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Abstract10

Various numerical methods have been extensively studied and used for reliability analysis over the past11

several decades. However, how to understand the effect of numerical uncertainty (i.e., numerical errors due12

to the discretization of the performance function) on the failure probability is still a challenging issue. The13

active learning probabilistic integration (ALPI) method offers a principled approach to quantify, propagate14

and reduce the numerical uncertainty via computation within a Bayesian framework, which has not been15

fully investigated in context of probabilistic reliability analysis. In this study, a novel method termed16

‘Parallel Adaptive Bayesian Quadrature’ (PABQ) is proposed on the theoretical basis of ALPI, and is aimed17

at broadening its scope of application. First, the Monte Carlo method used in ALPI is replaced with an18

importance ball sampling technique so as to reduce the sample size that is needed for rare failure event19

estimation. Second, a multi-point selection criterion is proposed to enable parallel distributed processing.20

Four numerical examples are studied to demonstrate the effectiveness and efficiency of the proposed method.21

It is shown that PABQ can effectively assess small failure probabilities (e.g., as low as 10−7) with a minimum22

number of iterations by taking advantage of parallel computing.23

Keywords: Reliability analysis, Gaussian process, Numerical uncertainty, Bayesian quadrature, Parallel24

computing25

1. Introduction26

In many fields, reliability analysis has manifested itself as an essential tool to study the performance27

of a physical or an engineering system in the presence of uncertainties. A fundamental task in reliability28

analysis is to compute the probability of a predefined failure event, which is referred as failure probability.29

Let X = [X1, X2, · · · , Xd] ∈ X ⊆ Rd denote a vector of d random variables with known joint probability30
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density function (PDF) fX(x). The performance function (also known as limit state function) is given as31

y = g(x) : X 7→ Y, by which the failure event F = {x ∈ X : g(x) ≤ 0} is defined. The associated failure32

probability Pf is defined by the following multi-dimensional integral:33

Pf =

∫
X
I(x)fX(x)dx, (1)

where I(x) is the failure indicator function, which is defined as:34

I(x) =

 1, if g(x) ≤ 0

0, otherwise
. (2)

To assess the failure probability defined in Eq. (1), a variety of numerical methods have been extensively35

studied and applied by researchers and engineers over the past several decades. In general, the existing36

methods can be roughly classified into five categories:37

1. Stochastic simulation methods, e.g., Monte Carlo simulation (MCS) and its variants (e.g., Subset38

Simulation (SS) [1] and Importance Sampling (IS) [2, 3]). Despite of their relative robustness to the39

dimension and complexity of the problem at hand, most of the stochastic simulation methods involve a40

considerable number of deterministic simulations, and hence are still very computationally demanding,41

especially for an expensive computational model with a small failure probability;42

2. Asymptotic approximation methods, such as first-order reliability method (FORM) [4, 5] and second-43

order reliability method (SORM) [6, 7]. This kind of methods relies on the first- or second-order44

Taylor expansion of the limit state surface at the most probable point (MPP). Hence, its application45

is challenging whenever one must deal with multiple MPPs and highly nonlinear problems. Besides,46

FORM and SORM only yield approximate results in general cases, and provide no measure of the47

error introduced by the expansion;48

3. Moment methods, for instance, integer moment based methods [8, 9, 10], fractional moment based49

methods [11, 12, 13], moment-generating function (or Laplace transform) based methods [14, 15, 16].50

The basic idea of these methods is to fit a proper probability distribution to the output variable51

of a performance function based on the knowledge of its estimated moments of certain type, which,52

however, typically leads to an ill-posed inverse problem (i.e., the so-called classical moment problem).53

Moreover, the estimation errors arising from both the estimated moments and assumed probability54

distribution model could be intractable to assess and handle;55

4. Probability-conservation based methods, including, e.g., probability density evolution method [17,56

18, 19, 20] and direct probability integral method [21, 22, 23, 24]. These methods are established on57

rigorous theoretical fundamentals, but may still suffer from numerical difficulty especially for problems58

with high-dimensional inputs and/or rare failure events;59
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5. Surrogate assisted methods. This type of methods is of special interest in the present paper since the60

proposed method also falls in this category in some sense.61

Surrogate assisted methods aim at constructing an inexpensive-to-evaluate surrogate model in place of62

the original expensive-to-evaluate performance function based on a limited number of its observations. Then,63

for example, stochastic simulation methods can be directly applied in conjunction with the surrogate model64

to produce a failure probability estimate. Typical surrogate models for reliability analysis include response65

surface methods [25, 26, 27], support vector machines [28, 29, 30], polynomial chaos expansions [31, 32],66

Gaussian process regression (GPR, also known as Kriging) [33, 34, 35], etc. In addition to developing new67

surrogate models, there has been growing attention paid to adaptive (optimal) design of experiments for68

training these surrogates. In this line, the GPR model is of particular interest for constructing an adaptive69

meta-model due to its attractive features, especially for active learning sampling strategies. Representative70

learning functions consist of the expected feasibility [36], U [37], expected risk [38], H [39], least improvement71

[40], reliability-based expected improvement [41], folded normal based expected improvement [42], upper-72

bound posterior variance contribution (UPVC) [43] and so forth. Besides, the following three aspects have73

also been paid special attention to in recent publications:74

1. assessing small failure probabilities. In addition to MCS, other stochastic simulation methods requiring75

less samples are combined with active learning Kriging (AK) to evaluate small failure probabilities.76

Representative works include, e.g., AK-IS [44], meta-IS [34], AK-SS [45] and AK-MCMC (Markov77

chain Monte Carlo) [46], etc;78

2. addressing high-dimensional problems. This aspect is mainly tackled by using some dimension-79

reduction techniques, e.g., active subspace methods [47, 48], principal component analysis [49, 50, 51],80

sufficient dimension reduction [52] and sliced inverse regression [53], etc;81

3. enabling parallel computing. Most existing learning functions can only identify one point at each82

iteration, hindering the use of ever-increasing parallel-computing facilities. To overcome this obstacle,83

tailored strategies have been proposed, which are mainly based on applying clustering algorithms, such84

as k-means clustering [34], density clustering [54], spectral clustering [55] and k-medoids clustering [56].85

The interested reader can refer to [57] for a comprehensive review. Despite great efforts, most existing86

Kriging assisted methods still possess respective limitations, and leave room for further improvement in87

terms of applicability, efficiency and accuracy.88

In fact, Gaussian process model can be used in a different way, instead of a pure surrogate model. The89

first author and his co-workers proposed an active learning probabilistic integration (ALPI) method in a90

recent paper [43]. In this method, a Bayesian perspective is advocated to reinterpret failure probability91

integral estimation. By placing a prior distribution (i.e., Gaussian process) over the performance function,92

we finally arrive at a posterior distribution over the failure probability conditional on some observations of93
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the performance function. The induced posterior distribution of the failure probability reflects the fact that94

the performance function has been discretised, and hence numerical uncertainty arises due to discretization95

error. A novel feature of ALPI is that the numerical uncertainty can be properly quantified, propagated and96

reduced via computation, which distinguishes it from other existing methods. Unfortunately, the idea is only97

investigated in the context of imprecise probabilities, and lacks of comprehensive studies for probabilistic98

reliability analysis.99

In this paper, the ALPI method is specially studied under the framework of precise probabilities. The100

basic idea is explained in a detailed way, and some limitations existing in the previous numerical algorithm101

are identified. Most importantly, we propose a new method called ‘Parallel Adaptive Bayesian Quadra-102

ture’ (PABQ) on the theoretical basis of the original ALPI method, while alleviating its main limitations.103

