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other noninfluential variables are fixed at specific values. There is no doubt that an accurate 9 

identification of influential variables is crucial for high-dimensional optimization problems. In this 10 

paper, an interval-based sensitivity index is introduced to identify the influential variables and is 11 

theoretically compared with other two types of existing indices. The performance of these indices for 12 

dimensionality reduction in optimization is examined by means of a test function. Then, the proposed 13 

procedure for high-dimensional design optimization with variable screening is analyzed considering 14 

two illustrative examples. Then, the proposed strategy is applied to a practical engineering problem 15 

involving an aeronautical hydraulic pipeline. The results show that the interval sensitivity index is an 16 

effective tool and is superior to other two existing sensitivity indices for variable screening in design 17 

optimization.  18 
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Introduction  22 

In engineering practice, a design optimization problem involves improving a predefined 23 

performance measure by selecting input variables of the considered system subject to certain 24 

constraints (Jamian et al. 2014; Martins and Lambe 2013; Valdebenito and Schuëller 2010; Wu et al. 25 

2021). An optimization problem can be formulated as:  26 

  (1) 27 

where , , , , ,  and  are the design variable vector, number of design variables, 28 

objective function, the i-th constraint function, number of constraints, lower bound vector of design 29 

variables, and upper bound vector of design variables, respectively. Note that the design variables are 30 

constrained in a range of upper and lower bounds, i.e.,  where the superscript “ ” 31 

denotes that they are represented as an interval. The complexity of the design optimization problem is, 32 

to some extent, determined by the number of design variables  and the size of the design space  33 

(Jamian et al. 2014). In general, design variables are chosen as much as possible based on the 34 

experience of designers and engineers in the initial design stage. This may result in a high-dimensional 35 

complex optimization model (Jamian et al. 2014; Martins and Lambe 2013).  36 

High-dimensional complex optimization problems often encounter obstacles that mainly come 37 

from two aspects. First, the evaluation of the numerical model associated with a system often requires a 38 

considerable computational cost that may take several hours for a single simulation, and the design 39 

optimization usually requires hundreds or even thousands of iterative evaluations (Cho et al. 2014). 40 

Therefore, the computational cost of high-dimensional optimization problems is usually expensive. 41 

Second, optimization problems in engineering practice are often multidisciplinary, which will increase 42 

the complexity of the problem and can lead to the failure of convergence to an optimal solution (Cho et 43 

al. 2014; Spagnol et al. 2019; Wang et al. 2021, 2018). It is worth noting that engineers need to 44 

repeatedly utilize the established optimization model many times during the product design iteration 45 
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process. Thus, high-dimensional complex optimization models are often unsuitable for subsequent use 46 

by engineers. In this situation, an effective approach, that is, design optimization based on 47 

pre-treatment of variables or so-called optimization with variable screening, is to perform design 48 

optimization in two stages (Spagnol et al. 2019; Wang et al. 2018). First, a sensitivity analysis is 49 

performed to rank the effect of all input variables and identify the most influential ones. Then, the 50 

optimization problem is remodeled by considering only these selected influential variables, while the 51 

other noninfluential variables are fixed at specific values in its space. It should be noted that variable 52 

screening is not the same as variable reformulation or feature projection, such as principal component 53 

analysis (Jolliffe 2002) or active subspace (Constantine et al. 2013) where the design space is changed.  54 

Sensitivity analysis (also known as importance analysis) is a crucial step in many applications 55 

(Borgonovo and Plischke 2016; Wei et al. 2015). Through sensitivity analysis we gain essential 56 

insights into model behaviour, their structure and their response to changes on the model inputs 57 

(Borgonovo and Plischke 2016). In the past few decades, several sensitivity analysis methods have 58 

been developed, such as difference-based methods (Sobol’ and Kucherenko 2009), parametric 59 

regression techniques (Härdle and Simar 2003), random forest techniques (Breiman 2001), 60 

variance-based methods (Homma and Saltelli 1996; Sobol’ 1993) and moment-independent methods 61 

(Borgonovo 2007). Among them, variance-based methods have been particularly popular since the 62 

works of Sobol’ (Sobol’ 1993; Sobol’ and Kucherenko 2009) were published (Homma and Saltelli 63 

1996), and have been effectively applied to many engineering problems (Zhang et al. 2020).  64 

Sensitivity analysis has emerged as a variable screening tool for high-dimensional complex 65 

optimization problems in various disciplines (Cho et al. 2014; Fesanghary et al. 2009; Li et al. 2020; 66 

Liu et al. 2020; Lu et al. 2015; Spagnol et al. 2019). In statistics, important variables among all 67 

candidate variables were accurately identified by a data-based sensitivity analysis (Duarte Silva 2001). 68 

Especially in statistical learning theory, different kinds of sensitivity analysis methods have been used 69 

to choose a subset of all input variables to model the system effectively (Guyon and Elisseeff 2003; 70 

Marra and Wood 2011; Marrel et al. 2008). In hydrology and earth systems (Li et al. 2013b), 71 
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qualitative sensitivity analysis methods were employed to find 2-8 important variables from a total of 72 

40 variables, and the total effect of Sobol’s sensitivity method was used to quantify the contribution of 73 

each variable to the total variance of the model output (Li et al. 2013b). In addition, sensitivity analysis 74 

was used as a screening tool to reduce the computational cost associated with multi-objective design 75 

and rehabilitation of water distribution systems (Fu et al. 2012). In power and energy systems, 76 

sensitivity analysis was adopted to quantitatively compare the impacts of 24 variables in three major 77 

performances of a net-zero energy building (a promising solution to the worsening energy and 78 

environmental problems) (Zhang et al. 2020). Also, sensitivity analysis-based multi-objective 79 

optimization was performed to select the important operating parameters of a sinter cooler, thus 80 

achieving the optimal indicator parameters and obtaining the corresponding operating conditions (Tian 81 

et al. 2018). In the domain of structural design, sensitivity analysis methods were introduced or 82 

modified to carry out the design optimization of aeronautical hydraulic pipelines, which demonstrated 83 

that sensitivity-based variable screening methods can to some extent improve the efficiency of the 84 

optimization (Li et al. 2020; Wang et al. 2018; Zhang et al. 2019). Moreover, sensitivity-based variable 85 

screening methods have been used for automotive crashworthiness design (Craig et al. 2005), 86 

composite fuselage frame design (Gao et al. 2019), occupant restraint system design (Liu et al. 2020), 87 

thin-walled structure design, and dynamic design optimization of multi-motor driving transmission 88 

systems (Shu et al. 2018).  89 

Regarding the sensitivity indices that the above-mentioned works used, most of them are 90 

variance-based measures, such as Sobol’ indices. However, for the variable screening of optimization 91 

problems, variance-based indices may have some limitations because they only focus on the effect of a 92 

variable or multiple variables on the total variance of the model output rather than the model output 93 

itself, which may fail to provide a reasonable evaluation of the importance of each input (Fort et al. 94 

