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ABSTRACT1

Resilience analysis of civil structures and infrastructure systems is a powerful approach to quantifying2

the object’s ability to prepare for, recovery from and adapt to disruptive events. The resilience is typically3

measured probabilistically by the integration of the time-variant performance function, which is by nature4

a stochastic process as it is affected by many uncertain factors such as the hazard occurrences and the post-5

hazard recoveries. Resilience evaluation could be challenging in many cases with imprecise probability6

information on the time-variant performance function. In this paper, a novel method for the assessment of7

imprecise resilience is presented, which deals with resilience problems with non-probabilistic performance8

function. The proposed method, producing lower and upper bounds for the imprecise resilience, has benefited9

from that for imprecise reliability as documented in the literature, motivated by the similarity between reli-10

ability and resilience. Two types of stochastic processes, namely log-Gamma and lognormal processes, are11

employed to model the performance function, with which the explicit form of resilience is derived. Moreover,12

for a planning horizon within which the hazards may occur for multiple times, the incompletely-informed13

performance function results in “time-dependent imprecise resilience”, which is dependent on the duration14

of the service period (e.g., life-cycle), and can also be handled by applying the proposed method. Through15

examining the time-dependent resilience of a strip foundation in a coastal area subjected to groundwater in-16

trusion in a changing climate, the applicability of the proposed resilience bounding method is demonstrated.17
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The impact of imprecise probability information on resilience is quantified through sensitivity analysis.18

Keywords: Imprecise resilience; time-dependent resilience; performance function; imprecise information;19

resilience bounding; climate change.20

INTRODUCTION21

In-service civil structures and infrastructure systems are often subjected to severe environmental or op-22

erational attacks such as natural hazards. Reliability and resilience assessment are powerful tools to evaluate23

an object’s ability to withstand disruptive events. The former focuses on the post-hazard state (failure or24

survival) of an object (Ellingwood 2005; Melchers and Beck 2018; Wang 2021b), while the latter (i.e., re-25

silience) additionally considers the post-hazard recovery process (Bruneau et al. 2003; National Research26

Council 2012a; Bocchini et al. 2014). In the presence of the various sources of uncertainties arising from27

structural properties (e.g., strength and stiffness) and load effects, the identification of the probability distri-28

butions of random variables is a key step for reliability and resilience evaluation. However, in many cases,29

due to the availability of only limited data, it is difficult or even impossible to uniquely determine the proba-30

bility distribution of a random variable but the low-order moments such as mean value and variance (Coolen31

2004). Correspondingly, the incompletely-informed random variable is quantified by a family of possible32

probability distributions, which forms the concept of “imprecise probability” (Walley 2000; Beer et al. 2013;33

Augustin et al. 2014).34

Probability bounding approaches have been widely used in the literature to construct envelopes for impre-35

cise probability functions, including probability-box (p-box) (Ferson et al. 2003; Faes et al. 2021a), random36

set and Dempster-Shafer evidence theory (Wu et al. 2002; Limbourg and De Rocquigny 2010), and fuzzy37

sets (Dubois and Prade 1989; Kahraman et al. 2016). With these approaches, one can further determine38

the lower and upper bounds of “imprecise reliability” (Zhang 2012; Alvarez and Hurtado 2014; Utkin and39

Coolen 2007; Penmetsa and Grandhi 2002; Oberguggenberger and Fellin 2008; Zhang et al. 2010; Wu et al.40

2016; Wang et al. 2018). For example, Zhang et al. (2010) proposed an interval Monte Carlo (MC) method41

to estimate the interval failure probability, by combining simulation process with interval analysis. Wang42

et al. (2018) proposed a linear programming (LP)-based method to solve reliability problems in the presence43

of one or multiple imprecise random variable(s). The method constructs linear constraints on the imprecise44

probability distribution by considering the known moments of the variables. Other recent developments in45

this context include the application of operator norm theory (Faes et al. 2020; Faes et al. 2021b), solving the46
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imprecise probability problem in an augmented form (Zhang and Shields 2019; Wei et al. 2019; Faes et al.47

2021c), and the use of Bayesian active learning (Dang et al. 2022).48

The resilience of an object (e.g., a structure or system) is typically measured by the integration of perfor-49

mance function over time (Bruneau et al. 2003; Cimellaro et al. 2010; Attoh-Okine et al. 2009; Wang 2023).50

Due to the occurrence of a hazardous event, the object’s performance degrades due to the hazard-induced51

damage, and may be restored to the pre-hazard state given the availability of resource. This indicates that the52

resilience is dependent on the factors influencing the time-variation of performance function (e.g., the occur-53

rence time and intensity of hazards, and the post-hazard recovery processes), and thus should be evaluated54

in a probabilistic framework considering the uncertainties associated with these factors. In particular, for the55

case where imprecise variables are involved in the performance function, the resilience cannot be determined56

uniquely, but varies within an interval, and thus is called “imprecise resilience” in this paper. Furthermore,57

for a planning horizon, the resilience is dependent on the duration of the reference period, and is known as58

“time-dependent resilience” (Wang and Ayyub 2022). In this regard, the presence of imprecise information59

on the performance function over the service period of interest further leads to “time-dependent imprecise60

resilience”. Similar to the evaluation of “imprecise reliability”, the importance of determining an interval for61

imprecise resilience (featured by lower and upper bounds) is evident in the context of decision-making based62

on imprecise probabilities. This is usually the ultimate goal of resilience quantification. However, based on63

the current state-of-the-art, it is unclear how imprecise resilience measures have to be computed.64

The novelty of this paper is therefore to propose a novel method to quantify the interval for imprecise65

resilience in the presence of a performance function that is subjected to epistemic uncertainty. The method66

benefits from the same formalism as used to in the field of imprecise reliability analysis, motivated by the67

similarity between reliability and resilience from a mathematical perspective.68

Two types of stochastic processes for performance function are used in the quantification of imprecise69

resilience, namely log-Gamma and lognormal processes. An example is presented to demonstrate the appli-70

cability of the proposed bounding techniques for imprecise resilience by examining the life-cycle resilience71

of a strip foundation located in a coastal area subjected to groundwater intrusion. The role of incomplete72

probability information on the performance deterioration and climate change scenarios in resilience is inves-73

tigated. The scope of this paper is related to the United Nations (UN) Sustainable Development Goal (SDG)74

11 “Make cities and human settlements inclusive, safe, resilient and sustainable”.75
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RESILIENCE MEASURE76

The performance function/quality of an object (e.g., a structure, or a system consisting of multiple struc-77

tures) is a key component in resilience assessment. For example, Bruneau et al. (2003) defined “loss of78

resilience” as
∫ 𝑡1
𝑡0
[100% −𝑄(𝑡)]𝑑𝑡, in which 𝑡0 is the occurrence time of a disruptive event, 𝑡1 is the time to79

recovery, and 𝑄(𝑡) is the time-variant performance function (taking a value between 0 and 100%). Further, a80

dimensionless measure for resilience, denoted by 𝑅𝑒, is as follows (Attoh-Okine et al. 2009; Cimellaro et al.81

2010),82

𝑅𝑒 =
1

𝑡ℎ − 𝑡0

∫ 𝑡ℎ

𝑡0

𝑄(𝑡)𝑑𝑡 (1)

where 𝑡ℎ is a reference time (e.g., it may refer to the time to full recovery, 𝑡1). Note that the resilience83

model in Eq. (1) has been based on the arithmetic mean of the performance function over [𝑡0, 𝑡ℎ], and thus is84

insensitive to the variation of 𝑄(𝑡), in particular for an extremely small value of performance function. With85

this regard, a generalized resilience measure was proposed by Wang (2023), taking a form of the following,86

𝑅𝑒 = 𝑓 −1
[

1
𝑡ℎ − 𝑡0

∫ 𝑡ℎ

𝑡0

𝑓 [𝑄(𝑡)]𝑑𝑡
]

(2)

in which 𝑓 is a generating function. If 𝑓 (𝑥) = 𝑥, then Eq. (2) reduces to (1). If 𝑓 (𝑥) = ln 𝑥, Eq. (2) becomes,87

𝑅𝑒 = exp
[

1
𝑡ℎ − 𝑡0

∫ 𝑡ℎ

𝑡0

ln[𝑄(𝑡)]𝑑𝑡
]

(3)

It can be verified that, the resilience in Eq. (3) has been based on the geometric mean of 𝑄(𝑡) over [𝑡0, 𝑡ℎ],88

and thus can better reflect the sensitivity of resilience to the variation of performance function. Note that in89

Eq. (3), the resilience is a random variable because 𝑄(𝑡) is a stochastic process. In order to achieve a scalar90

measure for resilience, the mean value of 𝑅𝑒 in Eq. (3) will be considered, which is denoted by 𝑅𝑒 and is91

expressed as follows,92

𝑅𝑒 = 𝜇

{
exp

[
1

𝑡ℎ − 𝑡0

∫ 𝑡ℎ

𝑡0

ln[𝑄(𝑡)]𝑑𝑡
]}

(4)

in which 𝜇() denotes the mean value of the variable in the brackets. The resilience model in Eq. (4) estab-93

lishes a unified framework for reliability and resilience (Wang 2023). One example is presented in Fig. 1(a),94

where a hazardous event occurs at time 𝑡0, causing the reduction of 𝑄(𝑡) until time 𝑡 𝑓 (𝑡 𝑓 ≥ 𝑡0). In particular,95
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Fig. 1(a1) focuses on the resilience problem, where the reduced 𝑄(𝑡) is restored to a pre-hazard state from96

time 𝑡 𝑓 until time 𝑡𝑟 . In the context of reliability, however, the focus is on a survival-or-failure state without97

considering the post-hazard recovery process. As illustrated in Fig. 1(a2), the performance function𝑄(𝑡) ≡ 198

within [𝑡 𝑓 , 𝑡𝑟 ] if the object survives, and 𝑄(𝑡) ≡ 0, 𝑡 ∈ [𝑡 𝑓 , 𝑡𝑟 ] in the presence of a failure state. Let random99

variables 𝐴 and 𝐵 be 𝑅𝑒 in Eq. (3) with 𝑡ℎ being replaced by 𝑡𝑟 , corresponding to the scenarios in Figs. 1(a1)100

and (a2), respectively. Clearly, 𝐴 ∈ [0, 1] and 𝐵 ∈ {0, 1}. The mean resilience (see Eq. (4)) and reliabil-101

ity (denoted by 𝑅𝑙) are determined as 𝜇(𝐴), and 𝜇(𝐵), respectively. This indicates the inherent similarity102

between resilience and reliability as both quantities can be obtained through the performance function of an103

object.104

The resilience model in Eq. (4) will be adopted in this paper. One can further extend Eq. (4) to handle105

resilience problems over other reference periods by replacing the time interval [𝑡0, 𝑡ℎ]. For example, the time-106

dependent resilience over a life cycle of [0, 𝑡𝑙] (within which the disruptive events may occur for multiple107

times), denoted by 𝑅𝑒 (0, 𝑡𝑙), is as follows,108

𝑅𝑒 (0, 𝑡𝑙) = 𝜇

{
exp

[
1
𝑡𝑙

∫ 𝑡𝑙

0
ln[𝑄(𝑡)]𝑑𝑡

]}
(5)

