Author Accepted Manuscript (AAM).

This manuscript has been peer reviewed and accepted for publication but has not undergone ASCE copyediting or typesetting.
The final published version is available at ASCE Library: https://doi.org/10.1061/AJRUA6.RUENG-1266

© American Society of Civil Engineers (ASCE). Posted with permission.

1 Design optimization with variable screening by interval-based sensitivity analysis
2
3 Qi Chang !, Changcong Zhou 2, Matthias G.R. Faes 3, Marcos A. Valdebenito 4
4
5 Abstract: Design optimization problems are very common in engineering practice. Determining their
6 solution may be challenging when many design variables are involved. A means to cope with such large
7 number of design variables consists of first screening influential variables which drive the objective
8 function the most. Then the optimization is carried out with respect to the influential variables while the
9 other noninfluential variables are fixed at specific values. There is no doubt that an accurate
10 identification of influential variables is crucial for high-dimensional optimization problems. In this
11 paper, an interval-based sensitivity index is introduced to identify the influential variables and is
12 theoretically compared with other two types of existing indices. The performance of these indices for
13 dimensionality reduction in optimization is examined by means of a test function. Then, the proposed
14 procedure for high-dimensional design optimization with variable screening is analyzed considering
15 two illustrative examples. Then, the proposed strategy is applied to a practical engineering problem
16 involving an aeronautical hydraulic pipeline. The results show that the interval sensitivity index is an
17 effective tool and is superior to other two existing sensitivity indices for variable screening in design
18 optimization.
19
20 Keywords: Optimization; Variable screening; Sensitivity; Interval; Hydraulic pipeline
21

1 Ph.D. Candidate, Department of Engineering Mechanics, Northwestern Polytechnical University, Youyi West
Road 127, 710072 Xi’an, China. Email: gichang@mail.nwpu.edu.cn

2 Professor, Department of Engineering Mechanics, Northwestern Polytechnical University, Youyi West Road 127,
710072 Xi’an, China (corresponding author). Email: changcongzhou@nwpu.edu.cn

3 Professor, Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Strasse 5, 44227
Dortmund, Germany. Email: matthias.faes@tu-dortmund.de

4 Chief Engineer, Chair for Reliability Engineering, TU Dortmund University, Leonhard-Euler-Strasse 5, 44227

Dortmund, Germany. Email: marcos.valdebenito@tu-dortmund.de


https://www2.cloud.editorialmanager.com/jrnrueng/download.aspx?id=238930&guid=e59b917c-b640-4835-a65f-e16b6586c47a&scheme=1
https://www2.cloud.editorialmanager.com/jrnrueng/download.aspx?id=238930&guid=e59b917c-b640-4835-a65f-e16b6586c47a&scheme=1
Author Accepted Manuscript (AAM).
This manuscript has been peer reviewed and accepted for publication but has not undergone ASCE copyediting or typesetting.
The final published version is available at ASCE Library: https://doi.org/10.1061/AJRUA6.RUENG-1266
© American Society of Civil Engineers (ASCE). Posted with permission.



22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Introduction

In engineering practice, a design optimization problem involves improving a predefined
performance measure by selecting input variables of the considered system subject to certain
constraints (Jamian et al. 2014; Martins and Lambe 2013; Valdebenito and Schuéller 2010; Wu et al.

2021). An optimization problem can be formulated as:
F]nd X* :{Xl*aXZ* s‘”an* }

to minimize f(X)

1)
subject to G,(X)<0, (i=1,2,--,NC)

X' <X <X~

where X, n, f, G;, NC, X' and X* are the design variable vector, number of design variables,
objective function, the i-th constraint function, number of constraints, lower bound vector of design
variables, and upper bound vector of design variables, respectively. Note that the design variables are
constrained in a range of upper and lower bounds, i.e., X € X’ =[X’,X"*] where the superscript “/”
denotes that they are represented as an interval. The complexity of the design optimization problem is,
to some extent, determined by the number of design variables »n and the size of the design space X'’
(Jamian et al. 2014). In general, design variables are chosen as much as possible based on the
experience of designers and engineers in the initial design stage. This may result in a high-dimensional
complex optimization model (Jamian et al. 2014; Martins and Lambe 2013).

High-dimensional complex optimization problems often encounter obstacles that mainly come
from two aspects. First, the evaluation of the numerical model associated with a system often requires a
considerable computational cost that may take several hours for a single simulation, and the design
optimization usually requires hundreds or even thousands of iterative evaluations (Cho et al. 2014).
Therefore, the computational cost of high-dimensional optimization problems is usually expensive.
Second, optimization problems in engineering practice are often multidisciplinary, which will increase
the complexity of the problem and can lead to the failure of convergence to an optimal solution (Cho et
al. 2014; Spagnol et al. 2019; Wang et al. 2021, 2018). It is worth noting that engineers need to

repeatedly utilize the established optimization model many times during the product design iteration
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process. Thus, high-dimensional complex optimization models are often unsuitable for subsequent use
by engineers. In this situation, an effective approach, that is, design optimization based on
pre-treatment of variables or so-called optimization with variable screening, is to perform design
optimization in two stages (Spagnol et al. 2019; Wang et al. 2018). First, a sensitivity analysis is
performed to rank the effect of all input variables and identify the most influential ones. Then, the
optimization problem is remodeled by considering only these selected influential variables, while the
other noninfluential variables are fixed at specific values in its space. It should be noted that variable
screening is not the same as variable reformulation or feature projection, such as principal component
analysis (Jolliffe 2002) or active subspace (Constantine et al. 2013) where the design space is changed.

