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1. Introduction27

The dynamic analysis of mechanical and structural systems is commonly carried out with28

numerical models. Due to the unavoidable effects of uncertainty, it is highly challenging to perform29

the system analysis under the traditional approach, which is based on deterministic concepts.30

Nowadays, the theory of random vibrations offers tools to incorporate the uncertainty in several31

engineering problems [1]. For example, the effects of uncertainty associated with earthquakes and32

wind loads on structures, or the effect of atmospheric turbulence on airplanes, can be assessed33

with a reliability analysis. Indeed, the so-called first excursion probability allows quantifying the34

system’s reliability under one or more performance criteria, for instance, if a response of interest35

exceeds a predefined threshold during the stochastic loading. In cases where the system’s behaviour36

remains linear, the first excursion probability can provide a measure with respect to a serviceability37

criterion [2, 3, 4]. Consequently, various advanced simulation methods have been developed to38

calculate the first excursion probability by leveraging the linearity of the system. These methods39

include, for example, a very Efficient Importance Sampling (EIS) [5], Domain Decomposition40

Method (DDM) [6], Directional Importance Sampling (DIS) [7], and lastly, multidomain Line41

Sampling (mLS) [8].42

The first excursion probability can be affected considerably due to changes in structural prop-43

erties, such as alterations in mass, stiffness, or geometrical dimensions of structural members.44

In particular, considering nonproportional damping in the system is of utmost importance, as it45

provides a more realistic representation of dynamic behavior compared to proportional damping46

[9]. This generalized approach of the system differs from the cases considered in, e.g. [10, 11].47

Therefore, studying the sensitivity of the first excursion probability is fundamental to achieve a48

more exhaustive reliability assessment [12, 13, 14, 15, 16]. This information can be used, in the49

context of risk evaluation [17], decision making [18], as well as reliability-based design optimization50

problems [19].51

The sensitivity of the first excursion probability can be calculated in terms of its gradient, which52

corresponds to a local measure (that is, how the probability changes due to small perturbations53

in structural properties). Nevertheless, the aforementioned calculation usually demands solving54

a high dimensional integral that does not possess a closed-form solution. This problem has been55

explored in the literature in the past [20, 21, 22, 23, 24], where two different classes of cases can56

be distinguished [25]. The first one is the calculation of the gradient with respect to distribution57
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parameters of random variables, which are considered to represent the uncertainty associated58

with some structural properties [26, 27]. The second class includes those problems where the59

gradient of the probability is calculated with respect to deterministic parameters affecting the60

structural behavior. This group includes approaches that combines the use of Bayes’ theorem with61

stochastic simulation for the sensitivity estimates calculation [28, 29], approaches which consider62

second-order moments approximations [30], and approaches that combine stochastic simulation63

with local approximations of the responses of interest [31, 32, 10].64

An approach that is particularly useful to estimate first-excursion probabilities is the so-called65

Domain Decomposition Method. This contribution proposes a novel framework to extend the66

application of this method towards estimating the sensitivity of the first excursion probability67

applied to small- and large-scale finite element models. The work is focused on linear structural68

systems with either nonproportional or proportional damping, subjected to a Gaussian loading.69

The analysis focuses on local sensitivity, which is derived by computing the partial derivatives70

of the first excursion probability with respect to each deterministic design parameter. Moreover,71

the sensitivity estimator is achieved as a byproduct of the reliability analysis [33] together with72

a sensitivity analysis of the spectral properties of the system [34]. The use of Domain Decom-73

position Method plays a key role in the failure domain exploration. This is due to its particular74

structure, which is a union of a large number of linear elementary failure domains. Additionally,75

the incorporation of an Importance Sampling density function [11] allows the estimation of the76

sensitivity of the first excursion probability with a reduced number of samples.77

The next sections of this contribution are organized as follows. Section 2 presents the problem,78

the first excursion probability and its gradient definition. Section 3 presents the aforementioned79

gradient calculation by means of Domain Decomposition Method. Then, two examples of the80

proposed framework are illustrated in Section 4. Finally, Section 5 draws the discussion to a close81

and presents thoughts on future developments.82

2. Problem Statement83

This section defines the theoretical framework of the problem addressed in this work. The84

stochastic loading is presented in Section 2.1, while the system definition and the responses of85

interest are detailed in Section 2.2. Section 2.3 introduces the first excursion probability problem,86

and Section 2.4 presents its sensitivity analysis. Finally, Section 2.5 describes the special geometric87
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structure of the failure domain.88

2.1. Gaussian loading89

The dynamic load p acting on the system is described as a discrete Gaussian process of duration90

T , discretized in nT times instants of duration ∆t. Accordingly, the k-time instant is defined as91

tk = (k −1)∆t, k = 1, . . . , nT . The expected value of this process at time tk is defined as µk, which92

is the k-th element of the expected value vector µ of dimension nT × 1. The covariance matrix93

associated with the Gaussian loading is Σ. It is symmetric, bounded and positive definite, where94

the covariance between times tk1 and tk2 is given by Σk1,k2 , corresponding to the (k1, k2)-th element95

of Σ. The dynamic load is represented in terms of the Karhunen-Loève expansion as [35, 36]96

p (tk, z) = µk +ψT
k z, k = 1, . . . , nT , (1)

where p (tk, z) is the loading at time tk and z is a realization of a standard Gaussian random97

variable vector Z of dimensions nKL × 1, being nKL the order of truncation of the expansion98

(nKL ⩽ nT ). By solving the eigenproblem ΣΞ = ΞΛ associated with the largest nKL eigenvalues99

of Σ, the set of vectors Ψ = [ψ1,ψ2, . . . ,ψnT
] can be calculated as Ψ = Λ1/2ΞT , being ψk, k =100

1, . . . , nT a vector of dimensions nKL ×1 related to the time instant tk. In this work, it is assumed101

the specific case where µ = 0 without loss of generality.102

2.2. Structural system103

The system is considered linear elastic and damped, and is subject to a Gaussian loading104

p(t, z). Moreover, the system is composed by nD degrees-of-freedom and is governed by the105

following equation of motion [37]:106

M (y)ẍ(t,y, z) +C(y)ẋ(t,y, z) +K(y)x(t,y, z) = g(y)p(t, z), t ∈ [0, T ], (2)

where the displacement, velocity and acceleration are represented by x, ẋ and ẍ, respectively,107

all vectors of dimension nD × 1; the matrices of mass M , damping C and stiffness K are of108

dimensions nD × nD; the coupling vector of the loading with the degrees of freedom of the system109

is g, which has dimensions nD ×1; and the deterministic vector that contain the parameters which110

represent the structural properties of the system is y, of dimensions nY ×1. To address the general111

case of structural systems exhibiting nonproportional damping, Equation (2) may be reformulated112
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into the following augmented system [38]:113

 0nD×nD
M(y)

M(y) C(y)



ẍ(t,y.z)

ẋ(t,y.z)

+

 −M(y) 0nD×nD

0nD×nD
K(y)



ẋ(t,y.z)

x(t,y.z)

 =


0nD×1

g(y)p(t, z)

 ,

(3)

or in its compact form:114

[Ma(y)] {q̇(t,y.z)} + [Ka(y)] {q(t,y.z)} = {ga(y)} , (4)

where q is a vector grouping velocities and displacements of the system, with dimensions 2nD × 1,115

Ma and Ka are the augmented mass and stiffness matrices of dimensions 2nD ×2nD, respectively,116

and ga is the augmented load vector of dimensions 2nD × 1, with the augmented matrices and117

vectors defined explicitly as:118

[Ma(y)] =

 0nD×nD
M(y)

M(y) C(y)

 ; [Ka(y)] =

 −M (y) 0nD×nD

0nD×nD
K(y)



{ga(y)} =


0nD×1

g(y)p(t, z)

 ; {q(t,y, z)} =


ẋ(t,y, z)

x(t,y, z)

 (5)

It is paramount to control some dynamical responses, such as displacements, accelerations,119

internal stresses, as well their linear combinations. These responses are defined as ηi(t,y, z), i =120