2016; Spagnol et al. 2019). Moreover, variance-based indices are appropriately implemented in a 95 

probabilistic framework where inputs are represented by probabilistic information (e.g., a normal 96 

distribution or uniform distribution). However, the design variables of an optimization problem are 97 
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usually described by interval models where no probabilistic information can be used (Martins and 98 

Lambe 2013). A compromise treatment is to directly consider the interval design variables as normal 99 

distribution or uniform distribution (Arwade et al. 2010; Fesanghary et al. 2009; Zhang et al. 2020), 100 

which is a clear violation of the interval paradigms as artificial information is added to the analysis 101 

(Chang et al. 2021; Zhou et al. 2021). There are relatively few works related to sensitivity analysis of 102 

interval variables (Faes and Moens 2020; Wang et al. 2018). The available approach seems to be the 103 

work of Wang et al. (Wang et al. 2018), which is also used as screening tools in the design optimization 104 

problem. Unfortunately, Wang’s approach struggles with some drawbacks: the considered output has 105 

no clear physical meaning, and the indices may become inadequate in specific circumstances, which 106 

will be elaborated and compared in this work. Recently, Chang et al. (Chang et al. 2022) proposed a 107 

new interval sensitivity index, denoted as interval-based sensitivity index in the following, which can 108 

provide an intuitive interpretation on the behaviour of model response with respect to interval inputs. 109 

The model response can be regarded as the objective function of a design optimization problem, and 110 

the interval inputs are exactly consistent with the interval constraints of design variables. In this work, 111 

the interval-based sensitivity index is employed to screen the influential design variables for 112 

high-dimensional complex optimization problems. Meanwhile, the effectiveness of the interval-based 113 

sensitivity index will be compared with the indices of Sobol’ and Wang, by its ability to find the 114 

influential variables.  115 

The remainder of this work is organized as follows. Firstly, the interval-based sensitivity index is 116 

reviewed and is compared with other indices by a test function. In accordance with the design 117 

optimization strategy based on the variable screening by sensitivity analysis, which is explained by two 118 

illustrative optimization examples. Subsequently, the design optimization strategy is applied to an 119 

aeronautical hydraulic pipeline system. Finally, the conclusions are drawn.  120 

 121 

Review and interpretation of the interval-based sensitivity index  122 

In this section, the general concept of the interval field and its normalized form are introduced to 123 
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discuss the connection between the interval field and variable sensitivity. Then, the interval-based 124 

sensitivity index, with a corresponding computational strategy, is reviewed, and its related 125 

characteristics and advantages are explained with the help of a test function. The index will be used to 126 

rank all input variables and screen the influential variables in next sections.  127 

 128 

Interval field  129 

A model , with all classes of functions , is considered, where 130 

 is the vector of n-dimensional input variables and  is the output. As reported 131 

in some optimization studies (Faes et al. 2017; Jiang et al. 2014; Wang et al. 2019, 2021), the design 132 

variables  are assumed to be independent and expressed by the interval model as  133 

  (2) 134 

where the superscript “ ” denotes that the parameter is interval valued, ,  and  135 

with  being respectively the lower and upper bounds of . In addition, an interval can be 136 

represented by its centre value  and its radius . In case  137 

belongs to an interval vector , the output is also an interval, which is defined as  138 

  (3) 139 

When  is fixed to a specific value in the interval  and all other inputs are intervals, 140 

the corresponding output  is a subinterval of , i.e., . The bounds of  are 141 

calculated as  142 

  (4) 143 

where  denotes the vector of all input variables except  and  denotes the interval vector 144 

associated with all variables except for . Furthermore, when  loops through every element 145 

within , the output will be an interval field , which is shown in Fig. 1 (A). The 146 

whole interval field  is enveloped by the lower bound  and upper bound , 147 

with . The centre value and radius of the interval field can be defined as (Jiang et al. 148 



7 

 

2014)  149 

  (5) 150 

and  151 

  (6) 152 

According to interval theory, the centre value  reflects the general degree of the interval field, 153 

and the radius reflects the deviation degree of the interval field.  154 

To facilitate the comparison of interval quantities and have a clearer and more intuitive 155 

interpretation of the relationships between interval variables and the model output, the interval field can 156 

be normalized as (Jiang et al. 2014)  157 

  (7) 158 

where  is the normalized interval variable. Accordingly, the interval field  is 159 

transformed into the normalized interval field  (shown in Fig. 1 (B)) which can be described by 160 

 and :  161 

  (8) 162 

  (9) 163 

 164 

A recently proposed interval-based sensitivity index  165 

For all of the input variables , the corresponding normalized interval field  166 

( ) is usually different, and the difference between them is mainly determined by the 167 

influences of model inputs  on the model output  (Chang et al. 2022). This is reflected in the 168 

radius of the interval field . Two special examples are shown in Fig. 1 (C) and (D):  169 

(i) In Fig. 1 (C), the lower bound  is always equal to  (i.e., ) and the upper 170 

bound  is always equal to  (i.e., ), which indicates that no matter what 171 

value  takes in the interval , the model output  remains unchanged and equals 172 

 (i.e., ). In this case, the input variable  has no influence on the model output, 173 
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making  a noninfluential variable.  174 

(ii) In Fig. 1 (D), the lower bound  and the upper bound  coincide with each other, i.e., 175 

, which indicates that the uncertainty of the model output  is eliminated when 176 

 takes a specific value in the interval . In this case, the model output is dominated 177 

by the input variable . which makes  an important variable.  178 

For the most common situation of the normalized interval field  shown in Fig. 1 (E), the 179 

whole area (surrounded by four lines , ,  and ) is divided into three 180 

parts:  enclosed by  and ,  enclosed by  and , and  181 

enclosed by  and . According to the description, the larger  is, the less important 182 

the variable is (e.g., the case of Fig. 1 (C)). In contrast, the smaller  is, the more important the 183 

variable is (e.g., the case of Fig. 1 (D)). Therefore, an interval sensitivity index  was defined by 184 