Sensitivity analysis (also known as importance analysis) is a crucial step in many applications
(Borgonovo and Plischke 2016; Wei et al. 2015). Through sensitivity analysis we gain essential
insights into model behaviour, their structure and their response to changes on the model inputs
(Borgonovo and Plischke 2016). In the past few decades, several sensitivity analysis methods have
been developed, such as difference-based methods (Sobol’ and Kucherenko 2009), parametric
regression techniques (Hérdle and Simar 2003), random forest techniques (Breiman 2001),
variance-based methods (Homma and Saltelli 1996; Sobol” 1993) and moment-independent methods
(Borgonovo 2007). Among them, variance-based methods have been particularly popular since the
works of Sobol’ (Sobol’ 1993; Sobol” and Kucherenko 2009) were published (Homma and Saltelli
1996), and have been effectively applied to many engineering problems (Zhang et al. 2020).

Sensitivity analysis has emerged as a variable screening tool for high-dimensional complex
optimization problems in various disciplines (Cho et al. 2014; Fesanghary et al. 2009; Li et al. 2020;
Liu et al. 2020; Lu et al. 2015; Spagnol et al. 2019). In statistics, important variables among all
candidate variables were accurately identified by a data-based sensitivity analysis (Duarte Silva 2001).
Especially in statistical learning theory, different kinds of sensitivity analysis methods have been used
to choose a subset of all input variables to model the system effectively (Guyon and Elisseeff 2003;

Marra and Wood 2011; Marrel et al. 2008). In hydrology and earth systems (Li et al. 2013b),
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qualitative sensitivity analysis methods were employed to find 2-8 important variables from a total of
40 variables, and the total effect of Sobol’s sensitivity method was used to quantify the contribution of
each variable to the total variance of the model output (Li et al. 2013b). In addition, sensitivity analysis
was used as a screening tool to reduce the computational cost associated with multi-objective design
and rehabilitation of water distribution systems (Fu et al. 2012). In power and energy systems,
sensitivity analysis was adopted to quantitatively compare the impacts of 24 variables in three major
performances of a net-zero energy building (a promising solution to the worsening energy and
environmental problems) (Zhang et al. 2020). Also, sensitivity analysis-based multi-objective
optimization was performed to select the important operating parameters of a sinter cooler, thus
achieving the optimal indicator parameters and obtaining the corresponding operating conditions (Tian
et al. 2018). In the domain of structural design, sensitivity analysis methods were introduced or
modified to carry out the design optimization of aeronautical hydraulic pipelines, which demonstrated
that sensitivity-based variable screening methods can to some extent improve the efficiency of the
optimization (Li et al. 2020; Wang et al. 2018; Zhang et al. 2019). Moreover, sensitivity-based variable
screening methods have been used for automotive crashworthiness design (Craig et al. 2005),
composite fuselage frame design (Gao et al. 2019), occupant restraint system design (Liu et al. 2020),
thin-walled structure design, and dynamic design optimization of multi-motor driving transmission
systems (Shu et al. 2018).

Regarding the sensitivity indices that the above-mentioned works used, most of them are
variance-based measures, such as Sobol’ indices. However, for the variable screening of optimization
problems, variance-based indices may have some limitations because they only focus on the effect of a
variable or multiple variables on the total variance of the model output rather than the model output
itself, which may fail to provide a reasonable evaluation of the importance of each input (Fort et al.
2016; Spagnol et al. 2019). Moreover, variance-based indices are appropriately implemented in a
probabilistic framework where inputs are represented by probabilistic information (e.g., a normal

distribution or uniform distribution). However, the design variables of an optimization problem are
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usually described by interval models where no probabilistic information can be used (Martins and
Lambe 2013). A compromise treatment is to directly consider the interval design variables as normal
distribution or uniform distribution (Arwade et al. 2010; Fesanghary et al. 2009; Zhang et al. 2020),
which is a clear violation of the interval paradigms as artificial information is added to the analysis
(Chang et al. 2021; Zhou et al. 2021). There are relatively few works related to sensitivity analysis of
interval variables (Faes and Moens 2020; Wang et al. 2018). The available approach seems to be the
work of Wang et al. (Wang et al. 2018), which is also used as screening tools in the design optimization
problem. Unfortunately, Wang’s approach struggles with some drawbacks: the considered output has
no clear physical meaning, and the indices may become inadequate in specific circumstances, which
will be elaborated and compared in this work. Recently, Chang et al. (Chang et al. 2022) proposed a
new interval sensitivity index, denoted as interval-based sensitivity index in the following, which can
provide an intuitive interpretation on the behaviour of model response with respect to interval inputs.
The model response can be regarded as the objective function of a design optimization problem, and
the interval inputs are exactly consistent with the interval constraints of design variables. In this work,
the interval-based sensitivity index is employed to screen the influential design variables for
high-dimensional complex optimization problems. Meanwhile, the effectiveness of the interval-based
sensitivity index will be compared with the indices of Sobol’ and Wang, by its ability to find the
influential variables.

The remainder of this work is organized as follows. Firstly, the interval-based sensitivity index is
reviewed and is compared with other indices by a test function. In accordance with the design
optimization strategy based on the variable screening by sensitivity analysis, which is explained by two
illustrative optimization examples. Subsequently, the design optimization strategy is applied to an

aeronautical hydraulic pipeline system. Finally, the conclusions are drawn.