1, . . . , ηη, and is calculated using the convolution integral [37]:121

ηi(t,y, z) =
∫ t

0
p(τ, z)hi(t − τ,y)dτ, i = 1, . . . , nη, (6)

where hi(t,y), i = 1, . . . , ηη is the unit impulse function of the i-th response of interest, and p(t, z)122

corresponds to the Gaussian loading. Equation (6) is deduced assuming null initial conditions,123

that is x(0,y, z) = ẋ(0,y, z) = 0nD×1. Therefore, when the response of interest is a combination124

of the vector q(t,y, z), it can be expressed as ηi(t,y, z) = γT
i q(t,y, z), where γi is a constant125

vector of dimensions 2nD × 1. Then, the unit impulse response function associated to the i-th126

response of interest is written as [39]:127

hi(t,y) =
2nD∑
r=1

γT
i ϕr(y)ϕr(y)Tga(y)
ϕr(y)TMa(y)ϕr(y)

eλr(y)t, i = 1. . . . , nη, (7)
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where ϕr(y) and λr(y) are the eigenvectors and eigenvalues associated with the eigenproblem128

of Equation (4). It is worth noting that, in cases where the system involves a large number of129

degrees-of-freedom, it is convenient to apply modal truncation [37] to equation (7) by selecting130

a number of modes smaller than 2nD. Given the discretized definition of the Gaussian loading131

in time as discussed in Section 2.1, it is possible to approximate the integral associated with the132

response of interest integral mentioned in equation (6) at specific time instant tk as:133

ηi (tk,y, z) = ai,k(y)Tz, i = 1, . . . , nη, k = 1, . . . , nT , (8)

where the vector ai,k(y) of dimensions nKL × 1 is defined as:134

ai,k(y) =
k∑

m=1
∆tϵmhi (tk − tm,y)ψm, (9)

where ϵm depends on the preferred integration scheme, for example, with a trapezoidal scheme135

ϵm = 1/2 for m = 1, k and otherwise ϵm = 1 [40]. It is worth mentioning that in equation (8) the136

dependence of the design vector y is only related to ai,k, and in the same way, the dependence of137

the vector z is only related to the Gaussian load p.138

2.3. First excursion probability139

The design requirements are defined in vector b of dimension nη ×1, where bi is its i-th element,140

and correspond to the prescribed threshold for the response of interest ηi. The performance141

function g(y, z) indicates if the response of interest ηi exceeds or not a prescribed threshold bi142

along the duration of the excitation, and is given by:143

g(y, z) = 1 − max
i=1,...,nη

(
max

k=1,...,nT

(
|ηi (tk,y, z)|

bi

))
, (10)

where |·| is the absolute value. Furthermore, the failure domain can be formally defined as F =144

{z ∈ RnKL : g(y, z) ⩽ 0}.145

The probability associated with the failure domain can be quantified by means of the so-called146

first excursion probability [1]:147

pF (y) =
∫

g(y,z)≤0
fZ(z)dz, (11)

where fZ(z) is the standard Gaussian probability density function in nKL dimensions.148
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For practical engineering applications nKL can be relatively large, in the order of hundreds149

or thousands. As a consequence, the first excursion probability shown in equation (11) becomes150

a high dimensional integral which does not have a closed-form solution and must be evaluated151

with advanced simulation methods [41]. This challenge has led to the development of advanced152

simulation methods that leverage the system’s linearity to estimate the first excursion probability153

[5, 6, 7, 8].154

2.4. Gradient of first excursion probability155

The dependence of the first excursion probability on the design parameters vector y, high-156

lights the importance of studying the sensitivity of the equation (11). One potential approach to157

measure that sensitivity is calculating the gradient of the first excursion probability, as follows158

(see Appendix A):159

∂pF (y)
∂yq

= −
∫

g(y,z)=0

∂g(y, z)
∂yq

1
∥∇zg(y, z)∥

fZ(z)dS, q = 1, . . . , ny, (12)

where ∥ · ∥ denotes Euclidean norm; ∇z is the nabla operator ∇z = [∂/∂z1, . . . , ∂/∂znKL
]T ; and160

dS denotes a differential element of the limit state hypersurface S = {z ∈ RnKL : g(y, z) = 0}.161

Evaluation of the expression in equation (12) poses a significant challenge, as it comprises solving162

a (nKL − 1)-dimensional integral over a hypersurface and the calculation of derivatives of the163

performance function.164

2.5. Geometry of the failure domain165

The failure domain for a linear dynamical system that is subject to Gaussian loading has a very166

unique geometry, which can be defined analytically in the standard Gaussian space [5, 42]. To167

understand how the failure domain mentioned in Section 2.3 is constructed, from equation (10),168

it is straightforward noting that the failure domain can be decomposed in nη × nT elementary169

failure domains. Each of them, denoted as Fi,k, describes the event where the response ηi exceeds170

the prescribed threshold bi at the time instant tk, which can be also decomposed in its positive171

and negative sides, that means Fi,k = F +
i,k ∪ F −

i,k. Then, the elementary failure domain that172

represents if the response of interest ηi exceeding its threshold bi at the time instant tk is defined173

as F +
i,k =

{
z ∈ RnKL : aT

i,k(y)z ⩾ bi

}
. In a similar manner, the elementary failure domain that174

represents if the response of interest −ηi exceeding its threshold bi at the time instant tk is defined175

as F −
i,k =

{
z ∈ RnKL : aT

i,k(y)z ⩽ −bi

}
. Now, the failure domain is defined as the union of all the176
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elementary failure domains, that is F = ∪nη

i=1 ∪nT
k=1 Fi,k. Following the same logic, it is also possible177

to define the performance function associated to the i-th response of interest at the k-th time178

instant as gi,k(y, z), being its positive part denoted as g+
i,k(y, z) and its negative part denoted179

as g−
i,k(y, z). A schematic representation of the elementary failure domains is shown in Figure180

1, for the case where nη = 1 and nT = nKL = 2. It is possible to observe that the positive181

and negative parts of the elementary failure domains F1,1 and F1,2 are illustrated, as well the182

interaction between them. In this context, interaction is understood as the event where both of183

the elementary failure domains F1,1 and F1,2 occur, meaning that the response of interest exceeds184

its prescribed threshold at both time instants. This bi-dimensional representation of the problem185

gives an idea of the degree of overlapping existing between the elementary failure domains when186

the problem involves a large number of dimensions.187

F−
1,1

z1

z∗
1,1(y)

−z∗
1,1(y)

z∗
1,2(y)

−z∗
1,2(y)

F+
1,1

F+
1,2

F−
1,2

F+
1,1 ∩ F+

1,2

F−
1,1 ∩ F−

1,2

z2

Figure 1: Elementary failure domains representation for the case where nη = 1 and nT = nKL = 2.

Focusing on one elementary failure domain, the realization of z that has the highest likelihood188

is the one with the smallest Euclidean norm from the origin [5, 42], which is the so-called design189

point. It allows to define analytically the elementary failure domain, and is given by:190

z∗
i,k(y) = bi

aik(y)
∥ai,k(y)∥2 , i = 1, . . . , nη, k = 1, . . . , nT , (13)

where z∗
i,k(y) is the design point associated to the F +

i,k elementary failure domain. The Euclidean191

norm of the design point, known as the reliability index, is equal to:192

βi,k(y) = bi

∥ai,k(y)∥
, i = 1, . . . , nη, k = 1, . . . , nT , (14)
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being the reliability index βi,k(y) associated to the elementary failure domain Fi,k. Therefore, from193

the definition of the elementary failure domain, it is evident that the probability of occurrence194

P [F +
i,k] = P [F −

i,k] = Φ[−βi,k], where P [·] denotes probability and Φ[·] correspond to the one-195

dimensional Gaussian cumulative density function. Then, the summation of the probability of196

occurrence of all the elementary failure domains independently is given by:197

p̂F =
nη∑
i=1

nT∑
k=1

P [Fi,k] = 2
nη∑
i=1

nT∑
k=1

Φ (−βi,k) , (15)

where p̂F represents an upper bound for the first excursion probability pF [5].198