Similar to Fig. 1(a), the comparison between time-dependent resilience and time-dependent reliability is109

demonstrated in Fig. 1(b) based on Eq. (5), considering two hazardous events occurring at times 𝑡01 and 𝑡02,110

respectively. In the context of resilience as in Fig. 1(b1), the first disruptive event results in the performance111

function degrading from 1 to 𝑞 at time 𝑡 𝑓 1, followed by a recovery process until time 𝑡𝑟1 (𝑡𝑟1 < 𝑡02). However,112

due to the second hazard, the object collapses and no recovery follows. Let 𝐴1 and 𝐴2 be the resilience113

associated with the two hazardous events, respectively, which are evaluated as follows,114

𝐴1 = exp
[
1
𝑡𝑙

∫ 𝑡𝑟1

𝑡01

ln[𝑄(𝑡)]𝑑𝑡
]
, 𝐴2 = exp

[
1
𝑡𝑙

∫ 𝑡𝑙

𝑡02

ln[𝑄(𝑡)]𝑑𝑡
]

(6)

With this, the resilience over [0, 𝑡𝑙], denoted by 𝐴12, equals 𝐴1 · 𝐴2, by noting that,115

𝐴12 = exp
[
1
𝑡𝑙

∫ 𝑡𝑙

0
ln[𝑄(𝑡)]𝑑𝑡

]
= exp

[
1
𝑡𝑙

∫ 𝑡01

0
ln[𝑄(𝑡)]𝑑𝑡

]
· 𝐴1 · exp

[
1
𝑡𝑙

∫ 𝑡02

𝑡𝑟1

ln[𝑄(𝑡)]𝑑𝑡
]
· 𝐴2

= 𝐴1 · 𝐴2

(7)
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In particular, if 𝐴2 = 0, then 𝐴12 = 0, implying that the object is not resilient in the presence of zero resilience116

associated with any hazardous event.117

In terms of reliability, as shown in Fig. 1(b2), a Bernoulli variable 𝐵𝑖 (𝑖 = 1, 2) is introduced to denote118

the state (either survival or failure) associated with the 𝑖th disruptive event (𝐵𝑖 = 1 for “survival” and 𝐵𝑖 = 0119

for “failure”). The state for the whole life-cycle is then equal to 𝐵1 · 𝐵2, which is similar to the relationship120

in Eq. (7).121

The observations from Fig. 1 demonstrate that Eq. (4) provides a general framework for the evaluation122

of resilience and reliability. This further motivates the generalization of existing approaches in the literature123

for imprecise reliability to handle imprecise resilience, as will be discussed in the next section.124

BOUNDS FOR RESILIENCE IN THE PRESENCE OF IMPRECISE PROBABILITY125

INFORMATION126

Problem formulation127

Consider a resilience problem involving totally 𝑁𝑋 imprecise random variables (𝑋1, 𝑋2, . . . 𝑋𝑁𝑋 ) and 𝑁𝑌128

ordinary (probabilistic) random variables 𝑌1, 𝑌2, . . . 𝑌𝑁𝑌 . The mean resilience is expressed by a function 𝜓129

as follows,130

𝑅𝑒 = 𝜇 [𝜓(X,Y)] (8)

in which X = {𝑋1, 𝑋2, . . . , 𝑋𝑁𝑋 } and Y = {𝑌1, 𝑌2, . . . , 𝑌𝑁𝑌 }. Note that Eq. (8) should be interpreted as131

𝑅𝑒 being a function of the imprecise random variables X, where a crisp value of 𝑅𝑒 is obtained for each132

realization of the epistemic uncertainty in X. Herein, the imprecise random variables X are described by a133

family of distributions 𝔉 according to the respective model used to describe the imprecise probability.134

For 𝜓, one can use Eq. (4) to evaluate the resilience associated with a single event, or Eq. (5) for the135

time-dependent resilience over [0, 𝑡𝑙]. Due to the epistemic uncertainty that is present in X, one cannot136

determined the resilience in Eq. (8) uniquely. Instead, 𝑅𝑒 will vary within in interval, which is dependent137

on “how precise the information on X is”. As an example, consider for instance that X is described by a138

parametric family of normal distributions according to,139

𝔉 =
{
𝐹𝑋 (., 𝝑) | 𝐹𝑋 (., 𝝑) ∈ F, 𝝑 ∈

[
𝜇𝑋,lb, 𝜇𝑋,ub

]
×

[
𝜎𝑋,lb, 𝜎𝑋,ub

]}
, (9)

where F is the family of normal distribution functions, 𝜇𝑋,lb, 𝜇𝑋,ub are the lower and upper bounds of the140
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mean value of 𝑋 , and 𝜎𝑋,lb, 𝜎𝑋,ub are the lower and upper bounds of the standard deviation of 𝑋 . As such,141

every realisation of 𝝑 will yield a precise value for 𝑅𝑒, without providing any distributional information on142

the quantity. It is assumed that 𝑑𝐹𝑋/𝑑𝑥 exists.143

The aim of the rest of this section is to address techniques to determine the bounds 𝑅𝑒, which will benefit144

from those in the literature for imprecise reliability. Denote145

𝜃 (X) =
∫

. . .

∫
𝜓(X,Y) 𝑓Y(y)𝑑y, (10)

in which 𝑓Y(y) is the joint probability distribution function (PDF) of Y. With this, Eq. (8) becomes,146

𝑅𝑒 =
∫

. . .

∫
𝜃 (x) 𝑓X(x)𝑑x, (11)

where 𝑓X(x) is the joint PDF of X. It is assumed that each 𝑋𝑖 is statistically independent, with which,147

𝑓X(x) =
𝑁𝑋∏
𝑖=1

𝑓𝑋𝑖 (𝑥𝑖), (12)

in which 𝑓𝑋𝑖 (𝑥) is the PDF of 𝑋𝑖 . This condition is assumed to hold for every realisation of the epistemic148

uncertainty.149

Due to the imprecise information on X, the explicit form of 𝑓X(x) is only known up to a set description.150

Therefore, one can only evaluate Eq. (11) numerically for each realisation of the epistemic uncertainty in X.151

Further, the following two optimization problems can be solved to find the lower and upper bounds of 𝑅𝑒,152

denoted by 𝑅𝑒,lb and 𝑅𝑒,ub respectively,153

𝑅𝑒,lb = min
𝑓X∈𝔉

∫
. . .

∫
𝜃 (x) 𝑓X(x) dx, (13)

and154

𝑅𝑒,ub = max
𝑓X∈𝔉

∫
. . .

∫
𝜃 (x) 𝑓X(x) dx. (14)

A special case of Eqs. (13) and (14) is the case where there exists 𝜃lb and 𝜃ub satisfying155

𝜃lb = min
x

𝜃 (x), 𝜃ub = max
x

𝜃 (x) (15)
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with which it follows that,156

𝜃lb ≤ 𝑅𝑒 ≤ 𝜃ub (16)

Note that in a more general setting, these optimization problems are potentially very complicated since157

the optimization has to be carried out over the set of all possible 𝑓X consistent with the definition of the158

family of distributions 𝔉. Hence, this constitutes a non-convex, discontinuous optimization problem, which159

are notoriously difficult so solve exactly. In this regard, two bounding methods for 𝑅𝑒 will be discussed in160

the following, namely interval MC method and LP-based method. For a more general treatment of the topic161

in the context of reliability engineering, the reader is referred to Faes et al. (2021a) for an overview.162

Interval Monte Carlo method163

The interval MC method, which has been successfully applied in the evaluation of imprecise reliability164

(Zhang et al. 2010), is used herein to determine the lower and upper bounds of 𝑅𝑒 in Eq. (11). With this165

regard, the imprecise cumulative distribution function (CDF) of X is first represented by a p-box. Let 𝐹𝑋 be166

the CDF of a random variable 𝑋 (it can be replaced by 𝑋1, 𝑋2, . . . , 𝑋𝑁𝑋 in Eq. (11)), which is bounded by167

an envelope as follows,168

𝐹𝑋,lb(𝑥) ≤ 𝐹𝑋 (𝑥) ≤ 𝐹𝑋,ub(𝑥), for ∀𝑥 (17)

where 𝐹𝑋,lb and 𝐹𝑋,ub are the lower and upper bounds of 𝐹𝑋 respectively, which are dependent on the avail-169

able information on 𝑋 . For example, if the mean (𝜇𝑋) and standard deviation (𝜎𝑋) of 𝑋 are known, Ober-170

guggenberger and Fellin (2008) applied the Chebyshev’s inequality to derive 𝐹𝑋,lb and 𝐹𝑋,ub as follows,171