Chang et al. (Chang et al. 2022) as  185 

  (10) 186 

where . Furthermore,  can be derived by the following 187 

expression (Chang et al. 2022):  188 

  (11) 189 

In addition, the interval sensitivity index can be extended when we wish to know the joint 190 

contribution of two or more variables for the model output, which are derived in Appendix A. More 191 

information about the interval sensitivity index can be found in (Chang et al. 2022).  192 

After introducing the interval sensitivity index, a test function will be studied next to compare the 193 

sensitivity analysis results of three types of indices including the interval-based sensitivity index, 194 

Sobol’ indices (reviewed in Appendix B), and Wang’s indices (reviewed in Appendix C).  195 

 196 
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An illustrative function to interpret the interval sensitivity index  197 

A four-variable function is considered as (Chang et al. 2021)  198 

  (12) 199 

where  are the input variables. Two cases are considered for this function, which 200 

are listed in Table 1. It should be noted that the Sobol’ indices in the following are calculated on the 201 

premise that all input variables are assumed to be uniformly distributed in its interval. Sobol’s indices 202 

are included for comparative reasons, and stem from the case where an analyst would invoke the 203 

maximum entropy principle to first estimate a distribution based on the available information (i.e., 204 

bounds), followed by the sensitivity analysis. Further, it should be noted that both sets of indices have a 205 

fundamentally different meaning behind them. Nonetheless, in view of selecting the most appropriate 206 

parameters to perform optimization, the usage of these indices is similar, which warrants comparison.  207 

For Case 1, the results of  are shown in Fig. 2 (A), and its corresponding normalized interval 208 

fields are shown in Fig. 2 (D), where the order of dashed area is . This indicates that 209 

the order of the variable importance is . In addition, the results of Wang’s indices 210 

(  and ) and Sobol’ indices (  and ) are shown in Fig. 2 (B) and (C), respectively. The 211 

variable importance results of the three types of indices are the same (i.e., ) 212 

except that the result of radius sensitivity  is .  213 

For Case 2, the results of  are shown in Fig. 3 (A), and its corresponding normalized interval 214 

fields are shown in Fig. 3 (D), where the order of dashed area is . According to Fig. 215 

3 (A) and (D),  indicates that the order of the variable importance is 216 

. In Fig. 3 (B), the orders of Wang’s indices are  and 217 

, respectively. In Fig. 3 (C), the order of Sobol’ indices  ( ) and 218 

, respectively. The variable importance result of the total effect index  is 219 

almost the same as the interval-based sensitivity index . Nevertheless, the variable importance order 220 

cannot be obtained by Wang’s indices because the  and  results are inconsistent.  221 

 222 
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Discussion on the interval sensitivity index  223 

According to the introduction of the interval-based sensitivity index and the analysis results of the 224 

illustrative function, four aspects of discussions need to be emphasized to offer deeper insights into the 225 

index.  226 

First, three characteristics of the interval-based sensitivity index need to be emphasized:  227 

(i) As shown in previous sections, the proposed index  is the ratio of the left dashed to the total 228 

rectangular area; therefore, the lower bound of  is 0, while the upper bound of  is 1, i.e., 229 

. The larger  is, the more important  is. Conversely, the smaller  is, the less 230 

important  is.  231 

(ii) If  (as shown in Fig. 1 (C)), the uncertainty of  has no influence on the model output 232 

. Therefore,  is a noninfluential variable in this case.  233 

(iii) If  (as shown in Fig. 1 (D)), the uncertainty of  has dominant influence on the model 234 

output . Thus,  is the most important variable in this case.  235 

Second, similar to conventional sensitivity indices, such as Sobol’ indices (Sobol’ 1993; Sobol’ 236 

and Kucherenko 2009; Wei et al. 2015a) and Wang’s indices (Wang et al. 2018), the interval-based 237 

sensitivity index  can be used for the sensitivity analysis of the input variables, thus providing a 238 

deeper understanding of the considered system and more comprehensive analysis results for 239 

engineering designers. At the same time, the index can be used as a variable screening tool for 240 

optimization problems, which will be specifically implemented in next sections. In particular, those 241 

variables with relatively large index  are selected as influential variables, and then the optimization 242 

problem is solved by considering only these selected influential variables, while the other 243 

noninfluential variables are evaluated at specific values in its space. Moreover, as shown in Fig. 2 (D) 244 

and Fig. 3 (D), the interval-based sensitivity analysis can not only rank the importance of input 245 

variables, but also present the behaviour of model response with respect to each interval input, thus 246 

providing the guidance for the determination/realization of value-fixation of noninfluential variables. 247 

That is to say, fixing these noninfluential variables can be determined with the help of the 248 
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interval-based sensitivity analysis results, rather than crudely fix all noninfluential variables at its initial 249 

values (e.g., lower bounds, upper bounds, or centre values). The specific implementation will be 250 

elaborated in next section.  251 

Third, the classical Sobol’ indices (reviewed in Appendix B) are variance-based indices (Sobol’ 252 

1993; Sobol’ and Kucherenko 2009; Wei et al. 2015). For the design optimization with variable 253 

screening, selecting Sobol’ indices as a screening tool may have three limitations, which are analyzed 254 

as follows:  255 

(i) Sobol’ indices reflect the contribution of input variables to the model output variance (rather than 256 

the model output itself), which is just a variance-based criterion, rather than a comprehensive 257 

characteristic description of the model output (Cho et al. 2014).  258 

(ii) In design optimization problems, the design variables are often confined by the lower and upper 259 

bounds of intervals rather than characterized by probabilistic models. It may be inappropriate to 260 

directly consider the design variable as a specific probabilistic model (e.g., normal distribution or 261 

uniform distribution).  262 

(iii) Sobol’ indices can only offer the importance ranking results, but not the behaviour of model 263 

response with respect to each interval input. Hence, Sobol’ indices may not provide sufficient 264 

information for fixing the value of noninfluential variables.  265 

Fourth, Wang’s indices (Wang et al. 2018) (reviewed in Appendix C) can be used to identify 266 

influential variables in design optimization problems, though three drawbacks need to be emphasized:  267 