3. Sensitivity estimation of first excursion probability199

This section presents the methodology for estimating the first excursion probability and its200

sensitivity using the Domain Decomposition Method. Section 3.1 contextualizes the proposed201

method within the scope of the formulated problem. In Section 3.2, the Domain Decomposition202

Method is formulated for estimating the first excursion probability. Section 3.3 develops the203

sensitivity estimation procedure. Section 3.4 addresses practical implementation aspects, including204

the differentiation of key terms. Finally, Section 3.5 summarizes the procedure for computing both205

reliability and sensitivity estimators.206

3.1. General remarks207

Different simulation-based methods take advantage of the design point of the elementary failure208

domains for efficiently estimating the reliability sensitivity. Indeed, gradient estimation usually209

becomes a post-process of the reliability analysis [21, 24, 27]. Given their applicability to a range210

of engineering problems [12, 17, 18, 19], it makes sense to obtain both estimators, despite the211

additional computational cost.212

The first excursion probability sensitivity integral evaluation, as shown in equation (12), re-213

quires performing integration over the limit state hypersurface. This quantity can be estimated214

using various simulation schemes. For instance, literature suggests that this task can be accom-215

plished through Directional Sampling [43] and Line Sampling [33]. When the failure domain has216

a particular structure, as shown in equation (10), it is possible to perform this task in a more217

sophisticated manner, with the novelty of this work relying on the latter.218
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A framework based on Domain Decomposition Method [6] is chosen to estimate both the failure219

probability and its sensitivity. For this purpose, the failure probability integral is expressed in220

terms of the effective contribution of each elementary failure domain, followed by a mathematical221

development involving Directional Sampling [43] and Importance Sampling [44], yielding the same222

first excursion probability estimators as shown in [6]. Note that the deduction for the Domain223

Contribution Method presented here (see Section 3.2) differs from the one originally presented224

in [6]. Such alternative deduction is chosen on purpose, as it facilitates the calculation of the225

probability sensitivity, as discussed in Section 3.3.226

3.2. Domain Decomposition Method227

3.2.1. Effective Contribution of the Elementary Failure Domains228

The particular geometry of the failure domain defined in Section 2.5 gives substantial infor-229

mation of the analytical definition of the elementary failure domains. Moreover, it is evident from230

Figure 1 that there may be overlapping between the elementary failure domains. In the context231

of high-dimensional problems, the degree of overlap may be significant, which consequently com-232

plicates the estimation of the first excursion probability. To address this issue, leveraging the233

elementary failure domain definition, the failure probability integral defined in equation (11) can234

be written in terms of the contribution of each of the individual elementary failure domains [5, 8],235

which is given by:236

pF (y) =
nη∑
i=1

nT∑
k=1

pi,k(y), (16)

where pi,k(y) is termed as effective contribution associated with the elementary failure domain237

Fi,k, which is defined as follows:238

pi,k(y) =
∫
z∈Fi,k

1∑nη

h=1
∑nT

j=1 IFh,j
(y, z)

fZ(z)dz, (17)

where IFh,j
(y, z) is an indicator function which is equal to 1 in case that z ∈ Fi,k. The discounting239

factor 1/
∑nη

h=1
∑nT

j=1 IFi,k
(y, z) accounts for discounting the effective contribution resulting from240

the interaction between elementary failure domains. To understand the effective contribution241

definition, consider the calculation of the effective contribution p1,2 from the example presented in242

Figure 1. The elementary failure domain associated with F1,2 can be separated into two regions:243

the domain F2\(F1 ∩ F2), which is a region without overlap, and the domain F1,2 ∩ F1,1, which244

is a region with overlap. Then, considering a possible realization z of Z, the discounting factor245
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1/
∑nη

h=1
∑nT

j=1 IFh,j
(y, z) becomes 1 if z ∈ F2\(F1 ∩ F2), and 1/2 if z ∈ F1,2 ∩ F1,1. Repeating246

the process for the calculation of p1,1, and the calculation of pF by using the equation (16), it is247

straightforward to note that the contribution to the failure probability of the region with overlap248

is considered, with one half accounted for in the calculation of p1,1 and the other half in the249

calculation of p1,2. This implies that the effective contribution pi,k corresponds to the probability250

of occurrence of the event Fi,k, reduced by the discounting factor due to the overlap between251

elementary failure domains.252

3.2.2. Reliability253

The estimation of the failure probability shown in equation (11) is done by estimating the254

effective contribution of the elementary failure domains. In order to achieve this, the equation255

(17) is written using the Directional Sampling scheme [43, 45, 46]. This technique allows writing256

the realization vector z in terms of its Euclidean norm r and its unitary direction u, that means257

z = ru. The unit vector is defined in the standard Gaussian space and is calculated as u = z/∥z∥258

and the Euclidean norm is defined as r = ∥z∥, where r2 follows a Chi-squared distribution of nKL259

degrees-of-freedom [47]. Therefore, the resulting effective contribution integral is reformulated as:260

pi,k(y) =
∫
u∈ΩU

∫
ru∈Fi,k

2rfR2 (r2) fU (u)∑nη

h=1
∑nT

j=1 IFh,j
(y, ru)

drdu, (18)

where ΩU =
{
u ∈ RnKL : uTu = 1

}
denotes the sample space for u; fU (u) corresponds to the261

uniform probability density function over the (nKL − 1)-dimensional hypersphere; and fR2 (·)262

is the Chi-squared probability density function with nKL degrees of freedom. It is possible to263

demonstrate [47] that the term 2rfR2(r2) arises from transforming the probability distribution264

associated with r to the Chi-squared probability distribution, which depends on r2.265

For a better understanding of the discounting factor in the context of Directional Sampling,266

Figure 2 illustrates the case with nη = 1, nT = 3, and nKL = 2 when estimating p1,2. For simplicity,267

only the positive side of the elementary failure domains are labeled. It is worth noting that, from268

equation (18), the inner integral (highlighted with the green arrow in Figure 2) given a realization269

of the unit direction vector u, has an analytical solution due to the system’s linearity. Indeed, it can270

be solved by decomposing its integration interval into segments, where in each of these segments,271

exhibits a different degree of overlap between elementary failure domains. In other words, the272

integration interval is subdivided into parts where the discounting factor 1/
∑nη

h=1
∑nT

j=1 IFh,j
(y, ru)273
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from equation (18) remains constant. Therefore, in order to define the intervals for the integral,274

the following definition is considered:275

ci,k(y,u) = bi

|ηi (tk,y, ru)|
, (19)

where ci,k(y,u) corresponds to the the Euclidean distance from the origin pointing in u direction276

to the intersection with the elementary failure domain Fi,k. For instance, in Figure 2, given a277

direction u, the ray extending from the origin intersects three elementary failure domains as it278

extends to infinity along the coordinate r. The corresponding distances are c1,3, c1,2, and c1,1,279

respectively. Then, by decomposing the integral interval, the resulting values, along with the280

discounting factor for each segment, are presented in Table 1:281

z1

z2

F+
1,1

F+
1,2F+

1,3

c
1,2 (y,u)

c
1,1 (y,u)

c
1,3 (y,u)

∫∞
c1,2(y,u)

2rfR2

(
r2

)∑nη

h=1

∑nT
j=1 IFh,j

(y, ru)
dr

1

u

Figure 2: Inner integral of equation (18) in the context of p1,2 estimation for the case where nη = 1, nT = 3 and
nKL = 2.

segment 1/
∑nη

h=1
∑nT

j=1 IFh,j
(y, ru)

[c1,3(y,u), c1,2(y,u)[ -

[c1,2(y,u), c1,1(y,u)[ 2

[c1,1(y,u), ∞[ 3

Table 1: Inner integral decopmosition of equation (18) and effective contribution discounting factor in example
shown in Figure 2.