172

𝐹𝑋,lb(𝑥) =


0, 𝑥 ≤ 𝜇𝑋 + 𝜎𝑋

1 −
𝜎2
𝑋

(𝑥 − 𝜇𝑋)2 , 𝑥 ≥ 𝜇𝑋 + 𝜎𝑋

(18a)

𝐹𝑋,ub(𝑥) =


𝜎2
𝑋

(𝑥 − 𝜇𝑋)2 , 𝑥 ≤ 𝜇𝑋 − 𝜎𝑋

1, 𝑥 ≥ 𝜇𝑋 − 𝜎𝑋

(18b)
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If it is additionally known that 𝑋 varies within an interval of [𝑥lb, 𝑥ub], then an updated set of 𝐹𝑋,lb, 𝐹𝑋,ub is173

(Faes et al. 2021a),174

𝐹𝑋,lb(𝑥) =



0, 𝑥 ≤ 𝜇𝑋 + 𝜎2
𝑋/(𝜇𝑋 − 𝑥ub)

1 − [𝑏(1 + 𝑎) − 𝑐 − 𝑏2]/𝑎, 𝜇𝑋 + 𝜎2
𝑋/(𝜇𝑋 − 𝑥ub) < 𝑥 < 𝜇𝑋 + 𝜎2

𝑋/(𝜇𝑋 − 𝑥lb)

1/[1 + 𝜎2
𝑋/(𝑥 − 𝜇𝑋)2], 𝜇𝑋 + 𝜎2

𝑋/(𝜇𝑋 − 𝑥lb) ≤ 𝑥 < 𝑥ub

1, 𝑥 ≥ 𝑥ub

(19a)

𝐹𝑋,ub(𝑥) =



0, 𝑥 ≤ 𝑥lb

1/[1 + (𝑥 − 𝜇𝑋)2/𝜎2
𝑋], 𝑥lb ≤ 𝑥 < 𝜇𝑋 + 𝜎2

𝑋/(𝜇𝑋 − 𝑥ub)

1 − (𝑏2 − 𝑎𝑏 + 𝑐)/(1 − 𝑎), 𝜇𝑋 + 𝜎2
𝑋/(𝜇𝑋 − 𝑥ub) < 𝑥 < 𝜇𝑋 + 𝜎2

𝑋/(𝜇𝑋 − 𝑥lb)

1, 𝑥 ≥ 𝜇𝑋 + 𝜎2
𝑋/(𝜇𝑋 − 𝑥lb)

(19b)

where 𝑎 = (𝑥 − 𝑥lb)/(𝑥ub − 𝑥lb), 𝑏 = (𝜇𝑋 − 𝑥lb)/(𝑥ub − 𝑥lb), and 𝑐 = 𝜎2
𝑋/(𝑥ub − 𝑥lb)2.175

The CDF envelope in Eq. (17) for 𝑋 enables the use of MC simulation to find the bounds of 𝑅𝑒. For176

the 𝑗 th simulation run ( 𝑗 = 1, 2, . . . , 𝑁), two vector samples, x 𝑗 ,lb = [𝑥1 𝑗 ,lb, 𝑥2 𝑗 ,lb, . . . , 𝑥𝑁𝑋 𝑗 ,lb] and x 𝑗 ,ub =177

[𝑥1 𝑗 ,ub, 𝑥2 𝑗 ,ub, . . . , 𝑥𝑁𝑋 𝑗 ,ub], are first generated based on the bounds of 𝐹𝑋𝑖 , respectively, according to178

𝑢𝑖 𝑗 = 𝐹𝑋𝑖 ,ub(𝑥𝑖 𝑗 ,lb) = 𝐹𝑋𝑖 ,lb(𝑥𝑖 𝑗 ,ub) (20)

in which 𝑢𝑖 𝑗 is a sample of uniform distribution within [0, 1] for the 𝑗 th simulation and the 𝑖th imprecise179

variable, 𝑖 = 1, 2, . . . , 𝑁𝑋, and 𝑗 = 1, 2, . . . , 𝑁 . In such a way, the interval [x 𝑗 ,lb, x 𝑗 ,ub] contains all the180

possible realizations of X. Let min 𝜃
(
x 𝑗

)
and max 𝜃

(
x 𝑗

)
respectively be the minimum and maximum of181

𝜃 (x 𝑗) subjected to x 𝑗 ,lb ≤ x 𝑗 ≤ x 𝑗 ,ub. With this, one has,182

1
𝑁

𝑁∑
𝑗=1

min 𝜃
(
x 𝑗

)
︸               ︷︷               ︸

Lower bound: 𝑅𝑒,lb

≤ 1
𝑁

𝑁∑
𝑗=1

𝜃 (x 𝑗) ≤
1
𝑁

𝑁∑
𝑗=1

max 𝜃
(
x 𝑗

)
︸                ︷︷                ︸

Upper bound: 𝑅𝑒,ub

(21)

which gives the expressions for the lower and upper bound of 𝑅𝑒, denoted by 𝑅𝑒,lb and 𝑅𝑒,ub, respectively.183
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Linear programming-based method184

An LP-based method was previously proposed by Wang et al. (2018) to determine the bounds of impre-185

cise reliability in the presence of one or more imprecise random variables (with unknown CDF but known186

moments). This method will be adopted herein to handle the imprecise resilience problem. First, consider187

the case with a single imprecise variable, denoted by 𝑋 , whose mean value (𝜇𝑋) and standard deviation (𝜎𝑋)188

are known only. With this, Eq. (11) is rewritten as follows,189

𝑅𝑒 =
∫

𝜃 (𝑥) 𝑓𝑋 (𝑥)𝑑𝑥 (22)

Assume that 𝑋 varies within [𝑥min, 𝑥max]. If no information on 𝑥min and 𝑥max is available, the two bounds can190

be practically assigned as 𝜇𝑋 ± 𝜅𝜎𝑋 with a sufficiently large 𝜅 (e.g., 𝜅 = 5). A new variable 𝑍 is introduced,191

which is a normalization of 𝑋 and is defined as192

𝑍 =
𝑋 − 𝑥min

𝑥max − 𝑥min
(23)

Correspondingly, Eq. (22) becomes193

𝑅𝑒 =
∫ 1

0
𝜃𝑍 (𝑧) 𝑓𝑍 (𝑧)𝑑𝑧 (24)

in which 𝜃𝑍 (𝑧) = 𝜃 ((𝑥max − 𝑥min)𝑧 + 𝑥min), and 𝑓𝑍 (𝑧) is the PDF of 𝑍 . Since 𝑍 ∈ [0, 1], the domain of 𝑍194

is subdivided into 𝑛 identical sections (where 𝑛 is a sufficiently large integer), namely [0, 1/𝑛], [1/𝑛, 2/𝑛],195

. . . [(𝑛 − 1)/𝑛, 1]. With this, the PDF of 𝑍 is approximated by a sequence of { 𝑓𝑍,𝑖}, 𝑖 = 1, 2 . . . 𝑛, where196

𝑓𝑍,𝑖 = 𝑓𝑍 ((𝑖 − 0.5)/𝑛). Thus, Eq. (24) is rewritten as follows from a view of Riemann integral,197

𝑅𝑒 =
∫ 1

0
𝜃𝑍 (𝑧) 𝑓𝑍 (𝑧)𝑑𝑧 =

𝑛∑
𝑖=1

𝜃𝑍

(
𝑖 − 0.5

𝑛

)
1
𝑛
· 𝑓𝑍,𝑖 (25)

Since the mean value (𝜇𝑍 ) and standard deviation (𝜎𝑍 ) of 𝑍 are known based on 𝜇𝑋 and 𝜎𝑋, one can198

construct the following constraints on { 𝑓𝑍,𝑖},199
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∑𝑛
𝑖=1 𝑓𝑍,𝑖 · 1

𝑛 = 1∑𝑛
𝑖=1 𝑓𝑍,𝑖 · 1

𝑛 · 𝑖
𝑛 = 𝜇𝑍∑𝑛

𝑖=1 𝑓𝑍,𝑖 · 1
𝑛

(
𝑖
𝑛

)2
= 𝜇2

𝑍 + 𝜎2
𝑍

0 ≤ 𝑓𝑍,𝑖 ≤ 𝑛,∀𝑖 = 1, 2, . . . 𝑛

(26)

Based on Eqs. (25) and (26), the bounds for 𝑅𝑒 can be determined through an LP-based method. The object200

is to maximize (for the upper bound of 𝑅𝑒) or minimize (for the lower bound) 𝑅𝑒 in Eq. (25) with respect to201

{ 𝑓𝑍,𝑖}, while the constraints on { 𝑓𝑍,𝑖} are presented in Eq. (26).202

Recall that only one imprecise random variable has been involved in Eq. (22). One can extend the LP-203

based method to solve the imprecise resilience problem with 𝑁𝑋 imprecise variables (𝑁𝑋 ≥ 2) in Eq. (11).204

This is similar to the reliability bounding technique in Wang et al. (2018) considering multiple imprecise205

variables using LP.206

Eq. (11) indicates that 𝑅𝑒 is dependent on each PDF 𝑓𝑋𝑖 with a fixed 𝜃 (x). Thus, Eq. (11) is expressed207

as follows with an emphasis on the dependence of 𝑅𝑒 on each 𝑓𝑋𝑖 ,208

𝑅𝑒 = 𝜁 ( 𝑓𝑋1 (𝑥1), 𝑓𝑋2 (𝑥2), . . . , 𝑓𝑋𝑁𝑋
(𝑥𝑁𝑋 )) (27)

Denote 𝔉𝑋𝑖 the set of possible candidate PDFs of 𝑋𝑖 . An iteration-based approach is used to find the209

bound of 𝑅𝑒, as summarized in the following. Let 𝜖 be a predefined error limit (say, 10−5) for the iteration210

process, and 𝑓𝑋𝑖 , 𝑗 the PDF of 𝑋𝑖 associated with the 𝑗 th iteration, 𝑗 = 1, 2, . . ..211