(i) Wang’s indices reflect the contribution of input variables to , which is the ratio of the 268 

centre value to the radius of the model output, rather than the model output itself. Moreover,  269 

has no clear physical meaning.  270 

(ii) According to the introduction of Appendix C,  is equal to  when . In this 271 

case, the definition of Eqs. (C6) and (C7) (i.e.,  and ) are 272 

invalid because  is the denominator in Eqs. (C6) and (C7). Therefore, Wang’s indices can only 273 

be used in the case of . Meanwhile, when  is approximately equal to 0 (i.e., ), the 274 
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results of  and  are likely to be influenced by calculation errors, which can be clearly 275 

realized by the comparation results of Case 1 and Case 2 in the illustrative function of the 276 

previous section.  277 

(iii) Same as Sobol’ indices, Wang’s indices cannot offer insight on the behaviour of model response 278 

with respect to each interval input. As a result, Wang’s indices may not be informative for fixing 279 

values of noninfluential variables. The details will be elaborated and examined in next sections.  280 

In addition, the effectiveness and superiorities of the interval-based sensitivity index will be 281 

further compared with Sobol’ indices and Wang’s indices by its ability to find the influential variables 282 

of design optimization problems in the illustration examples of next section.  283 

 284 

Computational strategy for calculating the interval sensitivity index  285 

As shown in Eq. (11), the interval-based sensitivity index  can be calculated using , , 286 

, and . The calculation of them is addressed in detail in the following.  287 

 288 

Calculation of  and   289 

The calculation of  and  is a classical interval analysis problem, which has been discussed 290 

in depth by Faes et al. (Faes et al. 2017; Faes and Moens 2020). In this section,  and  are 291 

obtained by solving the following two optimisation problems:  292 

  (13) 293 

and  294 

  (14) 295 

We can observe that  and . In this work, the surrogate optimisation (SO) 296 

algorithm (Wang and Shoemaker 2014), integrated as “surrogateopt” function in MATLAB software, is 297 

adopted to implement the two optimisation problems (i.e., Eqs. (13) and (14)) to obtain  and .  298 
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 299 

Calculation of  and   300 

For the calculation of  and , a double-loop strategy can be adopted (Chang et al. 301 

2022). In the inner layer, the minimum and maximum values  and  of the output 302 

response for the given value  are obtained by solving the following two optimization problems:  303 

  (15) 304 

and  305 

  (16) 306 

where ,  denotes the number of generated grid points of . We can observe 307 

that  and . Also, SO algorithm as described in previous 308 

section is adopted to solve Eqs. (15) and (16). In the outer layer of the double-loop strategy, the lower 309 

bound curve  and upper bound curve  of the interval field  can be 310 

approximately fitted by global metamodeling with adaptive sampling. The details of global 311 

metamodeling method are described in (Chang et al. 2022) and the practical implementation of the 312 

strategy is summarized in Algorithm 1.  313 

The optimisation algorithm SO is called to calculate the lower/upper bounds /  at 314 

a series of grid points . The initial points  and their corresponding lower/upper 315 

bounds /  are firstly used to construct a metamodel, 316 

then the new point  is selected, by maximizing the mean square error (Liu et al. 2018), to update 317 

the model until the stopping criterion is met. Finally,  and  are obtained to calculate the 318 

interval-based sensitivity index .  319 

 320 

Design optimization with variable screening by the interval-based sensitivity 321 
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index  322 

General process  323 

For the design optimization model expressed in Eq. (1), all input variables  324 

can be divided into two categories, i.e., top influential variables  325 

and noninfluential variables , by sensitivity ranking results. 326 

The subscript “Top” refers to variables that are significantly more influential than other variables. As 327 

can be seen,  and . Then, the design optimization problem can be 328 

reformulated as  329 

  (17) 330 

where  and  are the lower and upper bound vectors of influential design variables , 331 

respectively.  is the selected specific value vector of the noninfluential variables . As 332 

illustrated in the discussion on the interval sensitivity index, Sobol’ and Wang’s indices cannot offer 333 

insight on the behaviour of model response with respect to each interval input. Therefore, all 334 

noninfluential variables  are crudely fixed at its centre values (i.e., ) (or lower 335 

bounds (i.e., ) and upper bounds (i.e., )). Meanwhile, for the 336 

interval-based sensitivity index, the k-th noninfluential variable  ( ) is fixed 337 

as a specific value , where  is the value that corresponds to the 338 

minimum of the whole interval field , i.e., . Correspondingly, when 339 

solving a maximization problem, the specific value  will be the value that corresponds to the 340 

maximum of the whole interval field , i.e., . The general process of the 341 

design optimization with variable screening can be summarized in Fig. 4.  342 

It can be seen that the objective function  and constraint function  change from the original 343 

n-dimensional functions to m-dimensional functions, and the number of the design variables is reduced 344 
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from the original n to m, which will effectively simplify the optimization problem. It should be noted 345 

that the specific value of m is determined by the designers based on sensitivity analysis results, model 346 

accuracy requirements and acceptable calculating costs, which will be specifically demonstrated by 347 

optimization examples in the next section. In addition, for a complex optimization problem in 348 

engineering practice (e.g., the aeronautical hydraulic pipeline) where the model response is obtained by 349 

a time-consuming black box (e.g., finite element analysis), the sensitivity analysis may require a lot of 350 

computational cost that designers cannot afford. In this case, metamodels can be adopted to reduce 351 

intensive computational costs of the sensitivity analysis (Chang et al. 2022).  352 

 353 

Illustrative examples of the design optimization with variable screening  354 

Two illustrative optimization examples are conducted to examine the design optimization strategy 355 

and to compare the ability of different sensitivity indices to find the optimal results (including the 356 

maximum result and the minimum result) and their effect on variable screening. It should be noted that 357 

the Sobol’ indices are calculated on the premise that all input variables are assumed to be uniformly 358 

distributed in its interval. Besides, the sequential quadratic programming (SQP) optimizer is employed 359 

for the two illustrative optimization examples.  360 

 361 

A ten-dimensional optimization example  362 

A ten-dimensional optimization example (Wang et al. 2018) is expressed as  363 

  (18) 364 

where the lower and upper bounds of all interval variables are assumed to be 5 and 6, respectively, i.e., 365 

 and  for . The actual lower and upper bounds of the model output are 366 

 and , and the corresponding centre and radius are 367 
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 and .  368 