Note that even though the failure domain includes the event F1,3, the integration is performed282
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within the domain of F1,2 when calculating the effective contribution p1,2.283

In order to improve the readability from solving the inner integral of equation (18), a sorted284

notation using the index l is introduced. The objective is that given a unit direction u, the285

elementary failure domains that intersect the ray extending from the origin to infinity (along the286

coordinate r) can be sorted in increasing order of their Euclidean distances. Therefore, the vector287

that contains the sorted elementary failure domains F (u) can be written in terms of the index l288

as:289

F (u) =
[
Fl, Fl+1, Fl+2, . . . , Fnl(u)

]T
, (20)

where l ∈ [1, . . . , nl(u)], being nl(u) the maximum number of intersections with elementary failure290

domains in the unit direction u, which is lower or equal than nη ×nT . Nevertheless, the calculation291

of the effective contribution pi,k requires performing the integration over the failure domain Fi,k,292

as is shown in equation (24). In turn, the inner integral must be evaluated over the coordinate293

r, which is defined from the boundary of the Fi,k elementary failure domain to infinity. As a294

consequence, for each effective contribution pi,k, it is necessary to find the value of the index l,295

which is associated with the failure domain Fi,k. For simplicity and without loss of generality, this296

value is defined as L for a given direction u, which represents the L-th position of the elementary297

failure domain Fi,k in the sorted vector F (u) defined in equation (20). In order to understand298

the notation introduced, Figure 3 and Table 2 represents the situation, while calculating p1,2. It299

is possible to note that the intersection between the elementary failure domains and the ray that300

starts from the origin and extends to infinity in the direction of u occurs in the following order:301

F1,3, F1,2, and F1,1. Thus, with the sorted notation, these elementary failure domains become F1,302

F2, and F3 respectively. The same idea applies to the c-distances. The inner integral in equation303

(24) is represented by the green arrow, indicating that the lower bound corresponds to cL, where304

L = 2 in this case. Therefore, implementing the sorted notation and by solving the inner integral305

of equation (24) as follows:306

∫ ∞

cL

2rfR2 (r2) fU (u)∑nη

h=1
∑nT

j=1 IFh,j
(y, ru)

dr =
∞∑

l=L

1
l

(
FR2

(
cl+1(y,u)2

)
− FR2

(
cl(y,u)2

))
, (21)

being the term 1/l equivalent to the discounting factor 1/
∑nη

h=1
∑nT

j=1 IFh,j
(y, ru) from the integral307

in equation (18), and FR2 (·) is the Chi-squared cumulative density function with nKL degrees of308

freedom.309
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z1

z2

F+
1,1

F+
2,1F+

3,1

u
c
L (y,u) =

c
2 (y,u)

c
3 (y,u)

c
1 (y,u)

∑∞
l=L

1

l

(
FR2

(
cl+1(y,u)

2
)
− FR2

(
cl(y,u)

2
))

Figure 3: Inner integral of equation (18) in the context of p1,2 estimation, using the sorted notation for the case
where nη = 1, nT = 3 and nKL = 2.

sorted notation

r value intersected domain index l r value using index l intersected domain using index l

c1,3 F1,3 1 c1 F1

c1,2 F1,2 2 c2 = cL F2

c1,1 F1,1 3 c3 F3

Table 2: c-distances associated to Figure 3 given a direction u.

The calculation of a single effective contribution also involves solving the outer integral of310

equation (18). This integration can be estimated through simulation methods, such as Monte311

Carlo simulation, by generating random samples of u. However, this method may not be efficient312

within the context of high-dimensional problems and small failure probabilities estimation, due313

to the number of dynamic analyses required to get a robust estimator. To address this issue, a314

more efficient approach based on Importance Sampling [44] is used, by introducing an importance315

sampling probability density function f IS
U (u). Therefore, equation (18) can be written as:316

pi,k(y) =
∫
u∈ΩU

∞∑
l=L

1
l

(
FR2

(
cl+1(y,u)2

)
− FR2

(
cl(y,u)2

)) fU (u)
f IS
U (u)

f IS
U (u)du. (22)

The importance sampling density function f IS
U (u) is based on [5, 7], with the difference that each317

effective contribution pi,k has its own importance sampling density function. It is defined as the318
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probability density associated with the direction u conditioned on the occurrence of an elementary319

failure event Fi,k (see Appendix B for further details). Then, the importance sampling density320

function, associated to the (i, k)-th effective contribution, is written as:321

f
IS,(i,k)
U (u) = fU (u|Fi,k) . (23)

Then, by using the definitions from equations (22) and (23), the effective contribution pi,k becomes:322

pi,k(y) = P [Fi,k]
∫
u∈ΩU

λi,k(y,u)f IS,(i,k)
U (u)du, (24)

with323

λi,k(y,u) =
∞∑

l=L

1
l

FR2 (cl+1(y,u)2) − FR2 (cl(y,u)2)
1 − FR2 (cL(y,u)2)

. (25)

Theoretically, solving the integral of equation (24) by integrating over all the directions u, the324

effective contribution pi,k can be expressed as:325

pi,k(y) = P [Fi,k]λi,k(y), (26)

where λi,k(y) is given by:326

λi,k(y) =
∫
u∈ΩU

λi,k(y,u)f IS,(i,k)
U (u)du. (27)

The term λi,k(y) can be interpreted as a compensation for the overlapping existing between the ele-327

mentary failure domain Fi,k and others, which is pondered over all the directions where {ru ∈ Fi,k}.328

It is straightforward to note that the definition presented in equation (26) is equivalent to the one329

presented in equation (17), with a more convenient construction of the discounting factor. There-330

fore, equation (26) provides an expression for calculating the effective contribution pi,k within the331

framework of Domain Decomposition Method.332

However, the calculation of the failure probability using equation (16) requires determining333

each effective contribution pi,k, where i = 1, . . . , nη and k = 1, . . . , nT . This can be extremely334

demanding due to the product nη × nT , which could be on the order of hundreds or thousands.335

To address this challenge, the summation in equation (16) can be estimated using simulation, as336
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in [6]. Then, considering an alternative to equation (16) as:337

pF (y) =
nη∑
i=1

nT∑
k=1

(
1

wi,k

pi,k(y)
)

wi,k, (28)

where wi,k is the weight considered in the importance sampling density of equation (23) and is338

defined in Appendix B, which serves as a probability mass function. Therefore, the expression in339

equation (28) involves a summation over a discrete random variable wi,k and an integration over340

a continuous random variable u. This can be solved through simulation by generating samples of341

both random variables, as follows:342

pF (y) ≈ p̃F (y) = 1
N

N∑
j=1

(
1

w(i,k)(j)
p̃(i,k)(j)(y,u(i,k)(j))

)
, (29)

where p̃F corresponds to an estimate of pF ; N is the total number of samples; (i, k)(j), j =343

1, . . . , N , are independent and identically distributed samples chosen from the set I = {1, . . . , nη ×344

nT } with probability mass function wi,k, where i = 1, . . . , nη and k = 1, . . . , nT ; the vector345

u(i,k)(j) is distributed according to f
IS,(i,k)
U (u); and p̃(i,k)(j)

(
u(i,k)(j)

)
is the estimate of the effective346

contribution pi,k (u) evaluated at the sample u(i,k)(j) . To estimate the effective contribution, it347

is necessary to estimate the term λi,k(y) by evaluating the sampled direction u(i,k)(j) in equation348

(25), which means:349

p̃(i,k)(j)

(
y,u(i,k)(j)

)
≈

P [Fi,k]λi,k(y,u(i,k)(j)) = P [Fi,k]
∞∑

l=L

1
l

FR2

(
cl+1

(
y,u(i,k)(j)

)2
)

− FR2

(
cl

(
y,u(i,k)(j)

)2
)

1 − FR2

(
cL

(
y,u(i,k)(j)

)2
) .