Compared to ALPI, PABQ has two significant advantages. First, PABQ can select multiple points at each104

iteration, and as such supports parallel distributed processing. Second, PABQ can assess very small fail-105

ure probabilities without generating a prohibitively large number of candidate samples. Additionally, the106

Matlab code of the developed method is freely available to the public 1.107

The outline of the remaining paper is as follows. The original ALPI method is revisited in Section 2108

and the theoretical foundations are deepened. Section 3 gives the newly developed PABQ method. Four109

numerical examples are investigated in Section 4 to illustrate the performance of the PABQ method. Section110

5 gives some concluding remarks of the present study.111

2. Active learning probabilistic integration112

This section gives a review of the ALPI method. In comparison to [43], we will explain the basic idea113

of ALPI in a more detailed and rigorous way, and provide its numerical algorithm that was omitted in [43].114

Besides, the advantages and disadvantages of the method will be discussed.115

2.1. Theoretical background116

The ALPI method offers a Bayesian approach to approximating the intractable failure probability inte-117

gral, which is defined in Eq. (1). The method is strongly motivated by Bayesian (probabilistic) integration118

(also well known as Bayesian quadrature or cubature) [58, 59, 60]. To be specific, the ALPI method turns119

the task of failure probability estimation into a Bayesian inference problem from limited data, as opposed to120

classical frequentist inference. To do so, we think of the g-function as being random. This is understandable121

in the Bayesian sense that the numerical value of g(x) is always unknown until we actually evaluate g(·)122

at some point x, though the g-function is said to be deterministic. Such interpretation is justified since123

we can not afford to compute g(·) at every possible location. In this regard, epistemic uncertainty due to124

1to be released upon acceptance of the paper
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discretisation error arises where the g-function is not evaluated. This kind of uncertainty will propagate into125

the failure indicator function I(x) and will therefore affect the failure probability estimate. Consequently,126

the epistemic uncertainty should be properly treated within our computational framework, because it is127

not always negligible, especially when the available observations are scarce. Following a standard Bayesian128

approach, the ALPI method is intended to quantify, propagate and reduce the epistemic uncertainty. Specif-129

ically, ALPI first assigns a prior distribution over the g-function. Then, conditioning on some observations130

D = {X ,Y } (X =
{
x(i)

}n
i=1

with x(i) being the i-th row of X and Y =
{
y(i)
}n
i=1

with y(i) = g(x(i)) being131

the i-th row of Y ), gives arise to a posterior distribution of g according to Bayes’ rule. This will in turn132

imply a posterior distribution over I(x), and so does over Pf . Technical details of ALPI will be discussed133

below.134

ALPI starts by placing a Gaussian process (GP) prior over the g-function, which is written as:135

ĝ0 ∼ GP(mĝ0(x), kĝ0(x,x
′)), (3)

where ĝ0 denotes the prior distribution of g before seeing any observations; mĝ0(x) and kĝ0(x,x
′) are the136

prior mean and covariance functions respectively, by which the GP model can be completely characterized.137

Among many options for mĝ0(x) and kĝ0(x,x
′) in the literature, without loss of generality the constant138

prior mean is adopted (i.e., mĝ0(x) = β), and the prior covariance function takes the squared exponential139

kernel:140

kĝ0(x,x
′) = σ2 exp

(
−1

2
(x− x′)Σ−1 (x− x′)

⊤
)
, (4)

where σ2 with σ > 0 denotes the process variance; Σ = diag(l21, l
2
2, · · · , l2d) with li > 0 being the length scale141

in the i-th dimension, and diag(·) forms a diagonal matrix whose diagonal elements are its arguments. The142

d+2 parameters collected in ϑ = {β, σ, l1, l2, · · · , ld} are referred to hyper-parameters to be determined. In143

a fully Bayesian fashion, those hyper-parameters should also be specified by Bayesian inference (see, e.g.,144

[61]). However, this will render the posterior distribution of g analytically intractable. For this reason, it145

was not explored in ALPI.146

Alternatively, given the data D, the hyper-parameters are fitted by minimizing the negative log marginal147

likelihood (NLML) L(ϑ):148

ϑ̂ = argmin
ϑ

L(ϑ), (5)

with the NLML L(ϑ) being:149

L(ϑ) = − log [p(Y |X ,ϑ)] =
1

2
(Y − β)⊤K−1

ĝ0
(Y − β) +

1

2
log [|K ĝ0 |] +

n

2
log[2π], (6)

where p(Y |X ,ϑ) is the marginal likelihood following a normal distribution; K ĝ0 is the covariance matrix150

with (i, j)-th entry [K ĝ0 ]i,j = kĝ0(x
(i),x(j)).151
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Once the point estimate hyper-parameters ϑ̂ are obtained, it turns out that the posterior distribution of152

g can be derived in closed form, i.e., another GP:153

ĝn ∼ GP(mĝn(x), kĝn(x,x
′)), (7)

where ĝn denotes the posterior distribution of g conditional on D; mĝn(x) and kĝn(x,x
′) are the posterior154

mean and covariance functions respectively, which are analytically available:155

mĝn(x) = mĝ0(x) + kĝ0(x,X )⊤K−1
ĝ0

(Y −mĝ0(X )) , (8)

156

kĝn (x,x′) = kĝ0 (x,x
′)− kĝ0(x,X )⊤K−1

ĝ0
kĝ0(x

′,X ), (9)

where mĝ0(X ) is an n× 1 mean vector with i-th element being mĝ0(x
(i)); kĝ0(x,X ) is an n× 1 covariance157

vector with i-th entry being kĝ0
(
x,x(i)

)
; kĝ0(x

′,X ) is defined in a way similar to kĝ0(x,X ). Note that in158

Eqs. (8) and (9) ϑ should be updated with ϑ̂.159

It can be deduced that the posterior distribution of failure indicator function I follows a generalized160

Bernoulli process 2 (GBP):161

În ∼ GBP(mÎn
(x), kÎn (x,x′)), (10)

where În denotes the posterior distribution of I conditional on D; mÎn
(x) and kÎn (x,x′) are the posterior162

mean and covariance functions respectively. The posterior mean of I can be derived in closed form [43]:163

mÎn
(x) = Φ

(
−mĝn(x)

σĝn (x)

)
, (11)

where Φ is the cumulative distribution function of the standard normal distribution; σĝn (x) is the posterior164

standard derivation (STD) function of g, i.e., σĝn (x) =
√

kĝn (x,x). The posterior covariance function of I,165

however, is not analytically tractable. Only closed-form expression for its posterior variance function σ2
În

(x)166

is available [43]:167

σ2
În

(x) = Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)

σĝn (x)

)
. (12)

The posterior distribution P̂f,n of failure probability Pf conditional on the data D should thus follow168

a random variable, which reflects our epistemic uncertainty about Pf , due to the limited number of obser-169

vations. Note that the exact posterior distribution of Pf , however, is not known. Instead, the posterior170

mean and variance of Pf should be more of interest, where the posterior mean corresponds to the failure171

probability predictor and the posterior variance measures the prediction uncertainty. By applying Fubini’s172