1. Allocate initial PDFs for each 𝑋𝑖 (e.g., normal distribution), denoted by 𝑓𝑋1,1 through to 𝑓𝑋𝑁𝑋 ,1, and212

calculate 𝜁1 = 𝜁 ( 𝑓𝑋1,1, 𝑓𝑋2,1, . . . , 𝑓𝑋𝑁𝑋 ,1).213

2. For 𝑗 = 2, and 𝑖 = 1, 2, . . . 𝑁𝑋, repeatedly find 𝑓𝑋𝑖 , 𝑗 ∈ 𝔉𝑋𝑖 that maximizes (for the upper bound of

𝑅𝑒) or minimizes (for the lower bound) the following item based on Eqs. (25) and (26),

𝜁 ( 𝑓𝑋1, 𝑗 , 𝑓𝑋2, 𝑗 , . . . , 𝑓𝑋𝑖−1, 𝑗 , 𝑓𝑋𝑖 , 𝑗︸︷︷︸
to be optimized

, . . . , 𝑓𝑋𝑖+1, 𝑗−1, . . . , 𝑓𝑋𝑁𝑋 , 𝑗−1),

and compute 𝜁 𝑗 = 𝜁 ( 𝑓𝑋1, 𝑗 , 𝑓𝑋2, 𝑗 , . . . , 𝑓𝑋𝑁𝑋 , 𝑗).214

3. In Step 2, if |𝜁 𝑗 − 𝜁 𝑗−1 | ≤ 𝜖 , then 𝜁 𝑗 is determined as the (lower or upper) bound of 𝑅𝑒; otherwise,215
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return to Step 2 with 𝑗 replaced by 𝑗 + 1.216

The convergence of the above iteration-based approach was proven in Wang et al. (2018).217

BOUNDS OF RESILIENCE BASED ON IMPRECISE PERFORMANCE FUNCTION218

Explicit expression of resilience219

Two bounding techniques have been discussed above to determine the lower and upper bounds of the220

imprecise resilience in Eq. (8). It has been demonstrated that the availability of probability information on221

the (imprecise) random variables is a key element in finding the resilience bounds. On the other hand, the222

explicit expression of 𝑅𝑒 as a function of the involved variables (X and Y) serves as the foundation for the223

bounding techniques. As revealed in Eq. (4), the resilience is dependent on the time-variant performance224

function 𝑄(𝑡), which is by nature a stochastic process. To reflect the uncertainty associated with 𝑄(𝑡), one225

would need to employ appropriate stochastic processes to model𝑄(𝑡), based on which the explicit expression226

of 𝑅𝑒 can be derived. In this paper, two types of (imprecise) processes will be considered for 𝑄(𝑡), namely227

log-Gamma and lognormal, as will be addressed in the next two sections. Theoretically, also more general228

formulations such as distribution-free imprecise processes (Faes et al. 2022) can be applied. This is left for229

future work.230

For many resilience problems, the use of a single type of stochastic process is insufficient to describe231

𝑄(𝑡). For example, as shown in Fig. 1(a1), 𝑄(𝑡) decreases first from 𝑡0 to 𝑡 𝑓 , followed by a recovery process232

from 𝑡 𝑓 to 𝑡𝑟 . In such a case, it is reasonable to model 𝑄(𝑡) using two stochastic processes for the periods of233

[0, 𝑡 𝑓 ] and [𝑡 𝑓 , 𝑡𝑟 ], respectively. Based on Eq. (4) with 𝑡ℎ = 𝑡𝑟 , one has,234

𝑅𝑒 = 𝜇

{
exp

[
1

𝑡𝑟 − 𝑡0

∫ 𝑡 𝑓

𝑡0

ln[𝑄(𝑡)]𝑑𝑡
]
· exp

[
1

𝑡𝑟 − 𝑡0

∫ 𝑡𝑟

𝑡 𝑓

ln[𝑄(𝑡)]𝑑𝑡
]}

(28)

Assume that the performance function within [𝑡0, 𝑡 𝑓 ] and that within [𝑡 𝑓 , 𝑡𝑟 ] are statistically independent, as235

they are associated with different mechanisms. With this, Eq. (28) is rewritten as follows,236

𝑅𝑒 = 𝜇

{
exp

[
1

𝑡𝑟 − 𝑡0

∫ 𝑡 𝑓

𝑡0

ln[𝑄(𝑡)]𝑑𝑡
]}

︸                                       ︷︷                                       ︸
Sub-problem 1

· 𝜇
{

exp

[
1

𝑡𝑟 − 𝑡0

∫ 𝑡𝑟

𝑡 𝑓

ln[𝑄(𝑡)]𝑑𝑡
]}

︸                                        ︷︷                                        ︸
Sub-problem 2

(29)

Eq. (29) demonstrates that, the resilience for a reference period of [𝑡0, 𝑡𝑟 ] can be evaluated by integrating237
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those over [𝑡0, 𝑡 𝑓 ] and [𝑡 𝑓 , 𝑡𝑟 ], respectively (see Sub-problems 1 and 2 in Eq. (29)). In such a case, within238

each sub-interval, 𝑄(𝑡) can be described by an independent stochastic process. Further, one can extend the239

service period of [𝑡0, 𝑡𝑟 ] in Eq. (29) to [0, 𝑡𝑙] to account for time-dependent resilience.240

Log-Gamma process-based performance function241

For a sub-interval within which the performance function decreases monotonically (e.g., the interval242

of [𝑡0, 𝑡 𝑓 ] in Fig. 1(a1)), one can employ a log-Gamma process to describe 𝑄(𝑡). Mathematically, for 𝑡 ∈243

[𝑡a, 𝑡b] = [𝑡a, 𝑡a + 𝛿1], 𝑄(𝑡) is expressed as follows,244

𝑄(𝑡) = exp(−𝑋 (𝑡)), with 𝑄(𝑡a) = 1 (30)

in which 𝑋 (𝑡) is a Gamma process. The process 𝑄(𝑡) in Eq. (30) is named a “log-Gamma” process because245

the logarithm of 𝑄(𝑡) is a Gamma process up to a multiplicative scaling factor (the factor equals −1 in246

Eq. (30)).247

For any 𝑡∗ ∈ [𝑡a, 𝑡b], 𝑋 (𝑡∗) (i.e., 𝑋 (𝑡) evaluated at time 𝑡∗) follows a Gamma distribution with a shape248

parameter of 𝑎(𝑡∗) > 0 and a scale parameter of 𝑏 > 0, and is written as 𝑋 (𝑡∗) ∼ Ga(𝑎(𝑡∗), 𝑏). The PDF of249

𝑋 (𝑡∗), denoted by 𝑓𝑋 (𝑡∗ ) (𝑥), is as follows,250

𝑓𝑋 (𝑡∗ ) (𝑥) =
(𝑥/𝑏)𝑎 (𝑡∗ )−1

𝑏Γ(𝑎(𝑡∗)) exp(−𝑥/𝑏), 𝑥 ≥ 0 (31)

where Γ() is the Gamma function. With Eq. (31), the moment generating function (MGF) of 𝑋 (𝑡∗) is (Ross251

2014)252

𝜓𝑋 (𝑡∗ ) (𝜏) = 𝜇[exp(𝑋 (𝑡∗)𝜏)] = (1 − 𝑏𝜏)−𝑎 (𝑡∗ ) (32)

The Gamma process 𝑋 (𝑡) in Eq. (30) is a continuous stochastic process with statistically independent253

and Gamma-distributed increments over time (Kahle et al. 2016). That is, for time instants 𝑡a ≤ 𝑡∗0 < 𝑡∗1 <254

. . . < 𝑡∗𝑛 ≤ 𝑡b, the variables 𝑋 (𝑡∗0) − 𝑋 (𝑡a), 𝑋 (𝑡∗1) − 𝑋 (𝑡∗0), . . . 𝑋 (𝑡∗𝑛) − 𝑋 (𝑡∗𝑛−1) are independent of each255

other, and follow a Gamma distribution. Thus, 𝑋 (𝑡) monotonically increases with 𝑡, with which 𝑄(𝑡) in256

Eq. (30) is a decreasing stochastic process. In such a way, the uncertainty and monotonicity associated with257

the performance function within [𝑡a, 𝑡b] can be reflected through Eq. (30).258

Next, the resilience associated with the monotonically-decreasing 𝑄(𝑡) within [𝑡a, 𝑡b] is derived, which259
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is expressed as follows,260

𝑅𝑒,sub = 𝜇

(
exp

[
− 1
𝑡ref

∫ 𝑡b

𝑡a

𝑋 (𝑡)𝑑𝑡
] )

(33)

Note that in Eq. (33), the subscript “sub” indicates that it is a sub-problem of resilience evaluation over a261

reference period with a duration of 𝑡ref (see, e.g., Eq. (29) for explanation). For the resilience problem in262

Eq. (4), 𝑡ref = 𝑡ℎ − 𝑡0. If the time-dependent resilience over the life cycle [0, 𝑡𝑙] is considered, then 𝑡ref equals263

𝑡𝑙.264

Denote 𝑋 (𝑡) ≡ 𝑋 (𝑡 + 𝑡a), and �̃�(𝑡) ≡ 𝑎(𝑡 + 𝑡a). From a view of Riemann integral, discretizing the interval265

[𝑡a, 𝑡b] into 𝑛 identical sections (𝑛 is sufficiently large), Eq. (33) is approximated by the following,266