(30)

Equation (29) yields the first excursion probability estimator using the Domain Decomposition350

Method. It is worth noting that the result is the same as that presented in [6] with an alternative351

deduction.352

Finally, it can be easily proven that the coefficient of variation δpF
of the first excursion353

probability estimator in equation (29) is equal to:354

δpF
= 1

p̃F (y)

√√√√√ 1
N(N − 1)

N∑
j=1

((
1

w(i,k)(j)
p̃(i,k)(j)

(
y,u(i,k)(j)

))
− p̃F (y)

)2

. (31)
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3.3. Sensitivity355

The estimation of the sensitivity of the first excursion probability shown in equation (12) can356

be performed by estimating the derivative of the effective contributions, from equation (17), with357

respect to a design parameter yq, resulting as follows:358

∂pF (y)
∂yq

=
nη∑
i=1

nT∑
k=1

∂pi,k(y)
∂yq

, (32)

where ∂pi,k(y)/∂yq denotes the partial derivative of the effective contribution pi,k(y) with respect359

the design parameter yq. To exemplify the changes in the effective contribution due to a change360

in the design parameter, consider the schematic two-dimensional representation shown in Figure361

4, for the case where nη = 1, nT = nKL = 2 and nY = 1, in the context of calculating p1,1. For362

simplicity, only the positive elementary failure domains are presented. The limit state function363

associated with the elementary failure domain F +
1,1 (with the orange line) is given by g+

1,1(yq, z),364

and the one associated with the elementary failure domain F +
1,2 (with the green line) is given by365

g+
1,2(yq, z). After introducing a change ∆yq to the design parameter yq, the limit state functions366

become g+
1,1(yq + ∆yq, z) and g+

1,2(yq + ∆yq, z), respectively. The sensitivity of the effective con-367

tributions represents the quantification of the potential change between the overlapping between368

the elementary failure domains due to a change in the design parameter. It is worth noting that369

in the context of estimating the effective contribution p1,2 through direction u, the distance c1,2370

changes by (∂c1,2(yq,u)/∂yq)∆yq, and the distance c1,1 changes by (∂c1,1(yq,u)/∂yq)∆yq while371

using equation (30).372

g+1,1(yq, z)

u

z1

z2

safe

g+1,1(yq,+∆yqz)

g+1,2(yq, z)

g+1,2(yq,+∆yqz)

domain

failure
domain

∂c1,2(yq,u)
∂yq

∆yq

∂c1,1(yq,u)
∂yq

∆yq

Figure 4: Schematic representation for the sensitivity of the effective contributions for the case where nη = 1,
nT = nKL = 2 and nY = 1.
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The partial derivative of the effective contribution in equation (32) can be calculated using373

Leibniz’ rule [48]. Therefore, from equations (18) and (21), and using the sorted notation intro-374

duced in Section 3.2.2, this derivative can be expressed as:375

∂pi,k(y)
∂yq

=
∫
u∈ΩU

∞∑
l=L

1
l

∂

∂yq

(
FR2

(
cl+1(y,u)2

)
− FR2

(
cl(y,u)2

))
fU (u)du. (33)

Note from equation (33) that only the c-distances depend on the design parameter. Therefore,376

the derivative of the effective contribution is given by:377

∂pi,k(y)
∂yq

=
∫
u∈ΩU

∞∑
l=L

1
l

(
2cl+1(y,u)∂cl+1(y,u)

∂yq

fR2

(
cl+1(y,u)2

)

− 2cl(y,u)∂cl(y,u)
∂yq

fR2

(
cl(y,u)2

) )
fU (u)du,

(34)

where fR2(·) is the Chi-squared probability density function with nKL degrees of freedom, and378

∂cl(y,u)/∂yq is the partial derivative of cl(y,u) with respect to the design parameter yq (its379

calculation is discussed in Section 3.4).380

Following the same idea as in Section 3.2.2, calculating all the derivatives of the effective381

contribution from equation (32) requires a significant computational effort. To address this issue,382

an importance sampling density function can be introduced, resulting in:383

∂pi,k(y)
∂yq

=
∫
u∈ΩU

∞∑
l=L

1
l

(
2cl+1(y,u)∂cl+1(y,u)

∂yq

fR2

(
cl+1(y,u)2

)

− 2cl(y,u)∂cl(y,u)
∂yq

fR2

(
cl(y,u)2

) ) fU (u)
f IS
U (u)

f IS
U (u)du.

(35)

The importance sampling density function is chosen similarly for both reliability and sensitivity384

analyses, using equation (23). Although this function is primarily designed to improve the effi-385

ciency of the reliability estimator calculation, it also serves as a convenient choice for calculating386

sensitivity estimates as a byproduct of the reliability analysis. Using the definition in equations387

(23) and (35), the sensitivity of the effective contribution can be written as:388

∂pi,k(y)
∂yq

= P [Fi,k]
∫
u∈ΩU

µi,k(y,u)f IS,(i,k)
U (u)du, (36)
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where389

µi,k(y,u) =
∞∑

l=L

1
l (1 − FR2 (c2

L))

(
2cl+1(y,u)∂cl+1(y,u)

∂yq

fR2

(
cl+1(y,u)2

)

− 2cl(y,u)∂cl(y,u)
∂yq

fR2

(
cl(y,u)2

) )
.

(37)

Assuming that the derivative is defined over all possible directions u ∈ ΩU , if theoretically the390

integral of equation (36) is solved, the derivative of the effective contribution can be expressed as:391

∂pi,k(y)
∂yq

= P [Fi,k]µi,k(y), (38)

where µi,k(y) is given by:392

µi,k(y) =
∫
u∈ΩU

µi,k(y,u)f IS,(i,k)
U (u)du. (39)

Therefore, equation (38) provides an expression for calculating the derivative of the effective contri-393

bution pi,k with respect to a design parameter yq within the framework of Domain Decomposition394

Method.395

However, the calculation of the failure probability using equation (32) requires determining each396

of the derivatives of the effective contribution ∂pi,k(y)/∂yq, where i = 1, . . . , nη and k = 1, . . . , nT .397

This can be extremely demanding due to the product nη × nT , which could be on the order of398

hundreds or thousands. To address this issue, the summation in equation (32) can be estimated399

through simulation, in the same manner as the reliability analysis shown in Section 3.2.2. Then,400

considering an alternative to equation (16) as:401

∂pF (y)
∂yq

=
nη∑
i=1

nT∑
k=1

(
1

wi,k

∂pi,k(y)
∂yq

)
wi,k. (40)

The expression in equation (40) involves a summation over a discrete random variable wi,k and402

an integration over a continuous random variable u. This can be solved through simulation by403

generating samples of both random variables, as follows:404

∂pF (y)
∂yq

≈ ∂p̃F (y)
∂yq

= 1
N

N∑
j=1

(
1

w(i,k)(j)

∂p̃(i,k)(j)(y,u(i,k)(j))
∂yq

)
, (41)
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where ∂p̃F (y)/∂yq corresponds to an estimate of ∂pF (y)/∂yq; N is the total number of samples;405

(i, k)(j), j = 1, . . . , N , are independent and identically distributed samples chosen from the set406

I = {1, . . . , nη×nT } with probability mass function wi,k, where i = 1, . . . , nη and k = 1, . . . , nT ; the407

vector u(i,k)(j) is distributed according to f
IS,(i,k)
U (u); and ∂p̃(i,k)(j)(y,u(i,k)(j))/∂yq is the estimate of408

the derivative of the effective contribution ∂p(i,k)(j)(y,u(i,k)(j))/∂yq evaluated at the sample u(i,k)(j) .409

To estimate the derivative of the effective contribution, it is necessary to estimate the term µi,k(y)410

by evaluating the sampled direction u(i,k)(j) in equation (37), which means:411

∂p̃(i,k)(j)(y,u(i,k)(j))
∂yq

≈ P [Fi,k]µi,k(y,u(i,k)(j)) =

P [Fi,k]
∞∑

l=L

1
l
(
1 − FR2

(
cL(y,u2

(i,k)(j))
)) (2cl+1(y,u(i,k)(j))

∂cl+1(y,u(i,k)(j))
∂yq

fR2

(
cl+1(y,u(i,k)(j))2

)

− 2cl(y,u(i,k)(j))
∂cl(y,u(i,k)(j))

∂yq

fR2

(
cl(y,u(i,k)(j))2

) )
.