Review and interpretation of the interval-based sensitivity index

In this section, the general concept of the interval field and its normalized form are introduced to
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discuss the connection between the interval field and variable sensitivity. Then, the interval-based
sensitivity index, with a corresponding computational strategy, is reviewed, and its related
characteristics and advantages are explained with the help of a test function. The index will be used to

rank all input variables and screen the influential variables in next sections.

Interval field

A model Y = f(X), with all classes of functions f:R” —R,X—7Y, is considered, where

X =(X,,X,,--+,X,) is the vector of n-dimensional input variables and Y is the output. As reported

in some optimization studies (Faes et al. 2017; Jiang et al. 2014; Wang et al. 2019, 2021), the design
variables X are assumed to be independent and expressed by the interval model as

X, eXi=[Xx],X"], 2

where the superscript “/” denotes that the parameter is interval valued, i=1,2, ---,n, X/ and X/

with X/ < X! being respectively the lower and upper bounds of X,. In addition, an interval can be

represented by its centre value X7 = (X"+ X/)/2 and its radius X = (X} — X/!)/2. In case X
belongs to an interval vector X, the output is also an interval, which is defined as

Y=Y,y 1=/ /" 1=[miny oy £ (X),maxyex f(X)]. 3

When X, is fixed to a specific value in the interval [ X/, X¥] and all other inputs are intervals,

the corresponding output Y, is a subinterval of Y’, ie, Y{ SY'. The bounds of Yy are

calculated as

Y,

RENSALINACONNCO)
:[minx,,,ex,f,f‘(Xla“'XiflaXiaXiJrl)”.Xn)amaXXﬂeXf,f(Xla"'XiflaXiaXiJrl)”'Xn)]a

4)
where X _, denotes the vector of all input variables except X, and X, denotes the interval vector
associated with all variables except for X/. Furthermore, when X, loops through every element
within [ X/, X], the output will be an interval field 7/ (X,), which is shown in Fig. 1 (A). The

whole interval field f/(X,) is enveloped by the lower bound f'(X;) and upper bound f“(X,),

with 7/(X;) < f“(X,). The centre value and radius of the interval field can be defined as (Jiang et al.
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fC(Xt):

1)+ 1) -

and

fr(Xl_):fu(Xi);fl(Xi). (6)

According to interval theory, the centre value g¢(X;) reflects the general degree of the interval field,
and the radius reflects the deviation degree of the interval field.

To facilitate the comparison of interval quantities and have a clearer and more intuitive
interpretation of the relationships between interval variables and the model output, the interval field can
be normalized as (Jiang et al. 2014)

frX) =X+ X76)=g"(0), U]
where §,€[-1,1] is the normalized interval variable. Accordingly, the interval field £’ (X,;) is
transformed into the normalized interval field g’ (d;) (shown in Fig. 1 (B)) which can be described by
g<(9;) and g"(9):

g ()= 0T 0) @

2" (6)= M (9)

A recently proposed interval-based sensitivity index

For all of the input variables X, X,, -+, X,, the corresponding normalized interval field g’ (5,)
(i=1,2,---,n) is usually different, and the difference between them is mainly determined by the
influences of model inputs X on the model output ¥ (Chang et al. 2022). This is reflected in the
radius of the interval field g’ (4,). Two special examples are shown in Fig. 1 (C) and (D):

(i) In Fig. 1 (C), the lower bound g’(¢,) is always equal to Y’ (i.e., g’(5,)=Y") and the upper
bound g“(J,) is always equal to Y* (i.e., g“(d;)=Y*), which indicates that no matter what
value X, takes in the interval [X/,X/], the model output Y%, remains unchanged and equals

Y’ (e, Y5 =Y"). In this case, the input variable X, has no influence on the model output,
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making X, a noninfluential variable.

(i) InFig. 1 (D), the lower bound g’(5,) and the upper bound g“(é,) coincide with each other, i.e.,

g'(8;) = g"(6,), which indicates that the uncertainty of the model output ¥ is eliminated when

X, takes a specific value in the interval [X/, X*]. In this case, the model output is dominated

by the input variable X;. which makes X, animportant variable.

For the most common situation of the normalized interval field g’ (J,) shown in Fig. 1 (E), the
whole area (surrounded by four lines Y =Y', Y =Y*, 6,=-1 and J,=1) is divided into three
parts: 4, enclosed by g“(5,) and Y =Y", 4, enclosed by g'(5) and Y=Y', and A
enclosed by ¢’(d,) and g“(d;). According to the description, the larger A, is, the less important
the variable is (e.g., the case of Fig. 1 (C)). In contrast, the smaller 4., is, the more important the
variable is (e.g., the case of Fig. 1 (D)). Therefore, an interval sensitivity index C; was defined by

Chang et al. (Chang et al. 2022) as

_AD T4
At{}t(l[ (l) ’

where A (i) = A, (@) + 4, (@) + A () . Furthermore, C, can be derived by the following

C, (10)

expression (Chang et al. 2022):
_ A0+ 40)

C, -
Amml (l)
Atotal (Z) 7 Aﬂeld (l) A/ield (l)
= - =1— L= 11
Alolal (l) Azolal (l) ( )
1 gt [ 6)— g (),
P (Y” — Y[) . i i i

In addition, the interval sensitivity index can be extended when we wish to know the joint
contribution of two or more variables for the model output, which are derived in Appendix A. More
information about the interval sensitivity index can be found in (Chang et al. 2022).