𝑅𝑒,sub = 𝜇

(
exp

[
− 1
𝑡ref

∫ 𝛿1

0
𝑋 (𝑡)𝑑𝑡

] )
= 𝜇

(
exp

[
− 𝛿1

𝑡ref
· 1
𝛿1

𝑛∑
𝑖=1

𝑋𝑖Δ𝑡

])
(34)

where Δ𝑡 = 𝛿1/𝑛, 𝑋𝑖 = 𝑋 (𝑡𝑖), and 𝑡𝑖 = 𝑖𝛿1/𝑛. Denote 𝑋0 = 0, and Δ𝑖 = 𝑋𝑖 − 𝑋𝑖−1 for 𝑖 = 1, 2, . . . 𝑛. Due267

to the property of a Gamma process, Δ𝑖 follows a Gamma distribution with a shape parameter of �̃�′𝑖Δ𝑡 and a268

scale parameter of 𝑏, where �̃�′𝑖 = �̃�′(𝑡𝑖), and the symbol ′ denotes the first order derivative of a function.269

Since 𝑋𝑖 =
∑𝑖

𝑗=1 Δ 𝑗 for 𝑖 = 1, 2, . . . 𝑛, it follows that,270

𝑅𝑒,sub = 𝜇

(
exp

[
− 𝛿1

𝑡ref
· Δ𝑡
𝛿1

𝑛∑
𝑖=1

(𝑛 + 1 − 𝑖)Δ𝑖

])
= 𝜇

(
exp

[
− 𝛿1

𝑡ref
·

𝑛∑
𝑖=1

Θ𝑖

])
(35)

in which Θ𝑖 = (1 + (1 − 𝑖)/𝑛) Δ𝑖 . Since Θ𝑖 ∼ Ga
(
�̃�′𝑖Δ𝑡, (1 + (1 − 𝑖)/𝑛) 𝑏

)
, the MGF of Θ𝑖 is271

𝜓Θ𝑖 (𝜏) = 𝜇(exp(𝜏Θ𝑖)) =
(
1 −

(
1 + 1 − 𝑖

𝑛

)
𝑏𝜏

)−𝑎′
𝑖Δ𝑡

(36)

Further, by noting that each Θ𝑖 is statistically independent (due to the independence of each Δ𝑖), the MGF of272 ∑𝑛
𝑖 Θ𝑖 is273

𝜓∑𝑛
𝑖=1 Θ𝑖

(𝜏) =
𝑛∏
𝑖=1

𝜓Θ𝑖 (𝜏) =
𝑛∏
𝑖=1

(
1 −

(
1 + 1 − 𝑖

𝑛

)
𝑏𝜏

)−𝑎′
𝑖Δ𝑡

(37)

With a sufficiently large 𝑛, one has,274

𝜓∑𝑛
𝑖=1 Θ𝑖

(𝜏) = lim
𝑛→∞

exp

{
−

𝑛∑
𝑖=1

ln
(
1 −

(
1 + 1 − 𝑖

𝑛

)
𝑏𝜏

)
�̃�′𝑖Δ𝑡

}
= exp

{
−

∫ 𝛿1

0
�̃�′(𝑡) ln

(
1 −

(
1 − 𝑡

𝛿1

)
𝑏𝜏

)
𝑑𝑡

} (38)
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Thus, 𝑅𝑒,sub in Eq. (35) is evaluated by275

𝑅𝑒,sub = 𝜓∑𝑛
𝑖=1 Θ𝑖

(
− 𝛿1

𝑡ref

)
= exp

{
−

∫ 𝛿1

0
�̃�′(𝑡) ln

(
1 +

(
1 − 𝑡

𝛿1

)
𝑏𝛿1

𝑡ref

)
𝑑𝑡

}
(39)

Denote276

H(𝑡) = ln
(
1 +

(
1 − 𝑡

𝛿1

)
𝑏𝛿1

𝑡ref

)
(40)

Note that �̃�(0) = 0 and H(𝛿1) = 0. Thus, Eq. (39) is rewritten as follows,277

𝑅𝑒,sub = exp
{
−

∫ 𝛿1

0
H(𝑡)𝑑 [�̃�(𝑡)]

}
= exp

−
1
𝑡ref

∫ 𝛿1

0
�̃�(𝑡) 𝑏

1 +
(
1 − 𝑡

𝛿1

)
𝑏𝛿1
𝑡ref

𝑑𝑡

 (41)

Eq. (41) presents an explicit formulation for the sub resilience problem in Eq. (33) in the presence of a278

log-Gamma performance function over [𝑡a, 𝑡b].279

Next, a bias factor, 𝜂sub, is introduced, which is defined as the ratio of resilience in Eq. (41) to that based280

on 𝑄(𝑡) = 𝜇(𝑄(𝑡)), denoted by 𝑅𝑒,sub,𝑄. The factor 𝜂sub thus provides a straightforward indicator on “how281

biased the resilience evaluation is if simply using the mean value of performance function”.282

With a log-Gamma 𝑄(𝑡) in Eq. (30), for 𝑡 ∈ [0, 𝛿1], it follows that,283

𝜇(𝑄(𝑡 + 𝑡a)) = 𝜓𝑋 (𝑡 ) (−1) = (1 + 𝑏)−𝑎 (𝑡 )

𝜇(𝑄2(𝑡 + 𝑡a)) = 𝜓𝑋 (𝑡 ) (−2) = (1 + 2𝑏)−𝑎 (𝑡 )
(42)

Thus,284

𝑅𝑒,sub,𝑄 = exp
[

1
𝑡ref

∫ 𝑡b

𝑡a

ln𝑄(𝑡)𝑑𝑡
]
= exp

[
− ln(𝑏 + 1)

𝑡ref

∫ 𝛿1

0
�̃�(𝑡)𝑑𝑡

]
(43)

Based on the definition of 𝜂sub, one has,285

𝜂sub = exp

−
1
𝑡ref

∫ 𝛿1

0
�̃�(𝑡)


𝑏

1 +
(
1 − 𝑡

𝛿1

)
𝑏𝛿1
𝑡ref

− ln(𝑏 + 1)
 𝑑𝑡

 (44)

For a special case where 𝑄(𝑡) degrades from 1 at time 𝑡a to 𝑞0 at time 𝑡b with a linear �̃�(𝑡) with time, it286

follows that,287

𝑅𝑒,sub,𝑄 = 𝑞
𝛿1

2𝑡ref
0 , 𝜂sub = 𝑞

F
(
𝑏,

𝛿1
𝑡ref

)
− 𝛿1

2𝑡ref
0 (45)
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where288

F
(
𝑏,

𝛿1

𝑡ref

)
=

(
1 + 𝑡ref

𝑏𝛿1

)
ln(1 + 𝑏𝛿1

𝑡ref
) − 1

ln(𝑏 + 1) (46)

Note that F
(
𝑏, 𝛿1

𝑡ref

)
is a monotonically increasing function of 𝑏. If 𝑏 is an imprecise parameter and 𝑏 ∈289

[𝑏lb, 𝑏ub], then290

𝑞
F

(
𝑏ub,

𝛿1
𝑡ref

)
− 𝛿1

2𝑡ref
0 ≤ 𝜂sub ≤ 𝑞

F
(
𝑏lb,

𝛿1
𝑡ref

)
− 𝛿1

2𝑡ref
0 (47)

yielding the lower and upper bounds of 𝜂sub. Otherwise, if the information on 𝑏lb and 𝑏ub is unknown, the291

bounds of 𝜂sub are given as follows,292

𝑞
1− 𝛿1

2𝑡ref
0 ≤ 𝜂sub ≤ 1 (48)

by noting that,293

lim
𝑏→0

F
(
𝑏,

𝛿1

𝑡ref

)
=

𝛿1

2𝑡ref
, lim

𝑏→∞
F

(
𝑏,

𝛿1

𝑡ref

)
= 1 (49)

Eq. (48) shows that, if one substitutes the mean value of performance function into Eq. (33), the resilience294

would be overestimated since 𝜂sub ≤ 1.295

Illustratively, Fig. 2(a) plots sampled trajectories and the mean value of 𝑄(𝑡) with 𝛿1 = 5 and 𝑞0 = 0.8296

(assuming 𝑡a = 0). The coefficient of variation (COV) of 𝑄(𝛿1) equals 0.2, with which the value of 𝑏 can297

be uniquely determined according to Eq. (42). The generation of a sample process 𝑄(𝑡) is realized through298

first sampling a sequence of increments, Δ1,Δ2, . . . ,Δ𝑛, and then computing 𝑋 (𝑡) at discrete time instants299

𝛿1/𝑛, 2𝛿1/𝑛, . . . , 𝛿1. In Fig. 2(a), the simulated mean value of 𝑄(𝑡) converges to 0.8 when 𝑡 = 𝛿1, which300

equals 𝑞0 as expected.301

Corresponding to the configuration in Fig. 2(a) but with an unknown value of 𝑏 (or equivalently, unknown302

COV of 𝑄(𝛿1)), the lower and upper bounds of 𝜂sub are obtained according to Eq. (48) as 0.846 and 1,303

respectively with 𝑡ref = 10. The value of 𝜂sub as a function of 𝑏 is computed by Eq. (44) and plotted in304

Fig. 2(b), which is found to vary within the bounds given by Eq. (48). Further, the accuracy of Eq. (44) has305

been verified in Fig. 2(b) via comparison between the analytical and simulation-based results.306

In Fig. 2(b), the graph of 𝜂sub as a function of 𝑏 and its bounds associated with 𝑞0 = 0.4 (i.e., more severe307

deterioration of performance function) are also presented with 𝑡ref = 10. With a smaller value of 𝑞0, the308

lower bound of 𝜂sub becomes smaller (0.503 for 𝑞0 = 0.4).309

16 December 22, 2023



Lognormal process-based performance function310

In this section, the use of lognormal stochastic process for the time-variation of performance function is311

discussed. For a time interval [𝑡c, 𝑡d] = [𝑡c, 𝑡c + 𝛿2], the performance function 𝑄(𝑡) is modeled as follows:312

𝑄(𝑡) = 𝑄(𝑡) · 𝐸 (𝑡), in which 𝑄(𝑡) = 𝜇(𝑄(𝑡)), and 𝐸 (𝑡) is a lognormal process with a mean value of 1, a313

standard deviation of 𝜎𝐸 , and a correlation coefficient of 𝜌𝐸 (𝑡2 − 𝑡1) for 𝐸 (𝑡1) and 𝐸 (𝑡2), 𝑡c ≤ 𝑡1, 𝑡2 ≤ 𝑡d314