(42)

Equation (41) yields the sensitivity of the first excursion probability estimator using the Do-412

main Decomposition Method.413

Finally, it can be easily proven that the coefficient of variation δ∂pF /∂yq of the sensitivity414

estimator in equation (41) is equal to:415

δ∂pF /∂yq = 1
∂p̃F (y)/∂yq

√√√√√ 1
N(N − 1)

N∑
j=1

((
1

w(i,k)(j)

∂p̃(i,k)(j)(y,u(i,k)(j))
∂yq

)
− ∂p̃F (y)

∂yq

)2

. (43)

3.4. Practical implementation416

The calculation of gradient estimates using equation (41) involves the partial derivatives417

∂ci,k(y,u)/∂yq, with q = 1, . . . , nY , for all the possible sampled directions. This can be done418

by directly differentiating equation (19) with respect to a design parameter yq, resulting in:419

∂ci,k(y,u)
∂yq

= − bi

(ai,k(y)Tu) |ai,k(y)Tu|

(∂ai,k(y)
∂yq

)T

u

 , (44)

where ∂ai,k(y)/∂yq denotes the derivative of vector ai,k with respect to the design parameter yq.420

As shown in Section 2.2, vector ai,k(y) depends on the i-th unit impulse response function hi(t,y),421
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and its derivative can be calculated directly by differentiating equation (9) as follows:422

∂ai,k(y)
∂yq

=
k∑

m=1
∆tϵm

∂hi (tk − tm,y)
∂yq

ψm, (45)

where ∂hi(t,y)/∂yq is the partial derivative of the i-th unit impulse response function with respect423

to the design parameter yq. From equation (7) it is clear that the unit impulse response function424

depends on the mass matrix, damping matrix, coupling vector and spectral properties (that is,425

eigenvectors and eigenvalues). Therefore, the calculation of the partial derivative of the unit426

impulse response function with respect to a design parameter, can be achieved by applying the427

chain rule for differentiation, as detailed in Appendix C. It is worth noting that the partial428

derivative of the eigenvectors and eigenvalues can be obtained using the method proposed in [34].429

The numerical implementation for calculating the reliability and sensitivity estimates can be430

achieved using equations (29) and (40), which require one dynamic analysis and one sensitivity431

analysis, respectively. Both equations can be evaluated with the same samples, as the weights wi,k432

and f IS,(i,k) use identical indices in both cases. Consequently, the sensitivity analysis becomes a433

byproduct of the reliability analysis.434

3.5. Summary435

The application of the Domain Decomposition Method for calculating the gradient of the436

first excursion probability with respect to a design parameter, in the context of a linear system437

subjected to Gaussian loading, can be achieved by following these steps:438

1. Define the basic information of the structural model. This includes the matrices M , C,439

and K, the vector representing the structural properties of the system, y, and the threshold440

vector b.441

2. Define the Gaussian load using the Karhunen-Loève expansion following equation (1).442

3. Calculate the vector that characterizes the responses ai,k with i = 1, . . . , nη and k = 1, . . . , nT443

using equation (9), and calculate the vector ∂ai,k(y)/∂yq with i = 1, . . . , nη and k = 1, . . . , nT444

using equation (45) and Appendix C.445

4. Calculate the design points z∗
i,k(y), reliability indices βi,k(y) and weights wi,k using equations446

(13), (14) and (B.7), respectively.447

5. Sample (with replacement) a total of N pair of indices (i, k)(j), j = 1, . . . , N , from the set448

I = {1, . . . , nη × nT } with probability wi,k. Then, generate samples u(i,k)(j) following the449
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procedure described in Appendix B.450

6. For each sample, calculate and sort the distances ci,k

(
y,u(i,k)(j)

)
with i = 1, . . . , nη and k =451

1, . . . , nT in ascending order of magnitude using equations (19) and (20). Then, implement452

the sorted notation detailed in Section 3.2.2 and identify the index L associated to each453

sampled.454

7. For each sample, calculate the derivative of the distances ∂ci,k(y,u)/∂yq with i = 1, . . . , nη455

and k = 1, . . . , nT using equation (44), and the sort the values in the same order as in the456

previous step.457

8. Calculate the first excursion probability using equation (29) and its coefficient of variation458

using equation (31).459

9. Calculate the sensitivity estimate using equation (41) and its coefficient of variation using460

equation (43).461

4. Examples462

This section presents two examples that demonstrate the application of the proposed frame-463

work. The first example comprises a two-degree-of-freedom representation of a quarter-car model464

that considers nonproportional damping. The second example involves a large-scale finite element465

model of a curved bridge, demonstrating that the method is also applicable in cases with propor-466

tional damping. The results are compared with a reference method to assess the efficiency of this467

approach.468

4.1. Example 1: Quarter-car model469

The fist example is a quarter-car model, which consist in a two-degree-of-freedom idealization470

of the suspension of a car, as shown in Figure 5. The dynamics of the problem is governed by the471

following two ordinary differential equations:472

 m1 0

0 m2


 ẍ1(t,y.z)

ẍ2(t,y.z)

+

 c1 + c2 −c2

−c2 c2


 ẋ1(t,y.z)

ẋ2(t,y.z)

+

 k1 + k2 −k2

−k2 k2


 x1(t,y.z)

x2(t,y.z)

 =

 k1w(t) + c1ẇ(t)

0

 ,

(46)
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where m1 = 15 kg and m2 = 290 kg represent the unsprung and sprung masses of a quarter473

of the car, respectively. The tire stiffness is k1 = 191000 N/m, while the suspension stiffness is474

k2 = 16200 N/m. Additionally, the damping coefficients for the tire and suspension are c1 = 100475

Ns/m and c2 = 2500 Ns/m, respectively.476

The load acting on the quarter-car model is the road profile w(t), which is modeled as a477

zero-mean Gaussian random field with a squared exponential covariance kernel, with a correlation478

length L = 3 m and a standard deviation of 0.01 m. The car speed considered is 25 m/s over479

a distance of 125 m. The dimension along the road is discretized into 1001 equidistant points,480

considering a total of nKL = 1001 terms. The time is discretized in intervals of ∆t = 0.005 s,481

which means that the problem dynamics have a total duration of 5 seconds. It is also assumed482

that the car starts from a rest position in the x1 and x2 coordinates.483

In order to assess the comfort of a car while driving over a road profile, it is common to484

control two responses of interest: the acceleration of the sprung mass and the suspension stroke485

(the relative displacement between the car body and the unsprung mass), with the latter being486

considered in this example. Specifically, the response of interest is the displacement of mass m2487

with respect to mass m1, expressed as η(y, z, t) = |x2(y, z, t) − x1(y, z, t)|, which involves a total488

of nη = 1001 elementary failure domains. The threshold level is set at b = 3 × 10−2 m, and489

the first excursion probability is estimated using the Domain Decomposition Method, resulting in490

p̃F = 5.1 × 10−3.491

(a)

m1

m2

k1

k2

c1

c2

x1(y, z, t)

x2(y, z, t)

w(z, t)

(b)

road profile

suspension

tire

car body

x1(y, z, t)

x2(y, z, t)

w(z, t)

Figure 5: Example 1: Quarter-car model. (a) 2-degree-of-freedom representation. (b) Physical representation.

The objective is to estimate the sensitivity of the first excursion probability with respect to the492

mass m2 and the stiffness k2 of the model, that is with respect to the design vector y = [m2, k2]T ,493

using both the Domain Decomposition Method and Directional Sampling. In the latter approach,494

the estimation focuses on the effective contributions by directly sampling unit directions according495
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to equation (22), without introducing the importance sampling density.496

Figure 6: Example 1: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower
figure) associated with m2 with respect to the number of samples, using both the Domain Decomposition Method
(DDM) and Directional Sampling (DS).
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Figure 7: Example 1: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower
figure) associated with k2 with respect to the number of samples, using both the Domain Decomposition Method
(DDM) and Directional Sampling (DS).