2‘generalized’ indicates that the Bernoulli process considered here is location-dependent, in contrast to not considering the

dependence in conventional definition of a Bernoulli process.
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theorem, the posterior mean and variance of Pf can be derived as [43]:173

mP̂f,n
= EÎn

[
P̂f,n

]
= EÎn

[∫
X
În(x)fX(x)dx

]
=

∫
X
EÎn

[
În(x)

]
fX(x)dx

=

∫
X
mÎn

(x)fX(x)dx

=

∫
X
Φ

(
−mĝn(x)

σĝn (x)

)
fX(x)dx,

(13)

174

σ2
P̂f,n

= VÎn

[
P̂f,n

]
= EÎn

[(
P̂f,n − EÎn

[
P̂f,n

])2]
= EÎn

[(∫
X
În(x)fX(x)dx−

∫
X
EÎn

[
În(x)

]
fX(x)dx

)2
]

= EÎn

[(∫
X

(
În(x)− EÎn

[
În(x)

])
fX(x)dx

)2
]

= EÎn

[(∫
X

(
În(x)− EÎn

[
În(x)

])
fX(x)dx

)
×
(∫

X

(
În(x

′)− EÎn

[
În(x

′)
])

fX(x′)dx′
)]

= EÎn

[∫
X

∫
X

(
În(x)− EÎn

[
În(x)

])(
În(x

′)− EÎn

[
În(x

′)
])

fX(x)fX(x′)dxdx′
]

=

∫
X

∫
X
EÎn

[(
În(x)− EÎn

[
În(x)

])(
În(x

′)− EÎn

[
În(x

′)
])]

fX(x)fX(x′)dxdx′

=

∫
X

∫
X
kÎn (x,x′) fX(x)fX(x′)dxdx′,

(14)

where EÎn
[·] and VÎn

[·] denote expectation and variance operators taken over În respectively. For compu-175

tational purposes, Eq. (14) is further simplified by considering its upper bound. According to the Cauchy-176

Schwarz inequality (kÎn (x,x′) ≤ σÎn
(x)σÎn

(x′)), an upper-bound of the posterior variance (UPV) σ2
P̂f,n

is177

given as [43]:178

σ2
P̂f,n

≤ σ2
P̂f,n

=

(∫
X

√
Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)

σĝn (x)

)
fX(x)dx

)2

, (15)

where the equality holds when the correlation of În between any two locations (x,x′) is always equal to 1,179

and σ2
P̂f,n

denotes the upper-bound of the posterior variance.180

At the theoretical level, ALPI provides two important benefits. First, it offers a principled approach to181

the quantification and propagation of numerical uncertainty via computation within the Bayesian framework.182

Second, it gives the possibility to reduce the numerical uncertainty by using an active learning strategy (see183

next subsection).184
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2.2. Numerical algorithm185

For practical reliability analysis, the failure probability estimate should be inferred using as few obser-186

vations as possible, with the premise of limiting its numerical uncertainty within a pre-specified tolerance.187

Besides, as the posterior mean and UPV of failure probability (Eqs. (13) and (15)) lack of closed-form solu-188

tions, a numerical integrator is necessary to make the method practically feasible. The numerical algorithm189

of the ALPI method for failure probability estimation is summarized in Appendix A.190

When it comes to numerical implementation, ALPI shows two main limitations. First, it is not applicable191

to problems with extremely small failure probabilities (typically, less than 10−4) as a large number of192

Monte Carlo (MC) samples (typically, more than 106) are required, making each iteration computationally193

cumbersome and even infeasible. Second, it is not suitable for parallel computing since only one point194

is identified at each iteration, resulting in a waste of useful information and computational resources for195

engineering applications.196

3. Parallel adaptive Bayesian quadrature197

The major limitations of ALPI at implementation level will be addressed in this section. Further, a novel198

method, called ‘Parallel Adaptive Bayesian Quadrature’ (PABQ), is presented on the theoretical basis of199

ALPI. As its name indicates, the proposed PABQ method can support parallel distributed processing. Most200

importantly, PABQ is able to estimate very small failure probabilities (e.g., 10−7).201

3.1. General remarks202

As we did not imply any distribution types for X when making Bayesian inference about the failure203

probability in the last section, it means that the ALPI framework is naturally applicable in the stan-204

dard normal space. In view of this, let us transform g(x) from the physical space X to the standard205

normal space U , i.e., g(x) = g(T−1(u)) = G(u), where u is a realization of the standard normal vector206

U = [U1, U2, · · · , Ud] ∈ U ⊆ Rd and T−1 is the inverse transformation (e.g., iso-probabilistic, Nataf, and207

Rosenblatt transformation, etc.). For clarification, the transformed performance function is denoted as208

Z = G(U). Different from ALPI, the proposed PABQ method will be implemented with the G = g ◦ T−1-209

function.210

3.2. Importance ball sampling211

In this subsection, we propose an importance ball sampling (IBS) technique to replace the MC method212

used in the conventional ALPI method. Let us first introduce a ball, a region enclosed by a sphere or213

hypersphere. The d-ball of radius r > 0 in the standard normal space U can be defined as Bd(r) =214 {
u ∈ Rd : ||u||2 ≤ r

}
, where || · ||2 denotes the 2-norm. The ball is said to be ‘important’ when it can cover215
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the standard normal space with relatively large probability content (in case that r is appropriately chosen).216

The uniform PDF over Bd(r) takes the form:217

fB (u) =

 1
Vd(r)

, if ||u||2 ≤ r;

0, otherwise
, (16)

where Vd (r) = πd/2

Γ( d
2+1)

rd is the volume of Bd(r), Γ (·) is Euler’s gamma function. To generate random218

points uniformly distributed within the d-ball, there are many methods available in the literature. In this219

study, one algorithm reported in [62] is adopted, as summarized in Algorithm 1.220

Algorithm 1 Generate uniform samples within the d-ball [62]

1: Input: dimension d, radius r and sample size Nibs

2: for i = 1, 2, · · · , Nibs do

3: Generate d normally distributed samples, w = [w(1), w(2), · · · , w(d)], w(i) ∼ N (0, 1)

4: Generate a uniformly distributed sample v from the interval [0, 1]

5: Return the i-th vector u(i) = rv1/dw
||w||2

6: end for

7: Output: U =
{
u(i)

}Nibs

i=1
: Nibs uniform samples in Bd(r)

Then, consider an auxiliary PDF constructed as follows:221

f0 (u) =

 (1−∆) fB (u) , ||u||2 ⩽ r

fU (u) , otherwise
, (17)

where fU (u) is the joint PDF of U ; ∆ is a normalizing constant that ensures that the PDF f0 (u) integrates222

to one, which is actually equal to the probability of fU (u) outside Bd(r), i.e., ∆ =
∫
U\B fU (u) du. The223

posterior mean mP̂f,n
and upper-bound of posterior standard deviation (UPSTD) σP̂f,n

with respect to the224

G-function can be reformulated respectively as:225

mP̂f,n
=

∫
U
Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)du

=

∫
U
Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)

f0 (u)
f0 (u) du

=

∫
B
Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)