(assume that 𝜌𝐸 (𝑡2 − 𝑡1) ≥ 0). Note that the use of a lognormal process-based model does not require the315

monotonicity of 𝑄(𝑡).316

Applying the resilience model in Eq. (33), one has,317

𝑅𝑒,sub = 𝜇

(
exp

[
1
𝑡ref

∫ 𝑡d

𝑡c

ln𝑄(𝑡)𝑑𝑡
]
· exp

[
1
𝑡ref

∫ 𝑡d

𝑡c

ln 𝐸 (𝑡)𝑑𝑡
] )

= exp
[

1
𝑡ref

∫ 𝑡d

𝑡c

ln𝑄(𝑡)𝑑𝑡
]

︸                         ︷︷                         ︸
𝑅𝑒,sub,𝑄

·𝜇 (exp(Λ)) (50)

where Λ is defined as follows,318

Λ :=
1
𝑡ref

∫ 𝑡d

𝑡c

ln 𝐸 (𝑡)𝑑𝑡 = 𝛿2

𝑡ref
· 1
𝛿2

∫ 𝑡d

𝑡c

𝛼(𝑡)𝑑𝑡 (51)

in which 𝛼(𝑡) ≡ ln 𝐸 (𝑡) is a stationary Gaussian process with a mean value of 𝜇𝛼 = −0.5 ln(1 + 𝜎2
𝐸), a319

standard deviation of 𝜎𝛼 =
√

ln(𝜎2
𝐸 + 1), and an autocorrelation function of320

R𝛼 (𝑡2 − 𝑡1) = 𝜇2
𝛼 + 𝜎2

𝛼𝜌𝛼 (𝑡2 − 𝑡1) = 𝜇2
𝛼 + 𝜎2

𝛼

ln[1 + 𝜎2
𝐸 · 𝜌𝐸 (𝑡2 − 𝑡1)]

ln(1 + 𝜎2
𝐸)

(52)

It has been shown in Eq. (50) that the bias factor 𝜂sub equals 𝜇 (exp(Λ)).321

Assume that Eq. (51) contains a Riemann integral. Subdividing the time interval [𝑡c, 𝑡d] into 𝑛 identical322

sections (𝑛 → ∞), let Δ𝑡 = 𝛿2/𝑛, 𝑡𝑖 = 𝑡c + 𝑖𝛿2/𝑛, and 𝛼𝑖 = 𝛼(𝑡𝑖) for 𝑖 = 1, 2, . . . 𝑛. With this, it follows that,323

Λ =
𝛿2

𝑡ref
· lim
𝑛→∞

1
𝛿2

𝑛∑
𝑖=1

𝛼𝑖Δ𝑡 (53)
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Based on Eq. (53), the first and second order moments of Λ are obtained as follows,324

𝜇(Λ) = 𝛿2

𝑡ref
· lim
𝑛→∞

1
𝛿2

𝑛∑
𝑖=1

𝜇(𝛼𝑖)Δ𝑡 =
𝛿2

𝑡ref
· 𝜇𝛼 (54)

and325

𝜇(Λ2) =
(
𝛿2

𝑡ref

)2
· lim
𝑛→∞

(
Δ𝑡
𝛿2

)2
𝜇

(
𝑛∑
𝑖=1

𝛼𝑖

)2

=

(
𝛿2

𝑡ref

)2
· lim
𝑛→∞

1
𝑛2

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜇(𝛼𝑖𝛼 𝑗)

=

(
𝛿2

𝑡ref

)2
·
∫ 𝛿2

0
R𝛼 (𝜏) 𝑓Δ∗ (𝜏)𝑑𝜏

(55)

in which 𝑓Δ∗ (𝜏) is the PDF of Δ∗ (the difference of two time instants that are randomly and uniformly selected326

from [𝑡c, 𝑡d]), 𝑓Δ∗ (𝜏) = 2(1 − 𝜏/𝛿2)/𝛿2 for 𝜏 ∈ [0, 𝛿2]. With this, Eq. (55) is rewritten as follows,327

𝜇(Λ2) =
(
𝛿2

𝑡ref

)2
· 2
𝛿2

∫ 𝛿2

0
[𝜇2

𝛼 + 𝜌𝛼 (𝜏) · 𝜎2
𝛼] ·

(
1 − 𝜏

𝛿2

)
𝑑𝜏

=

(
𝛿2

𝑡ref

)2
·
[
𝜇2
𝛼 + 2𝜎2

𝛼

𝛿2

∫ 𝛿2

0

ln[1 + 𝜎2
𝐸 · 𝜌𝐸 (𝜏)]

ln(1 + 𝜎2
𝐸)

·
(
1 − 𝜏

𝛿2

)
𝑑𝜏

] (56)

with which the variance of Λ is evaluated according to,328

𝜎2(Λ) = 𝜇(Λ2) − 𝜇2(Λ) =
(
𝛿2

𝑡ref

)2
·

2 ln(𝜎2
𝐸 + 1)
𝛿2

∫ 𝛿2

0

ln[1 + 𝜎2
𝐸 · 𝜌𝐸 (𝜏)]

ln(1 + 𝜎2
𝐸)

·
(
1 − 𝜏

𝛿2

)
𝑑𝜏

=
2𝛿2

𝑡2ref

∫ 𝛿2

0
ln[1 + 𝜎2

𝐸 · 𝜌𝐸 (𝜏)] ·
(
1 − 𝜏

𝛿2

)
𝑑𝜏

(57)

Recall that Λ is a normal variable according to Eq. (53). Thus,329

𝜂sub = 𝜇 (exp(Λ)) = exp
[
𝜇(Λ) + 0.5𝜎2(Λ)

]
= exp

[
− 𝛿2

2𝑡ref
· ln(1 + 𝜎2

𝐸) +
𝛿2

𝑡2ref

∫ 𝛿2

0
ln[1 + 𝜎2

𝐸 · 𝜌𝐸 (𝜏)] ·
(
1 − 𝜏

𝛿2

)
𝑑𝜏

] (58)

Substituting Eq. (58) into (50), the explicit form of resilience is derived.330

In Eq. (58), if 𝜌𝐸 (𝜏) is an imprecise function of 𝜏 satisfying 𝜌𝐸 (𝜏) ∈ [𝜌𝐸,lb, 𝜌𝐸,ub], then331

𝜂sub ∈

(
1 + 𝜎2

𝐸

)− 𝛿2
2𝑡ref ·

(
1 + 𝜌𝐸,lb𝜎

2
𝐸

) 𝛿2
2

2𝑡2ref ,
(
1 + 𝜎2

𝐸

)− 𝛿2
2𝑡ref ·

(
1 + 𝜌𝐸,ub𝜎

2
𝐸

) 𝛿2
2

2𝑡2ref

 (59)

yielding the lower and upper bounds for 𝜂sub. However, if the information on 𝜌𝐸,lb and 𝜌𝐸,ub is unknown,332
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since 𝜌𝐸 (𝜏) varies within [0, 1], the interval for 𝜂sub is as follows,333

𝜂sub ∈

(
1 + 𝜎2

𝐸

)− 𝛿2
2𝑡ref ,

(
1 + 𝜎2

𝐸

) 𝛿2
2

2𝑡2ref
− 𝛿2

2𝑡ref

 (60)

The accuracy and applicability of the bounds for 𝜂sub in Eq. (60) are examined through a numerical334

example. Assume that the autocorrelation function of 𝐸 (𝑡) takes a form of335

R𝐸 (𝜏) = (1 + 𝜎2
𝐸)exp(−𝑘𝜏2 ) , 𝑘 ≥ 0 (61)

where 𝑘 is a non-negative parameter. Fig. 3(a) shows the dependence of R𝐸 (𝜏) on 𝜏 with some specific336

values of 𝑘 and 𝜎𝐸 . With this, the autocorrelation function of 𝛼(𝑡) is337

R𝛼 (𝜏) = 𝜇2
𝛼 + 𝜎2

𝛼 exp(−𝑘𝜏2) (62)

Denote �̃�(𝑡) ≡ 𝛼(𝑡)−𝜇𝛼, with which R𝛼 (𝜏) = 𝜎2
𝛼 exp(−𝑘𝜏2), and the power spectral density (PSD) function338

of �̃�(𝑡), S𝛼 (𝜔) is,339

S𝛼 (𝜔) =
1
𝜋

∫ ∞

0
𝜎2
𝛼 exp(−𝑘𝜏2) cos(𝜔𝜏)𝑑𝜏 = 𝜎2

𝛼 · 1
2
√
𝑘𝜋

exp
(
−𝜔

2

4𝑘

)
(63)

Assume that 𝛿2 = 5 and 𝑡ref = 10. The lower and upper bounds of 𝜂sub are dependent on 𝜎𝐸 according340

to Eq. (60), and are plotted in Fig. 3(b) for 𝜎𝐸 = 1 and 2, respectively. These bounds define an interval for341

𝜂sub in Eq. (58) as a function of 𝑘 (note that 𝑘 affects the correlation structure of 𝐸 (𝑡)). Further, the accuracy342

of Eq. (58) is verified through employing the MC method to generate simulation-based 𝜂sub. To this end, by343

noting that �̃�(𝑡) is a zero-mean Gaussian process, the following approach can be used to generate a sample344

process for �̃�(𝑡) (Shinozuka 1971),345

�̃�(𝑡) = 𝜎𝛼

√
2
𝑁

·
𝑁∑
𝑗=1

cos
(
Ω 𝑗 𝑡 +𝑈 𝑗

)
(64)

where 𝑁 is a sufficiently large integer, Ω 𝑗 is a real random variable with a PDF of 𝑓Ω(𝜔) = S𝛼 (𝜔)/𝜎2
𝛼, and346