The evolution of the sensitivity estimates and their coefficient of variation with respect to497

the number of samples is shown in Figures 6 and 7. In this example, a total of 106 samples are498

considered. The sensitivity estimates converge to similar values for both methods. The Domain499

Decomposition Method provides a more stable estimator compared to Directional Sampling, with500

a significantly lower coefficient of variation in all the estimates. Considering an acceptable stabi-501

lization point for the estimates when they reach a 20% coefficient of variation, it can be observed502

that the Domain Decomposition Method requires approximately 400 samples, while Directional503

Sampling requires around 106 samples. In addition, the results have been validated using finite504

differences, where the sensitivity estimator has been estimated with 2 × 106 samples (1 × 106 sam-505

ples in each of the forward and backward steps). The comparison with finite differences, in which506

the proposed technique achieves a 5% coefficient of variation, is presented in Table 3. There is an507

excellent match between the sensitivity estimates calculated with DDM and finite differences.508
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DDM FD
∂p̃F

∂m2
8.90 × 10−5 8.96 × 10−5

∂p̃F

∂k2
−1.41 × 10−5 −1.40 × 10−5

Table 3: Comparison of sensitivity estimates obtained using the Domain Decomposition Method (DDM) achieving
a 5% coefficient of variation, against reference results from finite differences (FD).

The sensitivity analysis with respect to the design parameters m2 and k2 is particularly rel-509

evant for assessing the comfort of the car. As shown in Figure 6, for the chosen parameters,510

an increase in the vehicle’s body mass results in a higher failure probability. This is due to a511

potential decrease in the system’s natural frequency, which makes the system more sensitive to512

low-frequency perturbations in the road profile, ultimately leading to an increased response of513

interest. Furthermore, as shown in Figure 7, an increase in the stiffness k2 also leads to a higher514

failure probability. The reason for this is that a stiffer suspension makes the vehicle more reactive515

to road irregularities, thereby increasing the system’s failure probability.516

4.2. Example 2: Curved bridge subject to Gaussian ground excitation517

The second example corresponds to a 3-D finite element model of a curved bridge, which518

comprises 10068 degrees-of-freedom, illustrated in Figures 8 and 9. This model is based on an519

example presented in [7]. The superstructure of the bridge is modeled as a monolithic box girder520

composed of shell and beam elements. It is curved in the plane x-y with a total length of 119521

m constituted of five spans with length of 24 m, 20 m, 23 m, 25 m, and 27 m, respectively. The522

substructure is modeled with four columns, each supported by four piles, using beam and shell523

elements. The columns, labeled as Ck, for k = 1, 2, 3, 4, have circular cross section with a diameter524

of 1.6 m and a height of 8 m, while the piles have a diameter of 0.6 m and a height of 35 m. The525

interaction between the piles and the soil is modeled using linear springs with translational stiffness526

in the x and y directions, varying linearly from 112 MN/m at the deepest point of the pile to527

0 MN/m the ground level. All elements of the model have the same material properties, which528

correspond to reinforced concrete, with a Young’s modulus of E = 2.09 × 1010 N/m2, a Poisson’s529

ratio ν = 0.2, and a density ρ = 2500 kg/m3. The classical damping considered is equal to 3% for530

all mode shapes.531

The stochastic ground acceleration acting on the bridge is modeled as a discrete white noise532

process with a spectral density of S = 5×104 m2/s3, over a total duration of T = 10 s, discretized533
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into 1001 time instants of duration ∆t = 0.01 s. It is applied at an angle of 45 degrees with respect534

to the x axis. Additionally, the discrete white noise process passes through a Clough-Penzien filter535

[49] and is modulated by the following function m(t):536

m(t) =


(t/5)2 0 ⩽ t ⩽ 5[ s]

1 5 < t ⩽ 6[ s]

e−(t−6)2
t > 6[ s]

. (47)

The Karhunen-Loève representation for the ground acceleration considers a total of nKL = 1001537

terms. It is also assumed that the structure starts from a rest position.538

The responses of interest are defined as the drift of the columns in either x or y direction. The539

failure event corresponds to each of the responses of interest exceeding a threshold of b = 0.02 m.540

That means, eight responses of interest that can be evaluated at every time instant, resulting in541

a total of 8008 elementary failure domains. The response has been calculated with a truncation542

of 100 mode shapes for the dynamic analysis. The first excursion probability is calculated using543

the Domain Decomposition Method resulting in p̃F ≈ 3.0 × 10−3.544

The objective is to estimate the sensitivity of the first excursion probability within the frame-545

work of the Domain Decomposition Method. The sensitivity is estimated with respect to the design546

vector y = [y1, y2, y3, y4]T , where yj denotes the diameter of the j-th column Cj, as illustrated in547

Figure 9.548

27



Figure 8: Example 2: Perspective view of the finite element model of the curved bridge.

Figure 9: Example 2: Top view of the finite element model of the curved bridge.

The sensitivity of the first excursion probability is estimated using both the Domain Decom-549

position Method and Directional Sampling with respect to the design parameter y1. In the latter550

approach, the same considerations discussed in Section 4.1 are followed. The evolution of the551

sensitivity estimator and its coefficient of variation is shown in Figure 10, where a total of 106
552

samples is considered. The sensitivity estimates converge to a similar value for both methods.553

The Domain Decomposition Method provides a more stable estimator compared to Directional554

Sampling. This can be confirmed by observing the lower plot in Figure 10, where the Domain555

Decomposition Method has a coefficient of variation that is considerably lower than that of Direc-556

tional Sampling. Considering an acceptable stabilization point for the estimator when it reaches a557
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20% coefficient of variation, it can be observed that the Domain Decomposition Method requires558

approximately 2000 samples, while the Directional Sampling method cannot reach this value with559

the samples used.560

Figure 10: Example 2: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower
figure) associated with y1 with respect to the number of samples, using both the Domain Decomposition Method
(DDM) and Directional Sampling (DS).

The evolution of the sensitivity estimates with respect to the design parameters yq, where561

q = 1, 2, 3, 4, and the evolution of their coefficient of variation, are shown in Figure 11. The562

results indicate that increasing the diameter of columns 1 and 2 leads to an increase in the563

failure probability of the system, with both columns having almost the same influence, as seen564

in the superimposed results of the curves associated with y1 and y2. In contrast, increasing the565

diameter of columns 3 and 4 (primarily) results in a decrease in the failure probability of the566

system. Considering the same criterion as before, the sensitivity estimates with respect to y1 and567

y2 stabilize with approximate 2000 samples. In the case of the sensitivity estimator with respect568

to y3, stabilizes with approximately 4500 samples, while the sensitivity estimator with respect to569

y4, stabilizes with approximately 1000 samples.570
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Figure 11: Example 2: Evolution of the sensitivity estimator (upper figure) and its coefficient of variation (lower
figure) associated with yq (q = 1, . . . , 4) with respect to the number of samples, using the Domain Decomposition
Method (DDM).

To understand the physical meaning of the presented results, Figure 12 illustrates a schematic571

associated with the most predominant failure response: the displacement of column C4 exceeding572

the prescribed threshold in the x direction. According to the results of the sensitivity estimates573

presented in Figure 11, an increase in the diameter of columns C1 and C2 causes the bridge (viewed574

in plan) to tend to rotate around a point between these columns. This results in increased575

displacements in columns C3 and C4, consequently increasing the system’s failure probability.576

Conversely, an increase in the diameter of columns C3 and C4 helps to control the total translation577

of the bridge, which leads to a reduction in the failure probability of the system.578
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Figure 12: Example 2: Schematic representation of a predominant failure response.