(1−∆) fB (u)
(1−∆) fB (u) du

+

∫
U\B

Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)

fU (u)
fU (u) du

=Vd (r)

∫
B
Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)fB (u) du

+

∫
U\B

Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u) du,

(18)
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σP̂f,n
=

∫
U

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)du

=

∫
U

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)

f0 (u)
f0 (u) du

=

∫
B

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)

(1−∆)fB (u)
(1−∆)fB (u) du

+

∫
U\B

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)

fU (u)
fU (u) du

=Vd (r)

∫
B

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)fB (u) du

+

∫
U\B

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u) du,

(19)

where mĜn
(u) and σĜn

(u) are the posterior mean and STD functions of G conditional on n observations.226

Note that if one chooses a sufficiently small ∆ (i.e., r is sufficiently large), fU (u) over U\B will approach to227

zero. In this case, the last terms in both Eqs. (18) and (19) can be neglected, and hence mP̂f,n
and σP̂f,n

228

are approximately equal to:229

mP̂f,n
≈ Vd (r)

∫
B
Φ

(
−
mĜn

(u)

σĜn
(u)

)
fU (u)fB (u) du, (20)

230

σP̂f,n
≈ Vd (r)

∫
B

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
fU (u)fB (u) du. (21)

The above two equations are the basic of the proposed IBS method, and fB(u) is regarded as the importance231

sampling density. The IBS estimators of Eqs. (20) and (21) are given as:232

m̃P̂f,n
=

Vd (r)

Nibs

Nibs∑
i=1

Φ

−
mĜn

(u(i))

σĜn

(
u(i)

)
 fU (u(i)), (22)

233

σ̃P̂f,n
=

Vd (r)

Nibs

Nibs∑
i=1

√√√√√Φ

−
mĜn

(u(i))

σĜn

(
u(i)

)
Φ

mĜn
(u(i))

σĜn

(
u(i)

)
fU (u(i)), (23)

where u(i) ∼ fB (u). The variances of the estimators are formulated as follows:234

V
[
m̃P̂f,n

]
=

V 2
d (r)

(Nibs − 1)Nibs

Nibs∑
i=1

Φ
−

mĜn
(u(i))

σĜn

(
u(i)

)
 fU (u(i))− m̃P̂f,n

2

, (24)

235

V
[
σ̃P̂f,n

]
=

V 2
d (r)

(Nibs − 1)Nibs

Nibs∑
i=1


√√√√√Φ

−
mĜn

(u(i))

σĜn

(
u(i)

)
Φ

mĜn
(u(i))

σĜn

(
u(i)

)
fU (u(i))− σ̃P̂f,n


2

. (25)
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Similar to the MC population in ALPI, the population generated from fB (u) also plays two roles. First,236

the posterior mean and UPSTD of the failure probability should be evaluated numerically based on those237

samples at each iteration, as shown in Eqs. (22) and (23). Second, it will be used as a candidate sample238

pool by which multiple promising points can be identified at each iteration (see next subsection).239

Given dimension d, the IBS method has two parameters to be specified appropriately, i.e., radius r and240

simple size Nibs. As we have mentioned, r should be large enough to ensure that ∆ is small enough. By doing241

so, (1) the bias between Eqs. (20) and (18), and also Eqs. (21) and (19) can be neglected; (2) candidate242

samples can reach the failure domain characterized by a small probability. The probability of fU (u) within243

the d-ball can be given as (see Appendix E of [63]):244

F (d, r) =
1

Γ (d/2)

∫ r2/2

0

xd/2−1 exp(−x)dx. (26)

Based on this, r can be determined as the solution to:245

F (d, r) = 1−∆, (27)

It should be noted that given a fixed ∆, r increases with d. For example, if we set ∆ as 10−8, r ≈ 6.07 for246

d = 2, and r ≈ 6.77 for d = 5. As for Nibs, it cannot be too small otherwise the estimators of mP̂f,n
and247

σP̂f,n
will process relatively large variances, and also cannot fill the d-ball well. On the contrary, a too large248

Nibs can lead to numerical difficulty and memory problems.249

As an illustration, Fig. 1 shows two populations generated respectively by MC and IBS in two dimensions250

with the same sample size 105. Obviously, the IBS method can produce a better space-filling population251

and cover a larger area than that of MC method. If one would like the MC population to cover as large252

space as the IBS population, the sample size should be increased many times (> 103).253

3.3. Multi-point UPVC criterion254

In order to enable parallel processing, a batch of informative points should be identified to evaluate on the255

G-function at each iteration, rather than only one single point. For this purpose, we propose a multi-point256

UPVC criterion, which leverages the advantages of both the UPVC function [43] and k-means clustering257

[64].258

Suppose that we have inferred a GP posterior Ĝn ∼ GP(mĜn
(u), kĜn

(u,u′)) of G at a certain step of the259

proposed PABQ method. Analogous to Eq. (A.3), the corresponding UPVC function can be defined as:260

UPVC(u) =

√√√√Φ

(
−
mĜn

(u)

σĜn
(u)

)
Φ

(
mĜn

(u)

σĜn
(u)

)
× fU (u), (28)

where σĜn
(u) =

√
kĜn

(u,u) is the posterior STD function of G. Note that σ2
P̂f,n

=
[∫

U UPVC(u)du
]2

261

holds, and hence the UPVC function is a measure of the contribution of numerical uncertainty at the point262
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(a) MC method (Nmc = 105) (b) IBS method (Nibs = 105)

Figure 1: Comparison between MC and IBS methods in two dimensions.

u to the UPV of the failure probability. The traditional UPVC criterion, however, only selects the point263

among a MC population that has the maximum UPVC value as the best next point to evaluate on the G-264

function. As such, other information provided by the UPVC function that might be still useful is discarded265

at each iteration. This drawback can be alleviated by identifying multiple points. The conventional k-means266

clustering technique can be used to partition U into k clusters, but it cannot take the UPVC measure into267

account. In this study, a weighted clustering algorithm is proposed by combining the UPVC function with268

k-means clustering, which is referred as ‘UPVC-weighted k-means clustering’. Suppose that we wish to269

select q points among U at each iteration, and hence evaluation of the G-function at these q points can270

be distributed on q processors simultaneously. The number of points q also corresponds to the number of271

clusters. A compact pseudocode of the proposed algorithm is given in Algorithm 2. The selected q points272

correspond to the q centroids produced by the proposed UPVC-weighted k-means clustering. It should be273

pointed out that the identified points usually do not belong to U any more due to the weighted averaging274

operator embedded in the proposed algorithm.275

A test example is considered here to illustrate the proposed multi-point UPVC criterion. The performance276

function is given as Z = G(U) = U2
1−U2+2, where U1 and U2 are two independent standard normal variables.277

For reproducibility, we specify the initial observed locations asU =
{
(−

√
5, 0), (0, 0), (

√
5, 0), (0,−

√
5), (0,

√
5)
}
.278

Based on these five initial observations, we can obtain a posterior GP over the G-function and also the UPVC279

function. Additional q = 5 points are then identified by the proposed UPVC-weighted k-means clustering280

algorithm from 105 uniform samples within the 2-ball of r = 6. As shown in Fig. 2, the newly selected points281

are sparsely located in areas where the UPVC values are not very small. Therefore, the total information282

gained from those 5 points could be more than that of the one with the maximum UPVC value.283
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Algorithm 2 UPVC-weighted k-means clustering algorithm

Input: the number of clusters q, UPVC(u) and U

1. Initialization. Randomly select q points among U as the initial centroids , denoted by E(1) ={
e(i)
}q
i=1

;

2. Assignment step. Each point among U is assigned to a cluster for which the squared Euclidean

distance between the point and the cluster centroid is shortest. The i-th cluster is denoted as C(i) ={
c
(i)
j

}Ni

j=1
, where c

(i)
j is the j-th point in the i-th cluster (j = 1, 2, · · · , Ni);

3. Update step. Each centroid is then updated by UPVC-weighted mean of the cluster:

e(i) =

∑Ni

j=1 UPVC(c
(i)
j )× c

(i)
j∑Ni

j=1 UPVC(c
(i)
j )

4. Iteration. Repeat the assignment step and update step until the centroids do not change or the

predefined number of iterations is reached.