As shown in Fig. 5 (A), the importance ranking obtained by the interval-based sensitivity index 369 

 is . Fig. 5 (D) shows the normalized 370 

interval field used to obtain  ( ). Fig. 5 (E) is the normalized interval field used to 371 

obtain , which indicates the joint contribution of  and  to the model output . The 372 

importance ranking obtained by Wang’s indices (Fig. 5 (B)) and Sobol’ indices (Fig. 5 (C)) are the 373 

same as that of the index . It should be noted that the three types of sensitivity indices associated 374 

with  and  are equal to zero, (i.e.,  and 375 

), and the three types of indices associated with  and  are very 376 

small and close to zero. The value of the model output is basically unchanged when these four variables 377 

( , ,  and ) change within its interval range. In contrast, the three types of indices 378 

associated with , ,  and  are obviously larger than other variables, which means that 379 

, ,  and  have a considerable influence on the model output.  380 

In Fig. 5 (F), the optimization results (including the maximum value  and minimum value 381 

) as well as the computational cost (measured by , i.e., the number of function calls for SQP 382 

optimizer during the optimization process) corresponding to different sets of design variables are given. 383 

In the horizontal abscissa, Top m ( ) represents the first  most influential design 384 

variables according to the sensitivity analysis. For example, Top 4 means that , ,  and  385 

are considered in the optimization, and the rest are fixed at a specific value (such as centre values, i.e., 386 

, or a set of selected values, i.e., ) in its intervals. When all the 387 

noninfluential variables are fixed at their centre values (i.e., ), the maximum and 388 

minimum values are 544.99 and 413.00 in the case of Top 2, 564.00 and 396.00 in case of Top 4, 389 

569.75 and 393.75 in the case of Top 6, and 572.00 and 391.75 in the case of Top 10 (all variables). 390 

Meanwhile, when all the noninfluential variables are fixed at a set of selected values  based on 391 

the information of the interval-based sensitivity analysis result, the maximum and minimum values are 392 

572.00 and 391.75 for all the case of Top m. Take the minimum optimization of Top 2 case as an 393 
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example, the Top 2 influential variables (i.e.,  and ) are selected as design variables while the 394 

noninfluential variables (i.e., ,  and ) are fixed at . According to Fig. 5 (D), 395 

  where the superscript  of  and  means 396 

any value in its intervals because the change of  and  have no effect on the model output, and 397 

the superscripts c, l and u are the centre value, lower bound and upper bound, respectively. At the same 398 

time, when performing maximization of Top 2 case, the fixed values for the noninfluential variables 399 

can be selected as  based on the normalized interval 400 

field  in Fig. 5 (D).  401 

In addition, the number of function calls during the optimization process (including  of  402 

and ) increases with the increase of variables. Satisfactory optimization results can be obtained by 403 

considering the influential design variables, e.g., Top 4, and the computational cost can be reduced by 404 

more than half in the case of Top 4. At the same time, when the noninfluential variables  are 405 

fixed at , the optimal results (i.e.,  and ) of Top 10 (all variables) 406 

optimization can also be obtained by Top m ( ) optimization case, which can be seen in Fig. 5 407 

(F). In other words, it is effective and practical to perform design optimization with these influential 408 

variables selected by the interval-based sensitivity index . Moreover, the interval-based sensitivity 409 

analysis can provide the behaviour of model response with respect to each interval inputs, so as to give 410 

the guidance for the determination/realization of value-fixation of noninfluential variables. As can be 411 

seen in Fig. 5 (F), this strategy is obviously useful for finding the minimum/maximum value of the 412 

problem.  413 

 414 

A twenty-dimensional optimization example  415 

A twenty-dimensional optimization example (Craig et al. 2005; Welch et al. 1992) is expressed as  416 
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  (19) 417 

The lower and upper bounds of all interval variables are assumed to be -0.5 and 0.5, respectively, 418 

i.e.,  and  for . The actual lower and upper bounds of the 419 

model output are  and  (Craig et al. 2005; Welch et al. 1992), 420 

and the corresponding centre and radius are  and . The function 421 

is evidently nonlinear, and that there are six influential variables ( , , , ,  and ) 422 

as discussed in (Craig et al. 2005; Welch et al. 1992).  423 

The results of three types of indices (i.e., the interval-based sensitivity index, Wang’s indices and 424 

Sobol’ indices) are compared in Fig. 6, where (A) is the interval-based sensitivity index , (B) is 425 

Wang’s indices including the centre value sensitivity  and radius sensitivity  and (C) is the 426 

Sobol’ indices including the main effect  and the total effect . The six influential variables are 427 

successfully identified by , ,  and . It can be observed that the main effect  428 

corresponding to  is approximately equal to 0, primarily due to the interaction influence between 429 

 and the most influential variable  in the response function. In addition, the variable 430 

importance orders obtained by the five indices are different from each other, where the top influential 431 

variables are listed in Fig. 6 (A)-(C).  432 

To compare the ability of these three types of indices to find the influential variables, the 433 

optimization results (including the maximum value  and minimum value ) as well as the 434 

computational cost (measured by , i.e., the number of function calls for SQP optimizer during the 435 

optimization process) corresponding to different sets of design variables are given in Fig. 7. Similar to 436 

the previous section, in the horizontal abscissa, Top m ( ) represents the first  most 437 

influential design variables according to the sensitivity analysis. Therefore, the optimization results 438 

gradually tend to the optimal solution (i.e.,  and ) with the increase of 439 

design variables. Additionally, the number of function calls (including  of  and ) 440 
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increases with the increase of variables. For the case of Top 1, the maximum and minimum values 441 

associated with five indices ( , , ,  and ) are the same, i.e.,  and 442 

. In the case of Top 2, the maximum and minimum values associated with four indices ( , 443 

,  and ) are the same (  and ), while those associated with  are 444 

 and , so the ability of  is inferior to other four indices ( , ,  and 445 

) in the case of Top 2. The situations in the Top 3-6 and the Top 20 can be concluded in the same 446 

manner, where ,  and  are inferior to  and  in the case of Top 3,  and  are 447 

inferior to ,  and  in the case of Top 5, and  is inferior to the other four indices (i.e., , 448 