After introducing the interval sensitivity index, a test function will be studied next to compare the
sensitivity analysis results of three types of indices including the interval-based sensitivity index,

Sobol” indices (reviewed in Appendix B), and Wang’s indices (reviewed in Appendix C).
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An illustrative function to interpret the interval sensitivity index

A four-variable function is considered as (Chang et al. 2021)

F(X)=X\ X, —2X, X +3X;X, —4X, X, +4X, X, X5 X, (12)
where X =(X,,X,,X;,X,) are the input variables. Two cases are considered for this function, which
are listed in Table 1. It should be noted that the Sobol’ indices in the following are calculated on the
premise that all input variables are assumed to be uniformly distributed in its interval. Sobol’s indices
are included for comparative reasons, and stem from the case where an analyst would invoke the
maximum entropy principle to first estimate a distribution based on the available information (i.e.,
bounds), followed by the sensitivity analysis. Further, it should be noted that both sets of indices have a
fundamentally different meaning behind them. Nonetheless, in view of selecting the most appropriate
parameters to perform optimization, the usage of these indices is similar, which warrants comparison.

For Case 1, the results of C; are shown in Fig. 2 (A), and its corresponding normalized interval
fields are shown in Fig. 2 (D), where the order of dashed area is 4; > 4, =~ 4, > A,. This indicates that
the order of the variable importance is X5 > X, ~ X, > X,. In addition, the results of Wang’s indices
(¢; and ¢;) and Sobol’ indices (S; and Si;) are shown in Fig. 2 (B) and (C), respectively. The
variable importance results of the three types of indices are the same (i.e., X5> X, ~ X,> X))
except that the result of radius sensitivity ¢; is X;> X, ~ X,~ X,.

For Case 2, the results of C; are shown in Fig. 3 (A), and its corresponding normalized interval
fields are shown in Fig. 3 (D), where the order of dashed area is A4, > 4, ~ 4; > A,. According to Fig.
3 (A) and (D), C,>C,~C;>C, indicates that the order of the variable importance is
X,>X,=X;>X,. In Fig. 3 (B), the orders of Wang’s indices are {,>{,>{,>{; and
C1>¢3 > ¢4 > G, respectively. In Fig. 3 (C), the order of Sobol’ indices S;~0 (i=1,2,3,4) and
Sts> Sty > St3 > St,, respectively. The variable importance result of the total effect index Sy, is
almost the same as the interval-based sensitivity index C,. Nevertheless, the variable importance order

cannot be obtained by Wang’s indices because the {; and ¢; results are inconsistent.
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Discussion on the interval sensitivity index
According to the introduction of the interval-based sensitivity index and the analysis results of the

illustrative function, four aspects of discussions need to be emphasized to offer deeper insights into the

index.

First, three characteristics of the interval-based sensitivity index need to be emphasized:

(i) As shown in previous sections, the proposed index C; is the ratio of the left dashed to the total
rectangular area; therefore, the lower bound of C; is 0, while the upper bound of C; is 1, i.e.,
0<C;<1. The larger C; is, the more important X, is. Conversely, the smaller C, is, the less
important X, is.

(i) If C;=0 (as shown in Fig. 1 (C)), the uncertainty of X, has no influence on the model output
Y. Therefore, X, isanoninfluential variable in this case.

(iii) If C;=1 (as shown in Fig. 1 (D)), the uncertainty of X, has dominant influence on the model
output Y. Thus, X, isthe most important variable in this case.

Second, similar to conventional sensitivity indices, such as Sobol’ indices (Sobol’ 1993; Sobol’
and Kucherenko 2009; Wei et al. 2015a) and Wang’s indices (Wang et al. 2018), the interval-based
sensitivity index C; can be used for the sensitivity analysis of the input variables, thus providing a
deeper understanding of the considered system and more comprehensive analysis results for
engineering designers. At the same time, the index can be used as a variable screening tool for
optimization problems, which will be specifically implemented in next sections. In particular, those
variables with relatively large index C; are selected as influential variables, and then the optimization
problem is solved by considering only these selected influential variables, while the other
noninfluential variables are evaluated at specific values in its space. Moreover, as shown in Fig. 2 (D)
and Fig. 3 (D), the interval-based sensitivity analysis can not only rank the importance of input
variables, but also present the behaviour of model response with respect to each interval input, thus
providing the guidance for the determination/realization of value-fixation of noninfluential variables.

That is to say, fixing these noninfluential variables can be determined with the help of the

10
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interval-based sensitivity analysis results, rather than crudely fix all noninfluential variables at its initial

values (e.g., lower bounds, upper bounds, or centre values). The specific implementation will be

elaborated in next section.

Third, the classical Sobol’ indices (reviewed in Appendix B) are variance-based indices (Sobol’
1993; Sobol’ and Kucherenko 2009; Wei et al. 2015). For the design optimization with variable
screening, selecting Sobol’ indices as a screening tool may have three limitations, which are analyzed
as follows:

(i) Sobol’ indices reflect the contribution of input variables to the model output variance (rather than
the model output itself), which is just a variance-based criterion, rather than a comprehensive
characteristic description of the model output (Cho et al. 2014).

(i) In design optimization problems, the design variables are often confined by the lower and upper
bounds of intervals rather than characterized by probabilistic models. It may be inappropriate to
directly consider the design variable as a specific probabilistic model (e.g., normal distribution or
uniform distribution).

(iii) Sobol’ indices can only offer the importance ranking results, but not the behaviour of model
response with respect to each interval input. Hence, Sobol’ indices may not provide sufficient
information for fixing the value of noninfluential variables.