Output: q centroids

3.4. Summary of the proposed method284

The numerical implementation procedure of the proposed PABQ method for reliability analysis, which285

is also shown in Fig. 3, consists of the following main steps:286

287

Step B.1: Generate uniformly distributed samples within the d-ball288

Generate Nibs uniform samples within the d-ball of radius r, using Algorithm 1, denoted as U =289 {
u(i)

}Nibs

i=1
.290

Step B.2: Get initial observations291

Randomly select N0 samples among U , denoted by U =
{
u(i)

}N0

i=1
. These samples are evaluated on the292

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 2: Illustration of the proposed multi-points UPVC criterion by a test example.
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G-function in parallel to obtain the corresponding observations Z =
{
z(i)
}N0

i=1
( z(i) = G(u(i))). The initial293

dataset is constructed by D = {U ,Z}. Let n = N0.294

Step B.3: Make Bayesian inference about the failure probability295

By assigning a GP prior for the G-function, we finally arrive at the posterior mean and UPSTD of the fail-296

ure probability conditional onD. In this study, the prior mean and covariance of Ĝ0 ∼ GP(mĜ0
(x), kĜ0

(x,x′))297

are assumed to be a constant and the squared exponential kernel respectively. The involved hyper-parameters298

are tuned by using the maximum likelihood estimation, and this stage is implemented with the fitrgp func-299

tion in Statistics and Machine Learning Toolbox of Matlab. The posterior mean and UPSTD of the failure300

probability are then evaluated based on Eqs. (22) and (23).301

Step B.4: Check the stopping criterion302

If
σ̃P̂f,n

m̃P̂f,n

< ϵ is satisfied, go to Step B.6; Else, go to Step B.5. Here
σ̃P̂f,n

m̃P̂f,n

denotes the estimated303

upper-bound of the posterior COV of the failure probability, and ϵ is a user-specified threshold.304

Step B.5: Enrich the previous dataset305

Identify additional q points by using the proposed multi-point UPVC criterion (see Algorithm 2), denoted306

by U+ =
{
u
(i)
+

}q

i=1
. Then, the corresponding observations of the G-function at those q identified points U+307

should be obtained using parallel computing, denoted by Z+ =
{
z
(i)
+

}q

i=1
with z

(i)
+ = G(u(i)

+ ). The previous308

dataset D is enriched with D+ = {U+,Z+}, i.e., D = D ∪D+. Let n = n+ q, and go to Step B.3.309

Step B.6: End the algorithm310

Return m̃P̂f,n
as the estimated failure probability and end the algorithm.311

312

For practical implementation, it is necessary to set proper values for constants Nibs, r, N0, ϵ and q.313

The selection of these parameters is problem-dependent. However, according to our experience some general314

guidelines for selecting them are the following: Nibs = 5 × 105 ∼ 1 × 106, r = 6, N0 = 10, ϵ = 5% ∼ 10%315

and q = the number of available processors for parallel computing.316

4. Numerical examples317

The performance of the proposed PABQmethod is investigated by means of four numerical examples with318

varying complexity in this section. Several different parameter settings of PABQ are experimented in each319

example to study their effect on the results. For comparison, several state-of-the-art methods, i.e., FORM320

[65], SORM [65], AK-MCS [37], ALPI [43], AK-MCMC [46] and Polynomial-Chaos Kriging (PC-Kriging)321

[66], are also implemented when applicable.322

4.1. Example 1: A series system with four branches323

The first numerical example consists of a series system with four branches, which has been a classical324

benchmark example in structural reliability analysis (see, e.g., [67, 37, 68]). The performance function is325
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Start

Generate Nibs uniformly distributed samples

U =
{
u(i)

}Nibs

i=1
within the d-ball

Construct an initial dataset D = {U ,Z} by

randomly selecting N0 samples U =
{
u(i)

}N0

i=1
among U and

observing the corresponding G-function values Z =
{
z(i)

}N0

i=1
; Let n = N0

Make Bayesian inference about the failure probability
(i.e., m̃P̂f,n

and σ̃P̂f,n
) conditional on D

σ̃
P̂f,n

m̃
P̂f,n

< ϵ ?

Identify additional q points U+ =
{
u

(i)
+

}q

i=1
using

the proposed multi-point UPVC criterion and

observe the correspoding G-fucntion values Z+ =
{
z
(i)
+

}q

i=1
.

The previous dataset D is enriched with D+ = {U+,Z+}.
Let n = n+ q

Return m̃P̂f,n
as the estimated failure probability

Stop

No

Yes

Figure 3: Flowchart of the proposed PABQ method.

given by:326

Y = g (X1, X2) = min



a+ (X1−X2)
2

10 − (X1+X2)√
2

;

a+ (X1−X2)
2

10 + (X1+X2)√
2

;

(X1 −X2) +
b√
2
;

(X2 −X1) +
b√
2

, (29)

where X1 and X2 are two i.i.d. standard normal variables; a and b are two constant parameters. In this327

example, two cases by varying those two constant parameters are considered, where a = 3, b = 6 for the328

first case, and a = 5, b = 10 for the second case.329

4.1.1. Results of Case I330

In this case, the proposed PABQ method is compared to several other methods, i.e., AK-MCS+U [37],331

ALPI [43] and PC-Kriging [66]. Table 1 summarizes the results given as the number of iterations Niter, the332
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total number of performance function calls Ncall, the estimated failure probability P̂f , and the COV of P̂f333

(i.e., COV[P̂f ]). As seen, the proposed method with different q only takes a very few iterations in average334

to converge, which are less than that of PC-Kriging, and far less than that of AK-MCS+U and ALPI. This335

indicates that the proposed method could offer significant time savings when parallel computing is available.336

Furthermore, the computational advantage may still exist even in case of non-parallel computing since the337

average number of performance function calls is also reduced a lot by using the proposed method, especially338

when q is small (e.g., q = 6). The results of P̂f and COV[P̂f ] also imply that the proposed method has an339

accuracy similar to other methods being compared. By increasing Nibs from 5×105 to 1×106 and decreasing340

ϵ from 10% to 8%, the PABQ method can slightly reduce the COVs of failure probability estimates, at the341

cost of marginally increased computation in an average sense.342

To illustrate the proposed method visually, Fig. 4(a) depicts the points selected at two stages of an343

exemplary run, as well as the true limit state curve. It is shown that most of the added points are sparsely344

located, and some of them are close to the four important parts of the limit state curve that are crucial for345

accurate failure probability estimation. These results indicate the effectiveness of the proposed multi-point346

selection strategy.347

Table 1: Reliability results for Example 1 (Case I).