𝑈 𝑗 is a random variable that is uniformly distributed in [0, 2𝜋]. The agreement between the analytical and347

simulated results in Fig. 3(b) demonstrates the accuracy of Eq. (58).348
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Bounds of time-dependent imprecise resilience349

In the section, the bounding method for time-dependent imprecise resilience, 𝑅𝑒 (0, 𝑡𝑙), will be discussed,350

which is also applicable to handle the imprecise resilience problem over [𝑡0, 𝑡ℎ] in Eq. (4).351

Two types of stochastic processes have been discussed above (log-Gamma and lognormal) to model the352

time-variation of performance functions. For a planning horizon of [0, 𝑡𝑙], 𝑄(𝑡) may display inconsistent353

monotonicity characteristics within different time intervals (subsets of [0, 𝑡𝑙]), as previously addressed in354

Eq. (29). Motivated by this observation, the reference period [0, 𝑡𝑙] is subdivided into 𝑁𝐷 sub-intervals,355

namely D1,D2, . . . ,D𝑁𝐷 , that satisfy
⋃𝑁𝐷

𝑖=1 D𝑖 = [0, 𝑡𝑙] and D𝑖
⋂D 𝑗 = ∅,∀𝑖 ≠ 𝑗 simultaneously. Let356

𝑅𝑒,sub,𝑖 be the resilience associated with D𝑖 . Assume that the performance function over D𝑖 is statistically357

independent of that over D 𝑗 for ∀𝑖 ≠ 𝑗 . Based on Eq. (5), it follows that,358

𝑅𝑒 (0, 𝑡𝑙) = 𝜇

{
exp

[
1
𝑡𝑙

∫
⋃𝑁𝐷

𝑖=1 D𝑖

ln[𝑄(𝑡)]𝑑𝑡
]}

= 𝜇

{
exp

[
1
𝑡𝑙

𝑁𝐷∑
𝑖=1

∫
D𝑖

ln[𝑄(𝑡)]𝑑𝑡
]}

= 𝜇

{
𝑁𝐷∏
𝑖=1

exp
[
1
𝑡𝑙

∫
D𝑖

ln[𝑄(𝑡)]𝑑𝑡
]}

=
𝑁𝐷∏
𝑖=1

𝜇

{
exp

[
1
𝑡𝑙

∫
D𝑖

ln[𝑄(𝑡)]𝑑𝑡
]}

=
𝑁𝐷∏
𝑖=1

𝑅𝑒,sub,𝑖

(65)

Let 𝑅𝑒,lb,𝑖 and 𝑅𝑒,ub,𝑖 be the lower and upper bounds of 𝑅𝑒,sub,𝑖 , respectively. According to Eq. (65), it follows359

that,360
𝑁𝐷∏
𝑖=1

𝑅𝑒,lb,𝑖 ≤ 𝑅𝑒 (0, 𝑡𝑙) ≤
𝑁𝐷∏
𝑖=1

𝑅𝑒,ub,𝑖 (66)

which gives the lower and upper bounds for 𝑅𝑒 (0, 𝑡𝑙).361

Let 𝜂(0, 𝑡𝑙) denote the bias factor for 𝑅𝑒 (0, 𝑡𝑙), which is defined, similar to 𝜂sub, as the ratio of 𝑅𝑒 (0, 𝑡𝑙)362

to 𝑅𝑒,𝑄 (0, 𝑡𝑙) (the time-dependent resilience based on the mean performance function), and is calculated as363

follows,364

𝜂(0, 𝑡𝑙) =
𝑅𝑒 (0, 𝑡𝑙)
𝑅𝑒,𝑄 (0, 𝑡𝑙)

=
𝜇

{
exp

[
1
𝑡𝑙

∫ 𝑡𝑙
0 ln[𝑄(𝑡)]𝑑𝑡

]}
exp

[
1
𝑡𝑙

∫ 𝑡𝑙
0 ln[𝑄(𝑡)]𝑑𝑡

]
=

∏𝑁𝐷

𝑖=1 𝑅𝑒,sub,𝑖∏𝑁𝐷

𝑖=1 𝑅𝑒,𝑄,𝑖

=
𝑁𝐷∏
𝑖=1

𝜂sub,𝑖

(67)

in which 𝑅𝑒,𝑄,𝑖 is the resilience based on the mean value of performance function associated with D𝑖 , and365

𝜂sub,𝑖 is the bias factor for 𝑅𝑒,sub,𝑖 , 𝑖 = 1, 2, . . . 𝑁𝐷 . Let 𝜂lb,𝑖 and 𝜂ub,𝑖 be the lower and upper bounds of 𝜂sub,𝑖 ,366
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respectively. Based on Eq. (67), the bounds for 𝜂(0, 𝑡𝑙) is given as follows,367

𝑁𝐷∏
𝑖=1

𝜂lb,𝑖 ≤ 𝜂(0, 𝑡𝑙) ≤
𝑁𝐷∏
𝑖=1

𝜂ub,𝑖 (68)

Note that the lower and upper bounds for 𝜂sub presented in Eqs. (47), (48) and Eqs. (59), (60) have368

considered the imprecise information on one parameter associated with the stochastic performance function369

(𝑏 and 𝜌𝐸 , respectively), which are indeed an application of Eq. (16). The other parameters involved in the sub370

resilience problems (see Eqs. (41) and (50)) could also be imprecise in a probabilistic sense. In such a case,371

the resilience bounding techniques (e.g., the interval MC method, and LP-based method) can be employed372

to determine the bounds of the imprecise resilience. For example, consider the resilience problem of a373

reinforced concrete (RC) structure in a marine environment subjected to chloride ingress. The performance374

of the structure is deemed to be 100% from the initial time (𝑡 = 0) until crack initiation (𝑡 = 𝑇𝑖). Then375

the performance function deteriorates gradually until the appearance of crack on the concrete surface (𝑡 =376

𝑇𝑖 +𝑇𝑐𝑖). With this, the sub resilience problem over [𝑇𝑖 , 𝑇𝑖 +𝑇𝑐𝑖] can be evaluated by Eq. (33), where 𝑡a = 𝑇𝑖377

and 𝑡b = 𝑇𝑖 + 𝑇𝑐𝑖 . Note also that both 𝑇𝑖 and 𝑇𝑖 + 𝑇𝑐𝑖 are affected by many factors of the RC structure, such378

as the concrete thickness, apparent diffusion coefficient, cross-section area of steel bars, corrosion rate, and379

others (Vidal et al. 2004; El Maaddawy and Soudki 2007; Li and Ye 2018; Wang 2021a). If one or several380

of these factors are incompletely informed (e.g., only the low order moments are available), the bounding381

techniques for imprecise resilience apply. Another example is presented in the next section, where the time-382

dependent resilience of a strip foundation in a changing climate is examined. The imprecise information on383

the sea level rise (SLR), which is a key influencing factor for the foundation resilience, is quantified using384

the LP-based method.385

EXAMPLE386

In this section, an example is presented to demonstrate the applicability of the proposed bounding tech-387

niques for imprecise resilience. Consider the serviceability of a strip foundation located in a coastal area, as388

previously studied in Wang et al. (2023). The load bearing capacity of the foundation, 𝑅ult, is as follows,389

𝑅ult = 𝑐𝑁𝑐 + 𝛾𝐷f𝑁𝑞 + 0.5𝛾𝐵f𝑁𝛾 (69)

in which 𝑐 is the cohesion of soil, 𝛾 is the unit weight of soil, 𝐷f and 𝐵f are the depth and width of the390
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foundation, respectively (as illustrated in Fig. 4(a)), and 𝑁𝑐, 𝑁𝑞, 𝑁𝛾 are three functions of the soil internal391

friction angle 𝜙 expressed as follows,392

𝑁𝑞 = tan2
(
𝜋

4
+ 𝜙

2

)
exp(𝜋 tan 𝜙) (70)

𝑁𝑐 = (𝑁𝑞 − 1) cot 𝜙 (71)

𝑁𝛾 = 2(𝑁𝑞 + 1) tan 𝜙 (72)

Note that Eq. (69) holds if the groundwater table is below the foundation bottom with a distance of at least393

𝐵f. However, due to the potential impact of groundwater table rise as a result of SLR in a changing climate,394

this condition could be violated. In such a case, one would need to modify Eq. (69). If the groundwater table395

is above the foundation bottom at a distance of 𝑥𝑎 (see Case 1 in Fig. 4(a)), then 𝑅ult is expressed as follows,396

𝑅ult = 𝑐𝑁𝑐 + [𝛾(𝐷f − 𝑥𝑎) + 𝑥𝑎 (𝛾sa − 𝛾𝑤)]𝑁𝑞 + 0.5(𝛾sa − 𝛾𝑤)𝐵f𝑁𝛾 (73)

in which 𝛾sa is the saturated unit weight of soil, and 𝛾𝑤 is the unit weight of water (9.81 kN/m³). On the397

other hand, if the groundwater table is below the foundation bottom at a distance of 𝑥𝑏 (Case 2 in Fig. 4(a)),398

then Eq. (69) is modified as,399

𝑅ult = 𝑐𝑁𝑐 + 𝛾𝐷f𝑁𝑞 + 0.5
[
(𝛾sa − 𝛾𝑤) +

𝑥𝑏
𝐵f

(𝛾 − 𝛾sa + 𝛾𝑤)
]
𝐵f𝑁𝛾 (74)

The statistics of 𝛾, 𝜙 and 𝛾sa used in this example are presented in Table 1. The foundation has a width400

of 0.9 m and a depth of 0.6 m, and the initial groundwater table is 1.8 m below the ground level. Assume401

that the soil cohesion is negligible (so that 𝑐 = 0), and that the groundwater table rise is equal to SLR. A402

reference period of 80 years will be considered, within which the sea level may rise by 0.5 m – 1.4 m, as403

projected in National Research Council (2012b).404

The performance function of the foundation is dependent on the time-variant load bearing capacity 𝑅ult.405