Fourth, Wang’s indices (Wang et al. 2018) (reviewed in Appendix C) can be used to identify
influential variables in design optimization problems, though three drawbacks need to be emphasized:
(i) Wang’s indices reflect the contribution of input variables to # = Y/Y”, which is the ratio of the

centre value to the radius of the model output, rather than the model output itself. Moreover, 5

has no clear physical meaning.

(if) According to the introduction of Appendix C, n=Y</Y" is equal to O when Y°=0. In this
case, the definition of Egs. (C6) and (C7) (i.e., {i=|n—[n|X;]/n and ¢,=[n|X,;]"/n) are
invalid because # is the denominator in Egs. (C6) and (C7). Therefore, Wang’s indices can only

be used in the case of Y°= 0. Meanwhile, when # is approximately equal to O (i.e., n=0), the

11
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(iii)

previous section.

results of ; and ¢, are likely to be influenced by calculation errors, which can be clearly

realized by the comparation results of Case 1 and Case 2 in the illustrative function of the

Same as Sobol’ indices, Wang’s indices cannot offer insight on the behaviour of model response
with respect to each interval input. As a result, Wang’s indices may not be informative for fixing
values of noninfluential variables. The details will be elaborated and examined in next sections.

In addition, the effectiveness and superiorities of the interval-based sensitivity index will be

further compared with Sobol” indices and Wang’s indices by its ability to find the influential variables

of design optimization problems in the illustration examples of next section.

Computational strategy for calculating the interval sensitivity index

As shown in Eq. (11), the interval-based sensitivity index C; can be calculated using Y', Y*,

g'(5,),and g*“(5,). The calculation of them is addressed in detail in the following.

Calculation of Y’ and Y“

The calculation of Y’ and Y* is a classical interval analysis problem, which has been discussed

in depth by Faes et al. (Faes et al. 2017; Faes and Moens 2020). In this section, ¥’ and Y“ are

obtained by solving the following two optimisation problems:

and

Flnd 6*:{51*952*7.“7511*}
to minimize g(J) (13)
subject to -1<4,<1, (i=1,2, ---,n)

Find 6 * ={6,",5," ,---,0," }
to maximize g(d) (14)
subject to —1<9,<1, (i=1,2, --,n).

We can observe that Y'=g(6*) and Y“=g(J = ). In this work, the surrogate optimisation (SO)

algorithm (Wang and Shoemaker 2014), integrated as “surrogateopt” function in MATLAB software, is

adopted to implement the two optimisation problems (i.e., Eqs. (13) and (14)) to obtain Y’ and Y*.

12



299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

Calculation of g’(d,) and g“(d,)
For the calculation of g’(5,) and g“(J,), a double-loop strategy can be adopted (Chang et al.
2022). In the inner layer, the minimum and maximum values g’(5;) and g“(d;) of the output

response for the given value o, are obtained by solving the following two optimization problems:

Flnd 5;1':{51,952'7“'751"71;51',+1'“55;1}
to minimize g(J)

15
subjectto -1<o_,=1 (19)
51’ - 51’(11)
and
Flnd 6:1 - {51”a52”> ’51'”71751'”4»1 o 75;}
to maximize g(d) (16)

subjectto -1<o_,=1
61‘ - 5i(h) s

where h=1,2, -+, Bgmples Hsample d€NOtES the number of generated grid points of J;. We can observe
that g’ (,y) =g(0.,6:) and g“ (i) = g4 (8:,6:n) . Also, SO algorithm as described in previous
section is adopted to solve Egs. (15) and (16). In the outer layer of the double-loop strategy, the lower

bound curve g’(6;) and upper bound curve g“(J) of the interval field g’(6,) can be
approximately fitted by global metamodeling with adaptive sampling. The details of global
metamodeling method are described in (Chang et al. 2022) and the practical implementation of the
strategy is summarized in Algorithm 1.

The optimisation algorithm SO is called to calculate the lower/upper bounds g’ (,)/g" (:) at
a series of grid points &,,,. The initial points {J,y, -,d;.,,} and their corresponding lower/upper
bounds {g’(6;),"-*»&" (5i) 1 E"“ (Giry)> > g" (3) ; are firstly used to construct a metamodel,
then the new point J;..., IS selected, by maximizing the mean square error (Liu et al. 2018), to update

the model until the stopping criterion is met. Finally, g’(J;) and g“(J,) are obtained to calculate the

interval-based sensitivity index C,.

Design optimization with variable screening by the interval-based sensitivity
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General process

For the design optimization model expressed in Eq. (1), all input variables X ={X,,X>,---,X,,}
can be divided into two categories, i.e., top influential variables Xrop = { X topt)s Xtop@)> *** > X Top(u) )
and noninfluential variables X _top ={ X topy> X “Top@)>*** » X —Top(n_my ¥, DY S€NSitivity ranking results.
The subscript “Top” refers to variables that are significantly more influential than other variables. As
can be seen, X ={Xyop,X1py and m<n. Then, the design optimization problem can be

reformulated as
Find Xy,, = {X'Fop(l)aX"lfOp(2)’ 5 Xop(my }
to minimize f(Xrop> X -rop)
subject to G, (Xrop, X-1op) <0, (i=1,2, -+,NC) (17)
Xiop = Xrop = Xop
X top = X Hop>

where X1, and Xi,, are the lower and upper bound vectors of influential design variables X, ,
respectively. X‘y,, is the selected specific value vector of the noninfluential variables X r,,. AsS
illustrated in the discussion on the interval sensitivity index, Sobol’ and Wang’s indices cannot offer
insight on the behaviour of model response with respect to each interval input. Therefore, all
noninfluential variables X _r,, are crudely fixed at its centre values (i.e., X rop = X rop) (Or lower
bounds (i.e., X _tep = X'rep ) and upper bounds (i.e., X rop = X'rep ). Meanwhile, for the
interval-based sensitivity index, the k-th noninfluential variable X .,y (k=1,2, ---,n —m) is fixed
as a specific value X *yo,u, Where X%, € [ X lrop, X “ropwy] 1S the value that corresponds to the
minimum of the whole interval field /(X ropw), i.€., /(X %opw) =Y'. Correspondingly, when
solving a maximization problem, the specific value X 7., will be the value that corresponds to the
maximum of the whole interval field /(X -rop)), i.€., ' (X Fopwy) = Y. The general process of the
design optimization with variable screening can be summarized in Fig. 4.