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 108 4.46× 10−3 0.15

AK-MCS+U 1 + 96.55 = 97.55 12 + 96.55 = 108.55 4.44× 10−3 1.54

ALPI 1 + 72.95 = 73.95 12 + 72.95 = 84.95 4.44× 10−3 1.79

PC-Kriging [66] q = 6 1 + 14.40 = 15.40 12 + 86.40 = 98.40 4.46× 10−3 1.50

Proposed PABQ

q = 6 1 + 5.60 = 6.60 10 + 33.60 = 43.60 4.44× 10−3 2.53

q = 10 1 + 4.20 = 5.20 10 + 42.00 = 52.00 4.40× 10−3 2.22

(Nibs = 5× 105, ϵ = 10%) q = 15 1 + 3.65 = 4.65 10 + 54.75 = 64.75 4.44× 10−3 1.35

q = 20 1 + 3.05 = 4.05 10 + 61.00 = 71.00 4.44× 10−3 1.29

Proposed PABQ

q = 6 1 + 8.64 = 9.64 10 + 43.20 = 53.20 4.43× 10−3 2.17

q = 10 1 + 4.55 = 5.55 10 + 45.50 = 55.50 4.40× 10−3 1.25

(Nibs = 1× 106, ϵ = 8%) q = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 4.43× 10−3 1.02

q = 20 1 + 3.45 = 4.45 10 + 69.00 = 79.00 4.45× 10−3 0.91

Note: For AK-MCS+U and ALPI, the MC population size is set as 106. AK-MCS+U, ALPI and PABQ are performed

20 independent runs. PC-Kriging was performed 50 independent runs. Thus, for those methods, average results are

reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.
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4.1.2. Results of Case II348

The failure probability is quite small (in the order of 10−7) in Case II, and hence some methods, like349

AK-MCS and ALPI, are not applicable anymore. For this reason, the proposed method is mainly compared350

with AK-MCMC [46], which is capable of assessing extremely small failure probabilities. As can be seen351

from Table 2, the proposed method can not only reduce the average number of iterations greatly (especially352

when q is large, e.g., q = 20), but also the total number of calls to the performance function (especially353

when q is small, e.g., q = 5), in comparison to AK-MCMC. Besides, the proposed PABQ method is also354

able to yield fairly good average results for the failure probability. It is noted that the COVs of the failure355

probability estimates can be reduced by a more strict parameter setting (i.e., Nibs = 1 × 106, ϵ = 8%).356

This case study demonstrates the efficiency and accuracy of the proposed method for such a case with an357

extremely rare failure event.358

Table 2: Reliability results for Example 1 (Case II).

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 109 8.84× 10−7 3.36

AK-MCMC 1 + 134.00 = 135.00 12 + 134.00 = 146.00 8.85× 10−7 1.62

Proposed PABQ

q = 5 1 + 8.80 = 9.80 10 + 44.00 = 54.00 8.82× 10−7 2.14

q = 10 1 + 5.45 = 6.45 10 + 54.50 = 64.50 8.84× 10−7 2.06

(Nibs = 5× 105, ϵ = 10%) q = 15 1 + 4.75 = 5.75 10 + 71.25 = 81.25 8.83× 10−7 1.24

q = 20 1 + 4.40 = 5.40 10 + 88.00 = 98.00 8.88× 10−7 1.24

Proposed PABQ

q = 5 1 + 8.80 = 9.80 10 + 44.00 = 54.00 8.80× 10−7 1.63

q = 10 1 + 5.95 = 6.95 10 + 59.50 = 69.50 8.83× 10−7 0.89

(Nibs = 1× 106, ϵ = 8%) q = 15 1 + 4.95 = 5.95 10 + 74.25 = 84.25 8.86× 10−7 0.89

q = 20 1 + 4.80 = 5.80 10 + 96.00 = 106.00 8.86× 10−7 0.66

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average results are reported

for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

Fig. 4(b) depicts the points selected at two stages of the proposed method (q = 10) via an exemplary359

run, along with the real limit state curve. It is encouraging to see that the added points are relatively360

sparsely distributed, and most of them are located in the vicinity of true limit state curve.361

4.2. Example 2: A nonlinear oscillator362

A nonlinear undamped single-degree-of-freedom (SDOF) oscillator subjected to a rectangular pulse load363

[43] is adopted as the second example, as shown in Fig. 5. The performance function is defined as:364

Y = g (m, c1, c2, r, F1, t1) = 3r −

∣∣∣∣∣ 2F1

c1 + c2
sin

(
t1
2

√
c1 + c2

m

)∣∣∣∣∣ , (30)
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(a) Case I (q = 10)
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(b) Case II (q = 10)

Figure 4: Points selected at different stages by the proposed PABQ method for Example 2.

where m, c1, c2, r, F1, t1 are six random variables, as described in Table 3.365

Figure 5: A nonlinear undamped SDOF oscillator subjected to pulse load.

The reference value of the failure probability is 5.17×10−6 (with COV being small, i.e., 1.39%), provided366

by MCS with 109 samples. As the failure probability is quite small, the proposed method is only compared367

to FORM [65], SORM [65] and AK-MCMC [46]. As can be seen from Table 4, the required average number368

of iterations by the proposed method is less than all the methods being compared, especially for AK-MCMC.369

This implies the parallel computing advantage of the proposed method. Besides, the proposed method is still370

more advantageous than FORM, SORM and AK-MCMC in computational efficiency in case of non-parallel371

computing, since the average number of performance function evaluations can also be reduced a lot (especially372

when q is small, e.g., q = 5). Although COV[P̂f ] given by the proposed method (Nibs = 5× 105, ϵ = 10%)373

is around 5%, it can still be acceptable in practical applications. If one would like to reduce COV[P̂f ],374

one can increase Nibs and decrease ϵ. For example, the last four rows of Table 4 give the results by of375

PABQ (Nibs = 1 × 106, ϵ = 5%). It can be seen that COV[P̂f ] is reduced to about 3% at the expense of376

increased Niter and Ncall in some cases (q = 5, 10, 20), while still much less than those of FORM, SORM377

and AK-MCMC.378
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Table 3: Random variables for Example 2.

