBALC3 (ϵ3 = 10%) 7.81× 10−6 1.81% 77.55

in the order of 10−6 - 10−9. Besides, they also significantly outperform several existing methods in the439

literature in terms of accuracy and efficiency.440

The proposed methods are expected to be applicable to weakly and moderately nonlinear problems in low441

to medium dimensions. For highly nonlinear and/or high-dimensional problems (e.g., dynamic reliability442

analysis of nonlinear structures under random excitation), special treatments are required. In addition,443

some minor efforts could be made in the future along the following directions. The sequential variance-444

amplified importance sampling is found to be time-consuming in some cases, though it is a robust method for445

numerically approximating the analytically intractable integrals involved in the proposed stopping criteria.446

Therefore, an interesting future direction is to develop a more refined importance sampling instead. In447

addition, we select only a single point that maximizes the learning functions at the active learning phase,448

which may waste other useful information and does not support parallel distributed processing. In the449

future, a multi-point selection strategy can be developed to reduce the number of performance function450

evaluations and enable parallel computing.451
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