It can be seen that the objective function f and constraint function G, change from the original

n-dimensional functions to m-dimensional functions, and the number of the design variables is reduced
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from the original n to m, which will effectively simplify the optimization problem. It should be noted
that the specific value of m is determined by the designers based on sensitivity analysis results, model
accuracy requirements and acceptable calculating costs, which will be specifically demonstrated by
optimization examples in the next section. In addition, for a complex optimization problem in
engineering practice (e.g., the aeronautical hydraulic pipeline) where the model response is obtained by
a time-consuming black box (e.g., finite element analysis), the sensitivity analysis may require a lot of
computational cost that designers cannot afford. In this case, metamodels can be adopted to reduce

intensive computational costs of the sensitivity analysis (Chang et al. 2022).

Ilustrative examples of the design optimization with variable screening

Two illustrative optimization examples are conducted to examine the design optimization strategy
and to compare the ability of different sensitivity indices to find the optimal results (including the
maximum result and the minimum result) and their effect on variable screening. It should be noted that
the Sobol’ indices are calculated on the premise that all input variables are assumed to be uniformly
distributed in its interval. Besides, the sequential quadratic programming (SQP) optimizer is employed

for the two illustrative optimization examples.

A ten-dimensional optimization example
A ten-dimensional optimization example (Wang et al. 2018) is expressed as

Find X* ={X,", X, X}

to maximize/minimize f(X)=X?+ X; — X7 — X5+ X, X, —14X,—16X,
+(X5-10)°+4(X,—5) +(Xs—3)+2(Xs— D>+ 5X3 (18)
+7(Xs—11)°+2(Xo—10) >+ (X310 — 7) "+ 20X5 + 14X, — 50

subject to X/ < X, <X/, (i=1,2,-,10),

where the lower and upper bounds of all interval variables are assumed to be 5 and 6, respectively, i.e.,
X/=5 and X*=6 for i=1,2,---,10. The actual lower and upper bounds of the model output are

SI(X)=391.75 and [f“(X)=572 , and the corresponding centre and radius are
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f(X)=481.875 and f"(X)=90.125.

As shown in Fig. 5 (A), the importance ranking obtained by the interval-based sensitivity index
C.is Xy>X;> X X > X X, > X~ X, > X5~ X,,. Fig. 5 (D) shows the normalized
interval field used to obtain C; (i=1,2, ---,10). Fig. 5 (E) is the normalized interval field used to
obtain C,s, which indicates the joint contribution of X, and X, to the model output 7 (X). The
importance ranking obtained by Wang’s indices (Fig. 5 (B)) and Sobol’ indices (Fig. 5 (C)) are the
same as that of the index C;. It should be noted that the three types of sensitivity indices associated
with X, and X,, are equal to zero, (i.e., C;=(=¢=8=85;=0 and
Cio="C10=¢10 = S10 = S110=0), and the three types of indices associated with X, and X, are very
small and close to zero. The value of the model output is basically unchanged when these four variables
(X5, Xy, X, and X,) change within its interval range. In contrast, the three types of indices
associated with X, X,, X, and X, are obviously larger than other variables, which means that
Xs, X5, Xs and X, have a considerable influence on the model output.

In Fig. 5 (F), the optimization results (including the maximum value f... and minimum value
fmin) @S Well as the computational cost (measured by N, i.e., the number of function calls for SQP
optimizer during the optimization process) corresponding to different sets of design variables are given.
In the horizontal abscissa, Top m (m=1,2, ---,10) represents the first m most influential design
variables according to the sensitivity analysis. For example, Top 4 means that X, X,, Xs and X,
are considered in the optimization, and the rest are fixed at a specific value (such as centre values, i.e.,
X rop = Xrop, OF a set of selected values, i.e., X r,, = X 5,p) in its intervals. When all the
noninfluential variables are fixed at their centre values (i.e., X rop = X yop), the maximum and
minimum values are 544.99 and 413.00 in the case of Top 2, 564.00 and 396.00 in case of Top 4,
569.75 and 393.75 in the case of Top 6, and 572.00 and 391.75 in the case of Top 10 (all variables).
Meanwhile, when all the noninfluential variables are fixed at a set of selected values X, based on
the information of the interval-based sensitivity analysis result, the maximum and minimum values are

572.00 and 391.75 for all the case of Top m. Take the minimum optimization of Top 2 case as an
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example, the Top 2 influential variables (i.e., X and X) are selected as design variables while the
noninfluential variables (i.e., X,~ X,, X, and X,,) are fixed at X’y,,. According to Fig. 5 (D),

Sep ={X{, X5, X3, Xi, Xi, X!, X4, X\,} where the superscript V of X, and X,, means
any value in its intervals because the change of X, and X,, have no effect on the model output, and
the superscripts ¢, | and u are the centre value, lower bound and upper bound, respectively. At the same
time, when performing maximization of Top 2 case, the fixed values for the noninfluential variables
can be selected as Xy, ={ X, X35, X3, X&, X¥ X& X, X, based on the normalized interval
field g’ (s,) inFig.5 (D).