,  and ) in the case of Top 6. The number of inferiors (i.e., the number of times that the Top m 449 

extrema associated with an index is inferior to the Top m extrema associated with one of other four 450 

indices) of the five indices are shown in the top left corner of Fig. 7, where the interval-based 451 

sensitivity index  and the centre value sensitivity  of Wang’s indices are obviously superior to 452 

the other three indices in this example.  453 

In addition, it can be seen that the minimum result (-7.5) of the Top 3 associated with  is very 454 

close to the minimum result (-8.152) of the Top 20, and the corresponding numbers of function calls of 455 

the Top 3 and Top 20 are 40 and 820, respectively, where more than 95% of computational cost is 456 

saved. At the same time, the maximum result (12.5) of the Top 5 associated with  is very close to 457 

the maximum result (13.3125) of the Top 20, and the corresponding number of function calls of the Top 458 

5 and the Top 20 are 55 and 451, respectively, where more than 87% of the computational cost is saved.  459 

Moreover, the above-discussed Top m ( ) optimization is performed in the case of 460 

the noninfluential variables are fixed at its centre values (i.e., ). When all the 461 

noninfluential variables are fixed at a set of selected values  based on the information of the 462 

interval-based sensitivity analysis result, the maximum and minimum values are 13.3125 and -8.152 for 463 

all the case of Top m. Take the minimum optimization of Top 4 case as an example, the Top 4 464 

influential variables (i.e., , ,  and ) are selected as design variables while the 465 

noninfluential variables (i.e.,  and ) are fixed at 466 
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 which are selected 467 

based on the normalized interval field  of the interval-based sensitivity analysis. As can be seen 468 

from above discussion, performing the design optimization with these few influential variables 469 

(selected by the index ), while the rest of noninfluential variables are fixed at the selected values 470 

, is effective and practical.  471 

 472 

Application for the design of an aeronautical hydraulic pipeline  473 

In this section, the interval-based sensitivity index  will be applied to a practical engineering 474 

problem of aeronautical hydraulic pipelines, which was first presented in Wang’s work (Wang et al. 475 

2018) and studied in (Li et al. 2020; Zhang et al. 2019; ZHOU et al. 2019). First, we introduce the 476 

problem of aeronautical hydraulic pipelines, then perform the optimization design with variable 477 

screening based on the interval-based sensitivity analysis result, before finally discussing the findings.  478 

 479 

Introduction of the aeronautical hydraulic pipelines  480 

For most modern aircrafts, hydraulic pipelines are functional units that transmit hydraulic oil to 481 

drive a series of mechanisms on board (Ouyang et al. 2012; Tang et al. 2011), such as flaps, landing 482 

gears, and folding mechanisms. At the same time, hydraulic pipelines undertake complex working 483 

conditions, such as external shock, vibration, or other dynamic loads. In particular, aeronautical 484 

hydraulic pipelines are quite different from those in other engineering areas, which is mainly reflected 485 

in three aspects (Zhou et al. 2019):  486 

(i) Low stiffness. The stiffness of aeronautical hydraulic pipelines is relatively low due to space and 487 

weight constraints.  488 

(ii) Long pipelines and a considerable number of curves. Aeronautical hydraulic pipelines are 489 

relatively long because of the long distances between actuators and pumps. Meanwhile, hydraulic 490 

pipelines are curved frequently, because of the arrangement of structural parts and the confined 491 

space on board. This may have impacts on the stability of the pipelines.  492 
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(iii) Complicated vibration environment. There are many vibration sources, such as engines, pumps 493 

and aerodynamics that can cause excitations of hydraulic pipelines.  494 

In engineering practice, the stress and displacement are two quantities of concern, and the failure 495 

of aeronautical hydraulic pipeline is mainly due to fatigue load caused by vibration. To be specific, the 496 

stress values of all nodes of the hydraulic pipeline change with the excitation. In this study, the 497 

excitation of hydraulic pipelines is considered as stochastic due to random external vibration, the 498 

complexity of structures, and variations in aircraft loads (Wang et al. 2018). For a specific node, 499 

standard deviation of stress reflects the degree of stress change in the whole vibration cycle. The 500 

greater the standard deviation of stress, the easier the fatigue failure will occur. Therefore, the 501 

maximum standard deviation of stress is chosen as the objective of optimisation design. Meanwhile, the 502 

maximum standard deviation of displacement is treated as a constraint in this work. In general, a series 503 

of hoops (which are usually dozens or even hundreds) are used to fix hydraulic pipelines, thus 504 

preventing instability caused by long spans and excitation, which can obviously lower the stress and 505 

displacement in the vibration environment (Wang et al. 2018; Zhou et al. 2019). Therefore, the 506 

constraint location plays an important role on the safety of hydraulic pipelines. So, the coordinates of 507 

the hoop locations are selected as design variables.  508 

As shown in Fig. 8 (A), the finite element model of an aeronautical hydraulic pipeline is built in 509 

ANSYS 17.1, and its related parameters are listed in the lower part of Fig. 8 (A) (Zhou et al. 2019). 510 

, , , , , ,  and  represent the material density, outer radius, thickness, fluid density, 511 

ambient temperature, internal pressure (which is caused by the flow of oil in pipeline), elastic modulus 512 

and Poisson’s ratio, respectively. Twenty-eight design variables (coordinates of hoops) are selected 513 

from 21 hoop locations in Fig. 8 (B), which are listed in Table 2. It should be reminded that more than 514 

one coordinate is considered at some hoop locations including 45, 62, 69, 72, 75 and 85. The stochastic 515 

excitation is given in the form of an acceleration power spectral density (PSD) function, which is 516 

shown in Fig. 8 (C). In this case, the stress results of the hydraulic pipeline are obtained in Fig. 8 (D), 517 

where the maximum standard deviation of stress is .  518 
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The goal of the optimization is to find the optimal locations of the pipeline hoops to minimize the 519 

maximum standard deviation of stress. Therefore, the objection function is . In addition, the 520 

maximum standard deviation of displacement  of the hydraulic pipeline is the constraint. The 521 

optimization problem of the hydraulic pipeline can be expressed as  522 

  (20) 523 

where  is the maximum standard deviation threshold value of displacement, which is set as 524 

. In other words,  must be satisfied in the whole optimization 525 

process.  and  are the lower and upper bounds of the design variable , and are shown in 526 

Table 2. More detailed information on the maximum standard deviation of displacement  of the 527 

aeronautical hydraulic pipeline can be found in (Wang et al. 2018).  528 

 529 

Sensitivity analysis and the optimization with variable screening  530 

The variable sensitivity results are obtained by the interval-based sensitivity index , which are 531 

shown in Fig. 8 (E). It should be noted that the interval-based sensitivity analysis is performed based on 532 

a Kriging metamodel, which is built by 500 calls of the aeronautical hydraulic pipeline model in total. 533 