The reduction of 𝑅ult is initiated when the groundwater table arrives at a distance of 𝐵f below the foundation406

bottom. Before this time point, the performance function is full (see “Stage 1” in Fig. 4(b)). Subsequently, the407

gradual deterioration of 𝑄(𝑡) as a result of the decreasing 𝑅ult is referred to as “Stage 2”, until 𝑅ult reaches a408

predefined threshold (0.9 times the initial state in this example). This corresponds to a mean value of 𝑞0 for the409
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performance function. The conduction of repair actions is then triggered to restore the load bearing capacity410

to the initial state (e.g., via groundwater drawdown), leading to the recovery the performance function (Stage411

3). The duration of recovery process follows a normal distribution with a mean value of 2 years and a COV412

of 0.2. The time-variation of 𝑄(𝑡) is modeled by a log-Gamma process for Stage 2, and a lognormal process413

for Stage 3. Note that for a reference period of [0, 𝑡𝑙], the sequence of Stages 1–2–3 may occur for multiple414

times.415

Fig. 5 shows sampled trajectories of 𝑄(𝑡) over a reference period of 80 years with 𝑞0 = 0.7, 𝑏ub → 0416

and 𝜎𝐸 → 0 (recall that 𝑏ub is the upper bound of the scale parameter of − ln𝑄(𝑡) in Eq. (30), and 𝜎𝐸417

is the standard deviation of 𝐸 (𝑡) in Eq. (50)). Four representative values of SLR are considered in Fig. 5,418

representing different scenarios of climate change. For each case, the performance function is full (100%)419

from the initial time (or the completion of the previous recovery process) until the reduction initiation of 𝑅ult,420

followed by the stage of gradual deterioration (Stage 2) in parallel with the decreasing load bearing capacity,421

and Stage 3 of performance function recovery.422

Fig. 6 plots the lower and upper bounds of time-dependent imprecise resilience for reference periods up423

to 80 years according to Eq. (66). The imprecision is associated with the gradual deterioration and recovery424

processes of the performance function (see Stages 2 and 3 in Fig. 4), with 𝑞0 = 0.7, 𝑏ub = 10 and 𝜎𝐸 =425

0.5. Four cases of SLR are considered, with an increase of 0.5 m, 0.8 m, 1.1 m and 1.4 m, respectively,426

over 80 years, representing different scenarios of climate change. For comparison purpose, the resilience427

evaluated with𝑄(𝑡), 𝑅𝑒,𝑄 (0, 𝑡𝑙), is also presented in Fig. 6. The upper bound of imprecise resilience is below428

𝑅𝑒,𝑄 (0, 𝑡𝑙), because the upper bound of 𝜂sub is less than 1 for both log-Gamma and lognormal processes. This429

indicates that, the resilience would be overestimated (non-conservative) if simply using the mean value of430

performance function in the resilience assessment. Further, a more severe scenario of SLR leads to smaller431

values of resilience bounds but wider intervals (greater difference between lower and upper bounds). For432

example, the lower bound equals 0.892, 0.854, 0.834 and 0.808 respectively for a reference period of 80433

years in Figs. 6(a–d), indicating the amplified possibility of low resilience in a more severe climate change434

pattern.435

The impact of 𝑞0 (i.e., the mean value of performance function immediately before repair measures) on436

the bounds of 𝜂(0, 𝑡𝑙) (the bias factor for time-dependent resilience) is shown in Table 2, where 𝜎𝐸 = 0.5,437

𝑏ub = ∞ and SLR = 1.4 m over 80 years. With a fixed 𝑡𝑙, the lower bound of 𝜂(0, 𝑡𝑙) becomes larger with a438

greater value of 𝑞0. This is because, according to Eqs. (47) and (60), the lower bound of the bias factor is439

23 December 22, 2023



𝑞
1− 𝛿1

2𝑡ref
0 ·

(
1 + 𝜎2

𝐸

)− 𝛿2
2𝑡ref conditional on 𝛿1, 𝛿2 for one deterioration-recovery cycle of performance function,440

which is an increasing function of 𝑞0. On the other hand, the upper bound of the bias factor in Table 2441

is
(
1 + 𝜎2

𝐸

) 𝛿2
2

2𝑡2ref
− 𝛿2

2𝑡ref , which is independent of 𝑞0. The observation from Table 2 is consistent with that from442

Fig. 2(b), where the lower bound of 𝜂sub associated with 𝑞0 = 0.4 is smaller than that associated with 𝑞0 = 0.8.443

The dependence of the bounds of time-dependent imprecise resilience on 𝑏ub is examined in Fig. 7(a),444

where 𝑞0 = 0.7, 𝜎𝐸 = 0.5, and SLR = 1.4 m over 80 years. While the upper bound of resilience is independent445

of 𝑏ub, the lower bound of resilience becomes smaller with a larger value of 𝑏ub. For example, for a reference446

period of 80 years, the lower bound of resilience is 0.887 if 𝑏ub = 1, which becomes 0.710 if 𝑏ub = 100, and447

0.554 with 𝑏ub = ∞. This is because F in Eq. (46) is a monotonically increasing function of 𝑏, and thus 𝑞F
0448

in Eq. (47) decreases with 𝑏ub.449

The impact of 𝜎𝐸 on the resilience bounds is presented in Fig. 7(b) with 𝑞0 = 0.7, 𝑏ub = 10, and SLR =450

1.4 m over 80 years. A greater value of 𝜎𝐸 means larger uncertainty associated with the recovery process,451

and thus reduced bounds for resilience (both lower and upper). For example, the lower bound equals 0.811452

and 0.789 for a reference period of 80 years corresponding to 𝜎𝐸 = 0.1 and 2, respectively. This observation453

is consistent with Eq. (60), where the exponents of the two bounds, −𝛿2/(2𝑡ref) and 𝛿2
2/(2𝑡2ref) − 𝛿2/(2𝑡ref),454

are both negative.455

Next, the role of imprecise information on SLR in time-dependent resilience is investigated. Assume that456

the SLR over the next 80 years, which is treated as an imprecise random variable, has a mean value of 1m and457

a COV of 0.3, and is bounded between 0.5 m and 1.4 m. However, the distribution type of SLR is unknown.458

In such a case, one can use the LP-based method (see Eqs. (25) and (26)) to find the lower and upper bounds459

of resilience. In terms of the uncertainty associated with the gradual deterioration and recovery of 𝑄(𝑡), the460

following two cases are considered: (1) 𝑏ub → 0 and 𝜎𝐸 → 0, and (2) 𝑏ub = 10 and 𝜎𝐸 = 0.5. For the two461

cases, the bounds of time-dependent resilience over a reference period of 40, 60 and 80 years are presented462

in Table 3 with 𝑞0 = 0.7. The (lower or upper) bound associated with case (1) is greater than that associated463

with case (2), because additional uncertainty arising from the deterioration and recovery processes of 𝑄(𝑡)464

has been included in case (2). This observation suggests the importance of properly incorporating all the465

uncertainty sources in resilience assessment.466

CONCLUDING REMARKS467

In this paper, a novel method for the assessment of imprecise resilience has been proposed, which handles468
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resilience problems in the presence of non-probabilistic information on the performance function. The lower469

and upper bounds of imprecise resilience are produced through the proposed bounding techniques, which470

have benefitted from those for imprecise reliability. In particular, since the resilience is measured based on471

the integration of performance function over time, two types of stochastic processes are discussed to model472

the time-variation of performance function, namely log-Gamma and lognormal. The following conclusions473

can be drawn from this paper.474

1. Existing bounding techniques for imprecise releasability, including interval MC method and LP-based475

method, can be extended to handle imprecise resilience problems, motivated by a unified framework476

for reliability and resilience assessment from a mathematical perspective.477

2. The resilience be measured through subdividing the reference period of interest into multiple time478

intervals, and integrating the resiliences associated with these sub-intervals. Under independence479

assumption on the performance functions over these intervals, the (lower or upper) bound of imprecise480

resilience equals the multiplication of the resilience bounds associated with each sub-interval.481

3. In the presence of uncertain and imprecise performance function 𝑄(𝑡), the resilience would be over-482

estimated if using the mean value of 𝑄(𝑡) in the resilience assessment, since the upper bound of the483

bias factor is less than 1.484

4. The importance of considering climate change in resilience evaluation is demonstrated through exam-485

ining the time-dependent resilience of a strip foundation. For a reference period of 80 years in Fig. 6,486

the resilience interval is [0.892, 0.964] with SLR = 0.5 m over 80 years, and becomes [0.808, 0.912]487

if SLR = 1.4 m over 80 years.488

In future works, it is an interesting topic to investigate the sensitivity of resilience bounds to the correla-489

tion between the performance functions over different sub-intervals.490
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TABLES592

TABLE 1. Statistics of random variables associated with soil properties.

Variable Mean COV Distribution type

Unit weight of soil 𝛾 16 kN/m³ 0.15 Lognormal
Soil friction angle 𝜙 30◦ 0.10 Lognormal
Saturated unit weight of soil 𝛾sa 18 kN/m³ 0.15 Lognormal

TABLE 2. Dependence on 𝑞0 of the bounds of 𝜂(0, 𝑡𝑙).

𝑞0
𝑡𝑙 = 40 years 𝑡𝑙 = 60 years 𝑡𝑙 = 80 years

Lower Upper Lower Upper Lower Upper

0.6 0.713 0.9974 0.566 0.9969 0.491 0.9963
0.7 0.788 0.9974 0.668 0.9969 0.605 0.9963
0.8 0.860 0.9974 0.773 0.9969 0.728 0.9963
0.9 0.930 0.9974 0.883 0.9969 0.858 0.9963

TABLE 3. Role of imprecise information on SLR in resilience bounds.

Case 𝑡𝑙 = 40 years 𝑡𝑙 = 60 years 𝑡𝑙 = 80 years
Lower Upper Lower Upper Lower Upper

(1) 0.957 0.967 0.936 0.944 0.921 0.934
(2) 0.903 0.966 0.860 0.942 0.834 0.932
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