In addition, the number of function calls during the optimization process (including N.u Of fiux
and f..,) increases with the increase of variables. Satisfactory optimization results can be obtained by
considering the influential design variables, e.g., Top 4, and the computational cost can be reduced by
more than half in the case of Top 4. At the same time, when the noninfluential variables X 1., are
fixed at Xy, , the optimal results (i.e., fn.x =572.00 and f,., =391.75) of Top 10 (all variables)
optimization can also be obtained by Top m (m <10) optimization case, which can be seen in Fig. 5
(F). In other words, it is effective and practical to perform design optimization with these influential
variables selected by the interval-based sensitivity index C;. Moreover, the interval-based sensitivity
analysis can provide the behaviour of model response with respect to each interval inputs, so as to give
the guidance for the determination/realization of value-fixation of noninfluential variables. As can be

seen in Fig. 5 (F), this strategy is obviously useful for finding the minimum/maximum value of the

problem.

A twenty-dimensional optimization example

A twenty-dimensional optimization example (Craig et al. 2005; Welch et al. 1992) is expressed as
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Find X* ={X,", X5, X5}

to maximize/minimize f(X)=5X,,/(1+ X)) +5(X, — X5)> + Xs+40X3 —5X,,
+0.05X,+0.08X;—0.03Xs+0.03X,—0.09X,—0.01.X, (19)
-0.07X,, +0.25X3 —0.04X,,+0.06.X,5s—0.01.X;; —0.03X

subject to X/ < X, < X/, (i=1,2,--,20).

The lower and upper bounds of all interval variables are assumed to be -0.5 and 0.5, respectively,
ie, X/=-0.5 and X*=0.5 for i=1,2,--,20. The actual lower and upper bounds of the
model output are f'(X)=-8.152 and f“(X)=13.3125 (Craig et al. 2005; Welch et al. 1992),
and the corresponding centre and radius are f<(X)=2.5803 and f"(X)=10.7323. The function
is evidently nonlinear, and that there are six influential variables (X, X,, X5, X, X and X,,)
as discussed in (Craig et al. 2005; Welch et al. 1992).

The results of three types of indices (i.e., the interval-based sensitivity index, Wang’s indices and
Sobol’ indices) are compared in Fig. 6, where (A) is the interval-based sensitivity index C;, (B) is
Wang’s indices including the centre value sensitivity ¢, and radius sensitivity ¢; and (C) is the
Sobol’ indices including the main effect S; and the total effect S;. The six influential variables are
successfully identified by C;, ¢, ¢; and Sy,. It can be observed that the main effect S,
corresponding to X, is approximately equal to 0, primarily due to the interaction influence between
X, and the most influential variable X,, in the response function. In addition, the variable
importance orders obtained by the five indices are different from each other, where the top influential
variables are listed in Fig. 6 (A)-(C).

To compare the ability of these three types of indices to find the influential variables, the
optimization results (including the maximum value f£... and minimum value f...) as well as the
computational cost (measured by N, i.e., the number of function calls for SQP optimizer during the
optimization process) corresponding to different sets of design variables are given in Fig. 7. Similar to
the previous section, in the horizontal abscissa, Top m (m=1, 2, ---,20) represents the first m most
influential design variables according to the sensitivity analysis. Therefore, the optimization results
gradually tend to the optimal solution (i.e., fix =13.3125 and f., = - 8.152) with the increase of

design variables. Additionally, the number of function calls (including N.u Of fuow and fii)
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increases with the increase of variables. For the case of Top 1, the maximum and minimum values
associated with five indices (C;, {;, ¢, S; and Si;) are the same, i.e., funx=2.5 and
fmin = —2.5. In the case of Top 2, the maximum and minimum values associated with four indices (C;,
iy ¢ and S;) are the same (fuax =35 and f...=-—5), while those associated with S;; are
Sumax=23.75 and fo..=-2.5, so the ability of S, is inferior to other four indices (C;, {;, ¢; and
S;) in the case of Top 2. The situations in the Top 3-6 and the Top 20 can be concluded in the same
manner, where ¢;, Sy, and S, are inferior to C;, and {, in the case of Top 3, ¢; and S, are
inferiorto C;, ¢; and S, in the case of Top 5, and S; is inferior to the other four indices (i.e., C;,
iy ¢; and St,) in the case of Top 6. The number of inferiors (i.e., the number of times that the Top m
extrema associated with an index is inferior to the Top m extrema associated with one of other four
indices) of the five indices are shown in the top left corner of Fig. 7, where the interval-based
sensitivity index C; and the centre value sensitivity {; of Wang’s indices are obviously superior to
the other three indices in this example.

In addition, it can be seen that the minimum result (-7.5) of the Top 3 associated with C; is very
close to the minimum result (-8.152) of the Top 20, and the corresponding numbers of function calls of
the Top 3 and Top 20 are 40 and 820, respectively, where more than 95% of computational cost is
saved. At the same time, the maximum result (12.5) of the Top 5 associated with C; is very close to
the maximum result (13.3125) of the Top 20, and the corresponding number of function calls of the Top
5 and the Top 20 are 55 and 451, respectively, where more than 87% of the computational cost is saved.