The specific procedure of the metamodel construction can be found in (Liu et al. 2018).  In the 534 

application, the optimisation problem was required, by engineering designers, to have no more than 12 535 

design variables. According to Fig. 8 (E), ten most influential design variables can be selected, which 536 

are , , , , , , , ,  and , and other design variables have no or 537 

little effect on the maximum standard deviation of stress. Therefore, the 10 influential design variables 538 

are selected for the design optimization with variable screening (i.e., Top 10 optimization), which can 539 

be expressed as  540 
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  (21) 541 

where  is the selected specific value vector of the noninfluential variables ,  and 542 

 are directly obtained by the finite element model of the aeronautical hydraulic pipeline. 543 

According to the interval-based sensitivity analysis, the noninfluential variables  544 

(  ) are fixed as 34.84, 38.29, 45.51, 60.46, 16.03, 9.82, 545 

10.72, 28.83, 12.10, 3.74, 2.63, 5.67, 37.45, 2.63, 5.68, 19.03, 1.88, 13.33, 1.23, 5.98, and 4.48, 546 

respectively. The optimization results of the traditional optimization method (i.e., all-variable 547 

optimization or the Top 28 optimization) and the optimization results with variable screening (i.e., the 548 

Top 10 optimization) are shown in Fig. 8 (F). The SQP optimizer is employed for the aeronautical 549 

hydraulic pipeline optimization. The optimized maximum standard deviation stress of the Top 28 is 550 

 (shown in the right contour results of Fig. 8 (F)), while the optimized maximum 551 

standard deviation stress of the Top 10 is  (shown in the left contour results of Fig. 8 552 

(F)). It should be noted that the Top 10 optimization converges after 181 iterations, while the Top 28 553 

optimization does not converge until the maximum allowable iterations (i.e., 550).  554 

 555 

Discussions about the results  556 

By comparing the optimization history of the Top 28 optimization and the Top 10 optimization 557 

(shown in Fig. 8 (F)), it is evident that the optimal result ( ) of the Top 28 optimization 558 

is almost equal to the optimal result ( ) of the Top 10 optimization, indicating that the 559 

eliminated 18 design variables have little effect on the maximum standard deviation of stress of the 560 

hydraulic pipeline. Therefore, the interval-based sensitivity index  is effective to identify these 561 

influential design variables and eliminate the remaining noninfluential design variables. The calculation 562 

cost for SQP optimizer has been reduced from 550 iterations to 181 iterations during the optimization, 563 
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which is a decrease of 68%. It is worth noting that, although variable selection by sensitivity analysis 564 

incurs additional computational cost, engineers do not use the optimization model only once, but rather 565 

use it repeatedly throughout subsequent analyses of the product. Furthermore, for some complex 566 

engineering problems, the result of Top m optimization may be better than the result of the optimization 567 

with all variables (Wang et al. 2018). In addition, it should be noted that when the concerned model is a 568 

complex engineering problem without explicit performance function, such as the aeronautical hydraulic 569 

pipelines in this work, the calculation of sensitivity indices (including Sobol’ indices, Wang’s indices, 570 

and the interval-based sensitivity index) is time-consuming. In this case, the multi-fidelity surrogate 571 

model (Alemazkoor et al. 2022; Meng et al. 2021) may be a suitable choice. First, the sensitivity 572 

indices are obtained by a low-fidelity surrogate model. Then, the high-fidelity finite element model is 573 

used for the optimization.  574 

As can be seen, in the high-dimensional optimization problem, eliminating those noninfluential 575 

design variables can greatly simplify the optimisation problem, and at the same time, relatively 576 

adequate results can also be obtained. Ultimately, engineers can use the simplified models (rather than 577 

the original high-dimensional complex models) in their subsequent work.  578 

 579 

Conclusion  580 

This paper introduces the interval-based sensitivity index and shows how the sensitivity analysis 581 

can be used for solving high-dimensional optimization problems. Based on the introduction of the 582 

interval field, the interval-based sensitivity index is reviewed and compared with other existing indices 583 

by an illustrative function. The screening procedure based on this sensitivity index is applied to 584 

high-dimensional design optimization problems involving two illustrative optimization examples and 585 

an aeronautical hydraulic pipeline. The results show that the interval-based sensitivity index can 586 

provide comprehensive effect information of input variables to the model output, thus effectively 587 

screening out influential variables to remodel the high-dimensional optimization problems and 588 

providing the guidance for the determination/realization of value-fixation of noninfluential variables. 589 
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Moreover, compared with Sobol’ and Wang’s indices, the interval-based sensitivity index is easy to use 590 

and has a superior performance.  591 

It should be noted that the interval-based sensitivity analysis remains largely unexplored, and 592 

related studies are still rare. This paper explores a theoretical foundation for design optimization with 593 

variable screening by interval-based sensitivity analysis. It is admitted that sensitivity analysis is 594 

time-consuming, especially when the concerned models is a complex engineering problem. The 595 

interval-based sensitivity index is heuristic and more efficient computing strategies for evaluating this 596 

index will be further explored.  597 

 In this work, we focus on the single-objective optimization problem where we only need to 598 

evaluate the variable importance to a single model output. An important and practical perspective is to 599 

investigate the application of the proposed approach to multi-objective optimization problems by 600 

extending the interval sensitivity index. At the same time, the interval sensitivity index can also be 601 

extended to time-dependent reliability-based design optimization problems.  602 

 603 

Appendix A: Extension of the interval sensitivity index to consider the joint effect 604 

of two or more input variables  605 

The case of two variables (  and ) is derived as (Chang et al. 2022)  606 

  (A22) 607 

and the case of  variables ( ) is derived by the following expression (Chang et al. 608 

2022):  609 
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  (A23) 610 

where  indicates a two-dimensional domain and  indicates a m-dimensional domain. 611 

It should be noted that  indicates interval fields in Eqs. (A1) and (A2).  612 

 613 

Appendix B: Review of Sobol’ indices  614 

For a model  where all elements of  are independent, the variance decomposition 615 

of the model response  can be expressed as (Homma and Saltelli 1996; Sobol’ 1993; Sobol’ 2001)  616 

  (B1) 617 

where  and . Dividing both sides of Eq. (B1) 618 

by  yields:  619 

  (B2) 620 

where  is the main effect index of  and  is the second order effect 621 

between  and . Finally, the total effect index  is defined as (Homma and Saltelli 1996)  622 