5. Conclusions and outlook579

This contribution has explored the application of the Domain Decomposition Method for es-580

timating the sensitivity of the first excursion probability of a linear system with nonproportional581

damping subject to a Gaussian loading. The sensitivity is calculated as the partial derivative582

of the first excursion probability with respect to design parameters that influence the structural583

response. These derivatives involve the sensitivity analysis of the unit impulse response functions,584

as well as the spectral properties of the system, including the eigenvectors and eigenvalues.585

The proposed framework collects valuable information of the failure domain by exploring it586

in a directional way. For each line explored, the information of the effective contribution of the587

failure probability and its gradient for each elementary failure domain is incorporated into both588

estimators. For this reason, the calculation of the sought sensitivities is achieved with a reduced589

number of samples, demonstrating high efficiency and stability. Furthermore, the sensitivities are590

estimated as a byproduct of the reliability analysis.591

Future extensions of the presented research could explore the following:592

• The design of a modified importance sampling density function, which could improve the593

efficiency of the sensitivity estimates.594

• The effect of the weights on the estimation of effective contributions.595

• The calculation of sensitivity estimates with respect to excitation parameters, such as the596

frequencies of the Clough-Penzien model filters.597
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• The application of the proposed method in the context of reliability-based design optimiza-598

tion (RBO) problems.599

The above-mentioned issues are currently being investigated by the authors.600

6. Acknowledgments601

Appendix A. Gradient of the failure probability602

The deduction of the expression presented in equation (12) can be done by writing the first603

excursion probability presented in equation (11) as:604

pF (y) =
∫
z∈RKL

H(−g(y, z))fZ(z)dz, (A.1)

where H(·) denotes the step function. Then, the differentiation of equation (A.1) with respect to605

a design parameter yq, leads to:606

∂pF (y)
∂yq

= −
∫
z∈RKL

δ(−g(y, z))∂g(y.z)
∂yq

fZ(z)dz, q = 1, . . . , ny, (A.2)

where δ(·) corresponds to Dirac delta. Furthermore, using the following identity [50]:607

∫
Rn

f1(x)δ (f2(x)) dx =
∫

f2(x)=0

f1(x)
∥∇f2(x)∥

dσ, (A.3)

being σ a differential surface element, f1(x) a function, and f2(x) a differentiable function, with608

a non-zero gradient at the points where f2(x) = 0. Then, using the identity of equation (A.3) in609

equation (A.1), the expression for the gradient of the failure probability becomes [51]:610

∂pF (y)
∂yq

= −
∫

g(y,z)=0

∂g(y, z)
∂yq

1
∥∇zg(y, z)∥

fZ(z)dS, q = 1, . . . , ny. (A.4)

Appendix B. Importance sampling density f IS,(i,k)
U (u) and samples generation611

The importance sampling density function f
IS,(i,k)
U (u) is constructed based on the ideas pro-612

posed in [5, 7, 45], with the difference that each effective contribution pi,k has its own importance613

sampling density function, defined as:614

f
IS,(i,k)
U (u) = fU (u|Fi,k) , (B.1)
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where fU (u|Fi,k) is the probability density associated with the direction u on the occurrence of615

an elementary failure event Fi,k, which can be analyzed by applying Bayes’ theorem, as follows:616

fU (u|Fi,k) =P [u⋂Fi,k]
P [Fi,k]

(B.2)

=fU (u) P [u|Fi,k]
P [Fi,k]

(B.3)

=fU (u) P [u|Fi,k]
2ΦZ (−βi,k)

, (B.4)

where P [u|Fi,k] is the probability of occurrence of the elementary failure event Fi,k given a par-617

ticular direction u in the standard Gaussian space. This term can be expressed as:618

P [u|Fi,k] = 1 − FR2

(
ci,k(y,u)2

)
, (B.5)

and the proposed importance sampling density function becomes:619

f
IS,(i,k)
U (u) = fU (u) (1 − FR2 (ci,k(y,u)2))

2ΦZ (−βi,k)
. (B.6)

The process of generating samples u(j), j = 1, . . . , N following f
IS,(i,k)
U (u) is done by the fol-620

lowing procedure [5, 6, 7]:621

1. Set j = 1.622

2. Draw a pair of indices (I, K) from the set Ω = {(i, k) : i ∈ {1, . . . , nη} , k ∈ {1, . . . , nT }} with623

probability proportional to the weights wi,k, i = 1, . . . , nη, k = 1, . . . , nT , defined as follows:624

wi,k = P [Fi,k]∑nη

h=1
∑nT

j=1 P [Fh,j]
. (B.7)

3. Generate a sample z of the random vector Z, together with the realizations of u1 and u2,625

which follow a uniform distribution between 0 and 1.626

4. Calculate α = −Φ−1 ((1 − u1)Φ(−βi,k)), where Φ−1(·) denotes the inverse cumulative stan-627

dard Gaussian distribution.628

5. Calculate a∗
I,K(y) = aI,K(y)/ ∥aI,K(y)∥, where aI,K(y) is defined in equation (9).629
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6. Define z∗ as:630

z∗ =


z +

(
α − zTa∗

I,K(y)
)
a∗

I,K(y) if u2 ⩽ 1/2

−z −
(
α − zTa∗

I,K(y)
)
a∗

I,K(y) otherwise
, (B.8)

and calculate the desired sample as u(j) = z∗/ ∥z∗∥.631

7. If j = N , stop the procedure; otherwise, increment j by 1 and return to step 2.632

Appendix C. Derivative of unit impulse response function633

Equation (7) can be recast as:634

hi(t,y) =
2nD∑
r=1

Ar,i(y)Br(t,y), (C.1)

where i = 1, . . . , nη. Then, the terms Ar,i(y) and Br(t,y) are defined as:635

Ar,i(y) = γT
i ϕr(y)ϕr(y)Tga(y)
ϕr(y)TMa(y)ϕr(y)

, (C.2)

Br(t,y) = eλr(y)t, (C.3)

where r = 1, . . . , 2nD and i = 1, . . . , nη. Therefore, the partial derivative of the unit impulse636

response function in equation (C.1) with respect to the design parameter yq, where q = 1, . . . , nY ,637

is given by:638

∂hi(t,y)
∂yq

=
nD∑
r=1

(
∂Ar,i(y)

∂yq

Br(t,y) + Ar,i(y)∂Br(t,y)
∂yq

)
. (C.4)

Then, considering A
{1}
r,i (y) = γT

i ϕr(y)ϕr(y)Tga(y) and A{2}
r (y) = ϕr(y)TMa(y)ϕr(y), it is pos-639

sible to calculate the derivative of equation (C.4) as:640

∂Ar,i(y)
∂yq

=

∂A
{1}
r,i (y)
∂yq

A{2}
r (y) − A

{1}
r,i (y)∂A{2}

r (y)
∂yq

 1(
A

{2}
r

)2 (C.5)

∂Br(t,y)
∂yq

= teλrt ∂λr

∂yq

. (C.6)
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where641

∂A
{1}
r,i (y)
∂yq

= γT
i

(
∂ϕr(y)

∂yq

ϕr(y)Tga(y) + ϕr(y)
(

∂ϕr(y)T

∂yq

ga(y) + ϕr(y)T ∂ga(y)
∂yq

))
(C.7)

∂A{2}
r (y)
∂yq

= ∂ϕr(y)T

∂yq

Ma(y)ϕr(y) + ϕr(y)T

(
∂Ma(y)

∂yq

ϕr(y) +Ma(y)∂ϕr(y)
∂yq

)
. (C.8)

It is worth noting that, to implement equation (C.4), it is necessary to calculate the partial642

derivatives of the eigenvalue ∂λr(y)/∂yq and the eigenvector ∂ϕr(y)/∂yq. This can be done by643

following the approach proposed in [34]. The advantage of this framework is that the calculation644

of derivatives for the r-th eigenvalue and eigenvector does not depend on other eigenvalues and645

eigenvectors [52]. This is particularly important when simplifying the analysis by neglecting the646

total number of mode shapes needed to calculate the responses of interest. Therefore, the sought647

derivatives can be calculated solving the following system of equations:648

 Ka(y) − λr(y)Ma(y) −Ma(y)ϕr(y)

−ϕr(y)TMa(y) 0




∂ϕr(y)
∂yq

∂λr(y)
∂yq

 =


−
(

∂Ka(y)
∂yq

− λr(y)∂Ma(y)
∂yq

)
ϕr(y)

1
2
ϕr(y)T ∂Ma(y)

∂yq

ϕr(y)

 .

(C.9)

It is important noting that Equation (C.9) is calculated under the assumption that the mode649

shapes are normalized, such as ϕr(y)T (−Ma(y))ϕr(y) = 1, and applies for the case without650

repeated eigenvalues.651
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