Variable Distribution Mean STD

m Normal 1.0 0.05

c1 Lognormal 1.0 0.10

c2 Lognormal 0.1 0.01

r Normal 0.5 0.05

F1 Lognormal 0.5 0.10

t1 Normal 1.0 0.20

4.3. Example 3: A simple bracket model379

A simple bracket model that is available in the Partial Differential Equation Toolbox of Matlab is380

considered as the third example. The schematic diagram of the bracket is shown in Figs. 6(a) and 6(b),381

and more details of the model can be found in the description in the toolbox. The bracket is fixed at the382

back face (face 4) and subjected to a distributed load in the negative z-direction in the front face (face383

8). It is assumed that the Young’s modulus E, Poisson’s ratio µ, distributed load q and thickness h of the384

horizontal plate with hole are characterized as independent random variables, whose statistical information385

is summarized in Table. 5. The 10-node tetrahedral element is used to discretize the model, as shown in386

Figs. 6(c) and 6(d). The maximal deflection of the bracket in the z direction is of concern in this example.387

The limit state function is defined as:388

Y = G(E,µ, q, h) = ∆− V̄ (E,µ, q, h), (31)

where ∆ is the deterministic threshold, which is specified as ∆ = 140 µm; V̄ denotes the maximum dis-389

placement of the bracket in the z-direction.390

We implement several methods to assess the failure probability corresponding to the limit state function391

defined in Eq. (31). The results are reported in Table 6. FORM does not converge within 100 iterations, so392

its results are not included. The reference value of the failure probability is taken as the average result of393

AK-MCMC, i.e., 1.90× 10−6 (with a COV of 1.15%). It can be seen from Table 6 that the proposed PABQ394

method can significantly reduce the number of iterations Niter compared to AK-MCMC, while maintaining395

reasonable accuracy. This indicates that our method could greatly outperform AK-MCMC in terms of396

computational efficiency when parallel computing is available. One can also notice that the proposed method397

requires less performance function calls in average than AK-MCMC. Therefore, the proposed method could398

be still more efficient than AK-MCMC in case that parallel computing is unavailable. The variability of the399

failure probability estimate given by the proposed method can be reduced to a certain level by setting a400

large Nibs and a small ϵ.401

19



Table 4: Reliability results for Example 2.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 109 5.17× 10−6 1.39

FORM 10 80 5.45× 10−6 -

SORM 10 160 5.25× 10−6 -

AK-MCMC 1 + 109.20 = 110.20 12 + 109.20 = 121.20 5.23× 10−6 0.69

Proposed PABQ

q = 5 1 + 3.15 = 4.15 10 + 15.75 = 25.75 5.19× 10−6 5.68

q = 10 1 + 2.05 = 3.05 10 + 20.50 = 30.50 5.21× 10−6 4.30

(Nibs = 5× 105, ϵ = 10%) q = 15 1 + 1.65 = 2.65 10 + 24.75 = 34.75 5.17× 10−6 4.30

q = 20 1 + 1.70 = 2.70 10 + 34.00 = 44.00 5.21× 10−6 4.79

Proposed PABQ

q = 5 1 + 4.05 = 5.05 10 + 20.25 = 30.25 5.15× 10−6 3.08

q = 10 1 + 2.40 = 3.40 10 + 24.00 = 34.00 5.15× 10−6 2.41

(Nibs = 1× 106, ϵ = 5%) q = 15 1 + 2.00 = 3.00 10 + 30.00 = 40.00 5.15× 10−6 3.53

q = 20 1 + 1.95 = 2.95 10 + 39.00 = 49.00 5.20× 10−6 3.44

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average results are reported

for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

Table 5: Random variables for Example 3.

Variable Distribution Mean COV

E (Gpa) Lognormal 200 0.15

µ Uniform 0.3 0.10

q (Pa) Lognormal 104 0.20

h (mm) Lognormal 10 0.10

4.4. Example 4: A 120-bar space truss structure402

A 120-bar space truss structure [43], as shown in Fig. 7, is investigated in the last example to further403

demonstrate the proposed method. The structure is modelled as a three-dimensional (3D) finite-element404

model with 49 nodes and 120 elements in OpenSees. Nodes 0, 1, 4, 7 and 10 withstand concentrated loads405

along the negative z-axis, denoted as P0, P1, P4, P7 and P10 respectively. All elements are assumed to have406

the same cross-sectional area A and Young’s modulus E. The structure is expected to be in a linear elastic407

state, so we simply employ linear finite element analysis. The performance function is defined as:408

Y = g(P0, P1, P4, P7, A,E) = ∆− V0,z, (32)

where V0,z denotes the vertical displacement of node 0; and ∆ is the threshold, specified as 90 mm. The409

random variables considered in this examples are summarized in Table 7.410

20



F9

F3

F4

F12

F1
F13

0.2
y

0.15

F2

F7

F11

x
0.1

-0.05

F8

-0.05

F6

0 z

0.050

F5

0.05

0.05

F10

0

0.1

0.1

0.15

0.15
-0.05

0.2

(a) Bracket with face labels (side view)

F8

-0.05 0.2

F6

F5

F13

F10

F12

F2

0 0.15

0.15

0.05 0.1

F7

F11

0.1

0.1 0.05

0.05

0.15 0

0

x

z

F4

0.2 -0.05

-0.05

F1

F9

F3

y

(b) Bracket with face labels (rear view)

(c) Finite-element mesh (side view) (d) Finite-element mesh (rear view)

Figure 6: A simple bracket model: Geometry and finite-element mesh.

In this example, several methods, i.e., MCS, FORM [65], SORM [65], AK-MCS+U [37], ALPI [43], AK-411

MCMC [46] and PABQ, are implemented to assess the failure probability. The results are listed in Table 8.412

The reference value for the failure probability is 5.08×10−4 with COV being 4.44, provied by MCS with 106413

samples. The results of AK-MCMC are not reported because it fails to converge in multiple trials. FORM414

only requires 7 iterations and a total number of 65 performance function calls, which, however, results in an415

inaccurate result. SORM can provide more accurate failure probability estimate than FORM at the expense416

of 172 calls to the performance function (hence the finite-element model). Compared to AK-MCS+U and417

ALPI, the proposed PABQ method performs better in terms of Ncall (especially when q is small, e.g., q = 5),418

and much better in terms of Niter (especially when q is large, e.g., q = 20). This implies that PABQ can419

be much more efficient than AK-MCS+U and ALPI in cases of both parallel and non-parallel computing.420

Besides, the proposed method still has a acceptable accuracy, as indicated by P̂f and COV[P̂f ]. As shown421

in the last four rows of Table 8, COV[P̂f ] can be further reduced by increasing Nibs and decreasing ϵ at the422
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Table 6: Reliability results for Example 3.

Method Niter Ncall P̂f COV[P̂f ]/%

FORM - - - -

AK-MCMC 1 + 44.60 = 45.60 12 + 44.60 = 56.60 1.90× 10−6 1.15

Proposed PABQ

q = 2 1 + 1.85 = 2.85 10 + 3.70 = 13.70 1.93× 10−6 4.99

q = 3 1 + 1.45 = 2.45 10 + 4.35 = 14.35 1.88× 10−6 6.19

(Nibs = 5× 105, ϵ = 10%) q = 4 1 + 1.40 = 2.40 10 + 5.60 = 15.60 1.93× 10−6 5.89

q = 5 1 + 1.35 = 2.35 10 + 6.75 = 16.75 1.91× 10−6 8.99

Proposed PABQ

q = 2 1 + 2.45 = 3.45 10 + 4.90 = 14.90 1.91× 10−6 3.74

q = 3 1 + 1.95 = 2.95 10 + 5.85 = 15.85 1.90× 10−6 2.19

(Nibs = 1× 106, ϵ = 5%) q = 4 1 + 1.65 = 2.65 10 + 6.60 = 16.60 1.89× 10−6 3.70

q = 5 1 + 1.55 = 2.55 10 + 7.75 = 17.75 1.93× 10−6 3.16

Note: AK-MCMC and PABQ are performed 20 independent runs. Thus, for those methods, average results are

reported for Niter, Ncall, and P̂f . Besides, COV[P̂f ] is also approximated accordingly.

cost of slightly increased Niter and Ncall.423

Table 7: Random variables for Example 4.