  (B3) 623 

The main index  and total index  are often used to measure the importance of each random 624 

input.  indicates that  is more important than  in the sense of individual contribution 625 

to the model output variance. Similarly,  indicates that  contributes more to the model 626 

output variance than . It should be noted that the total effect index  is usually used when 627 

screening the influential variables (Cho et al. 2014; Wei et al. 2015). A more detailed description can be 628 

found in (Homma and Saltelli 1996; Sobol’ 1993; Sobol’ 2001; Wei et al. 2015).  629 

 630 
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Appendix C: Review of Wang’s indices  631 

For a model , the input variables  are intervals and the output  is also an 632 

interval, i.e.,  where  and  are the lower and upper bounds of . Its centre 633 

value and radius can be defined as  and , respectively. Then, the 634 

centre value  and radius  can be combined into the following form (Guo and Lu 2015; Guo and 635 

Lu 2001):  636 

  (C1) 637 

When  is fixed at a specific value in its interval, the impact of the uncertainty of  on  638 

will be eliminated. If  takes different values in its interval,  will also be an interval that can be 639 

expressed as . The lower and upper bounds of  can be expressed as  640 

  (C2) 641 

and 642 

  (C3) 643 

The centre value and radius of  are given as  644 

  (C4) 645 

and 646 

  (C5) 647 

Finally, two non-probabilistic sensitivity indices (centre value sensitivity  and radius sensitivity ) 648 

can be expressed as (Li et al. 2013; Wang et al. 2018)  649 

  (C6) 650 

and 651 

  (C7) 652 

Wang’s two sensitivity indices quantify the effect of the interval variables on  (which is 653 

combined by centre value  and radius  of model output ) from the perspective of the centre 654 

value and radius, respectively. A detailed description of Wang’s indices can be found in (Wang et al. 655 

2018). In addition, it should be pointed out that Wang’s two sensitivity indices described in Eqs. 656 
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(C2-C7) have the same form and definition as Li’s importance measures (Li et al. 2013), although Li’s 657 

measures are concerned with a non-probabilistic reliability index rather than system output response.  658 
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1 

Table 1 Two cases for the four-variable function with corresponding inputs and outputs 

Case 1 (5, 5, 5, 5,) (6, 6, 6, 6) 2450 5112 3781 1331 

Case 2 (-0.5, -0.5, -0.5, -0.5) (0.5, 0.5, 0.5, 0.5) -2.25 2.75 0.25 2.5 

Algorithm 1 Pseudocode of the strategy to calculate the interval-based sensitivity index 

1 Generate initial points 

2 Call surrogate optimisation algorithm 

3 Obtain the corresponding lower/upper bounds /

4 Use the training data set to construct a metamodel of /

5 While or 

% is the total number of model calls 

% is the maximum of mean square error 

6 Use an adaptive sampling criterion to sample a new point 

7 Call surrogate optimisation algorithm 

8 Obtain its corresponding lower/upper bound /

9 Update training data set by involving and / respectively 

10 End While 

11 Export final metamodels of the lower/upper bound /

12 The final metamodels  and are used to obtain 

13 

Table
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2 

Table 2 Section of input variables and their initial value, lower bounds, and upper bounds. 

Variables X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 

Position 14X 17X 20X 23X 26X 30X 33X 36X 39X 40X 42X 45X 45Z 51X 

X0 (mm) 43 35 93 55 56 110 158 88 93 290 117 30 30 67 

Xl (mm) 34 28 72 43 47 97 147 68 78 287 111 25 25 53 

Xu (mm) 52 42 114 67 65 123 169 108 108 293 123 35 35 81 

Variables X15 X16 X17 X18 X19 X20 X21 X22 X23 X24 X25 X26 X27 X28 

Position 54X 59X 62X 62Y 65X 69X 69Y 72X 72Y 75X 75Y 82X 82Y 82Z 

X0 (mm) 63 36 29 59 56 187 20 111 13 78 7 54 28 50 

Xl (mm) 53 29 26 48 50 183 18 88 12 61 5 43 25 40 

Xu (mm) 73 43 32 70 62 191 22 134 14 95 9 65 31 60 

* The superscript X, Y and Z of the position number are the coordinate of the hoops.
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Original optimization model:

Reconstructed optimization model: Divide all design variables into  influential 

variables  XTop  and noninfluential variables 

X~Top 

Analyze the sensitivity of design variables  X 

to the objective function  f

Obtain the sensitivity order of all the design 

variables X based on sensitivity result

Obtain the selected specific value vector (i.e., 

X~Top) of the noninfluential variables X~Top
sv
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1 

Fig. 1 Illustration of the interval field for variables: (A) is an interval field ; (B) is a 

normalized interval field ; (C) and (D) are two special interval field cases where the interval-

based sensitivity index and , respectively; (E) is a normalized interval field used to 

define the interval-based sensitivity index . 

Fig. 2 The sensitivity results in Case 1: (A) the interval-based sensitivity index ; (B) Wang’s indices; 

(C) Sobol’ indices; (D) normalized interval fields to obtain - .

Fig. 3 The sensitivity results in Case 2: (A) the interval-based sensitivity index ; (B) Wang’s indices; 

(C) Sobol’ indices; (D) normalized interval fields to obtain - .

Fig. 4 The general process of the design optimization with variable screening 

Fig. 5 The sensitivity results and optimization results: (A) the interval-based sensitivity index ; (B) 

Wang’s indices; (C) Sobol’ indices; (D) normalized interval field to obtain ; (E) normalized interval 

field to obtain ; (F) the maximum and minimum value (with its corresponding function calls) in the 

case of Top 1 to Top 10. 

Fig. 6 The sensitivity results where (A) the interval-based sensitivity index , (B) Wang’s indices and 

(C) Sobol’ indices

Figure Caption List



2 

Fig. 7 The maximum and minimum values (with its corresponding function calls) obtained by three 

types of sensitivity indices (five indices in total) in the case of Top 1-6 and Top 20. 

Fig. 8 Results of the aeronautical hydraulic pipeline where (A) shows the finite element model and its 

parameters; (B) node indices of hoops; (C) acceleration PSD function of stochastic excitation; (D) 

contour result of stress standard deviation before optimization; (E) the results of the interval-based 

sensitivity index; (F) the optimization history of maximum standard deviation of stress. 