Variable Distribution Mean COV

P0 Lognormal 500 kN 0.20

P1 Lognormal 200 kN 0.20

P4 Lognormal 200 kN 0.20

P7 Lognormal 200 kN 0.20

P10 Lognormal 200 kN 0.20

A Normal 2000 mm2 0.15

E Normal 2.00× 105 MPa 0.15
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 Figure 7: A 120-bar space truss structure.
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Table 8: Reliability results for Example 4.

Method Niter Ncall P̂f COV[P̂f ]/%

MCS - 106 5.08× 10−4 4.44

FORM 7 65 3.16× 10−4 -

SORM 7 172 5.23× 10−4 -

AK-MCS+U 1 + 60.75 = 61.75 12 + 60.75 = 72.75 5.16× 10−4 4.84

ALPI 1 + 47.45 = 48.45 12 + 47.45 = 59.45 5.10× 10−4 3.54

AK-MCMC - - - -

Proposed PABQ

q = 5 1 + 5.90 = 6.90 10 + 29.50 = 39.50 4.93× 10−4 4.74

q = 10 1 + 3.80 = 4.80 10 + 38.00 = 48.00 4.98× 10−4 3.31

q = 15 1 + 2.65 = 3.65 10 + 39.75 = 49.75 4.99× 10−4 4.68

q = 20 1 + 2.40 = 3.40 10 + 48.00 = 58.00 4.98× 10−4 6.22

Proposed PABQ

q = 5 1 + 8.65 = 9.65 10 + 43.25 = 53.25 5.04× 10−4 3.41

q = 10 1 + 4.80 = 5.80 10 + 48.00 = 58.00 5.06× 10−4 2.40

(Nibs = 1× 106, ϵ = 5%) q = 15 1 + 3.70 = 4.70 10 + 55.50 = 65.50 5.07× 10−4 2.15

q = 20 1 + 2.90 = 3.90 10 + 58.00 = 68.00 5.02× 10−4 4.27

Note: For AK-MCS+U and ALPI, the MC population size is set as 106. AK-MCS+U, ALPI and PABQ are

performed 20 independent runs. Thus, for those methods, average results are reported for Niter, Ncall, and P̂f .

Besides, COV[P̂f ] is also approximated accordingly.
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5. Conclusions424

This paper presents a ‘Parallel Adaptive Bayesian Quadrature’ (PABQ) method for rare failure event425

estimation. As it is rooted in ALPI, PABQ offers an alternative framework to the quantification, propagation426

and reduction of numerical uncertainty for assessing failure probabilities. Besides, compared to ALPI, two427

important improvements are made in PABQ to enable the use of ever-increasing parallel computing facilities428

and enhance the capability of assessing small failure probabilities. The parallelism of PABQ is achieved by429

developing a multi-point selection strategy, while the capableness for rare failure event estimation is realized430

by proposing an importance ball sampling technique. The performance of the proposed method is illustrated431

by means of four numerical examples. In most studied cases, it is found that PABQ can not only significantly432

reduce the average number of iterations (especially when q is large), but also lower the average total number433

of performance function calls (especially when q is small) compared to several selected existing methods.434

This indicates the computational efficiency advantage of PABQ in both parallel and non-parallel computing.435

In addition, PABQ is able to produce accurate estimates for small failure probabilities (e.g., in the order of436

10−7).437

The proposed method, in its current form, is not applicable to high-dimensional and/or strongly non-438

linear problems. The former, one one hand, is due to the challenges of implementing GP models in high439

dimensions. On the other hand, IBS should not lead to significant improvement for a high-dimensional case.440

The latter is caused by the fact that the GP model is typically suitable for modelling smooth or moderately441

nonlinear functions. These drawbacks will be addressed in future work.442
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Appendix A. Numerical algorithm of the active learning probabilistic integration452

The procedure for numerical implementation of the ALPI method includes the following steps:453

454
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Step A.1: Generate a Monte Carlo population455

Generate a MC population comprising Nmc samples according to fX(x), denoted by X =
{
x(i)

}Nmc

i=1
.456

This population has two functions: (1) It serves as a candidate sample pool among which the next best457

point is identified to evaluate on the g-function; and (2) It is used to evaluate the posterior mean and UPV458

of the failure probability (Eqs. (13) and (15)).459

Step A.2: Get initial observations460

Randomly select N0 (e.g., 12) samples among X , denoted by X . Those points are then evaluated on461

the g-function to get N0 observations, denoted by Y . As such, an initial dataset can be constructed, i.e.,462

D = {X ,Y }. Let n = N0.463

Step A.3: Infer the posterior failure probability464

The prior mean and variance functions of ĝ0 ∼ GP(mĝ0(x), kĝ0(x,x
′)) are assumed to be a con-465

stant and the squared exponential kernel in this study, respectively. Based on D, a posterior GP ĝn ∼466

GP(mĝn(x), kĝn(x,x
′)) for the g-function can be obtained. This step mainly consists of tuning the hyper-467

parameters via maximum likelihood estimation. For convenience, one can use the fitrgp function in Statistics468

and Machine Learning Toolbox of Matlab. Afterwards, the posterior mean of failure probability can be es-469

timated by:470

m̃P̂f,n
=

1

Nmc

Nmc∑
i=1

Φ

− mĝn(x
(i))

σĝn

(
x(i)

)
 , (A.1)

and the upper-bound of posterior standard deviation (UPSTD):471

σ̃P̂f,n
=

1

Nmc

Nmc∑
i=1

√√√√√Φ

− mĝn(x
(i))

σĝn

(
x(i)

)
Φ

mĝn(x
(i))

σĝn

(
x(i)

)
. (A.2)

Step A.4: Check the stopping criterion472

Only if the posterior failure probability processes a sufficiently low level of epistemic uncertainty, its473

mean can be used to predict the failure probability. To this end, we propose to examine the estimated474

upper bound of posterior COV of the failure probability as described next. If
σ̃P̂f,n

m̃P̂f,n

< ϵ is satisfied, go to475

Step A.6; Else, go to Step A.5. Here ϵ is a user-specified threshold, which takes the value of 0.02 in all476

numerical examples.477

Step A.5: Enrich the previous dataset478

At this stage, the best next point to evaluate on the g-function should be identified by a learning function.479

By exploring the structure of UPV of failure probability (Eq. (15)), the so-called upper-bound posterior480

variance contribution (UPVC) function is introduced [43]:481

UPVC(x) =

√
Φ

(
−mĝn(x)

σĝn (x)

)
Φ

(
mĝn(x)

σĝn (x)

)
× fX(x), (A.3)
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where σ2
P̂f,n

=
[∫

X UPVC(x)dx
]2

holds. The best next point x⋆ is selected by:482

x⋆ = argmax
x∈X

UPVC(x). (A.4)

The g-function is then evaluated at the point x⋆, i.e., y⋆ = g(x⋆). The dataset D is enriched by D =483

D ∪ (x⋆, y⋆). Let n = n+ 1, and go to Step A.3.484

Step A.6: End the algorithm485

Return m̃P̂f,n
as the estimated failure probability and end the algorithm.486
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