Moreover, the above-discussed Top m (m=1,2, ---, 6) optimization is performed in the case of
the noninfluential variables are fixed at its centre values (i.e., X _rop = X%rop). When all the
noninfluential variables are fixed at a set of selected values X, based on the information of the
interval-based sensitivity analysis result, the maximum and minimum values are 13.3125 and -8.152 for
all the case of Top m. Take the minimum optimization of Top 4 case as an example, the Top 4
influential variables (i.e., X,, X;, X, and X,,) are selected as design variables while the

noninfluential variables (i.e., X,~ X, and Xis~Xis ) are fixed at
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Nop =X 2, X4, X4, X5 XE X0, Xe, X8, X0, X1, XG5, X4, Xis, X1, Xi5, Xis} which are selected
based on the normalized interval field g’ (d,) of the interval-based sensitivity analysis. As can be seen
from above discussion, performing the design optimization with these few influential variables
(selected by the index C;), while the rest of noninfluential variables are fixed at the selected values

“top. 1S effective and practical.

Application for the design of an aeronautical hydraulic pipeline

In this section, the interval-based sensitivity index C; will be applied to a practical engineering
problem of aeronautical hydraulic pipelines, which was first presented in Wang’s work (Wang et al.
2018) and studied in (Li et al. 2020; Zhang et al. 2019; ZHOU et al. 2019). First, we introduce the
problem of aeronautical hydraulic pipelines, then perform the optimization design with variable

screening based on the interval-based sensitivity analysis result, before finally discussing the findings.

Introduction of the aeronautical hydraulic pipelines
For most modern aircrafts, hydraulic pipelines are functional units that transmit hydraulic oil to
drive a series of mechanisms on board (Ouyang et al. 2012; Tang et al. 2011), such as flaps, landing
gears, and folding mechanisms. At the same time, hydraulic pipelines undertake complex working
conditions, such as external shock, vibration, or other dynamic loads. In particular, aeronautical
hydraulic pipelines are quite different from those in other engineering areas, which is mainly reflected
in three aspects (Zhou et al. 2019):
(i) Low stiffness. The stiffness of aeronautical hydraulic pipelines is relatively low due to space and
weight constraints.
(i) Long pipelines and a considerable number of curves. Aeronautical hydraulic pipelines are
relatively long because of the long distances between actuators and pumps. Meanwhile, hydraulic
pipelines are curved frequently, because of the arrangement of structural parts and the confined

space on board. This may have impacts on the stability of the pipelines.
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(iii) Complicated vibration environment. There are many vibration sources, such as engines, pumps
and aerodynamics that can cause excitations of hydraulic pipelines.

In engineering practice, the stress and displacement are two quantities of concern, and the failure
of aeronautical hydraulic pipeline is mainly due to fatigue load caused by vibration. To be specific, the
stress values of all nodes of the hydraulic pipeline change with the excitation. In this study, the
excitation of hydraulic pipelines is considered as stochastic due to random external vibration, the
complexity of structures, and variations in aircraft loads (Wang et al. 2018). For a specific node,
standard deviation of stress reflects the degree of stress change in the whole vibration cycle. The
greater the standard deviation of stress, the easier the fatigue failure will occur. Therefore, the
maximum standard deviation of stress is chosen as the objective of optimisation design. Meanwhile, the
maximum standard deviation of displacement is treated as a constraint in this work. In general, a series
of hoops (which are usually dozens or even hundreds) are used to fix hydraulic pipelines, thus
preventing instability caused by long spans and excitation, which can obviously lower the stress and
displacement in the vibration environment (Wang et al. 2018; Zhou et al. 2019). Therefore, the
constraint location plays an important role on the safety of hydraulic pipelines. So, the coordinates of
the hoop locations are selected as design variables.

As shown in Fig. 8 (A), the finite element model of an aeronautical hydraulic pipeline is built in
ANSYS 17.1, and its related parameters are listed in the lower part of Fig. 8 (A) (Zhou et al. 2019).
pry D, t, psy T, P, E and u represent the material density, outer radius, thickness, fluid density,
ambient temperature, internal pressure (which is caused by the flow of oil in pipeline), elastic modulus
and Poisson’s ratio, respectively. Twenty-eight design variables (coordinates of hoops) are selected
from 21 hoop locations in Fig. 8 (B), which are listed in Table 2. It should be reminded that more than
one coordinate is considered at some hoop locations including 45, 62, 69, 72, 75 and 85. The stochastic
excitation is given in the form of an acceleration power spectral density (PSD) function, which is
shown in Fig. 8 (C). In this case, the stress results of the hydraulic pipeline are obtained in Fig. 8 (D),

where the maximum standard deviation of stress is 2.69 X107 (Pa).
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The goal of the optimization is to find the optimal locations of the pipeline hoops to minimize the
maximum standard deviation of stress. Therefore, the objection function is o,.... In addition, the

maximum standard deviation of displacement D, of the hydraulic pipeline is the constraint. The

optimization problem of the hydraulic pipeline can be expressed as

Find X* ={X,", X, X5}

to MINIMIze 0,y

. (20)
subject to Dy, — D' <0
X/ <Xx, <X/ (i=1,2,-,28),

where D’ is the maximum standard deviation threshold value of displacement, which is set as
5.5%107*. In other words, Dp.<5.5X10"* (m) must be satisfied in the whole optimization
process. X! and X are the lower and upper bounds of the design variable X, and are shown in

Table 2. More detailed information on the maximum standard deviation of displacement D, of the

aeronautical hydraulic pipeline can be found in (Wang et al. 2018).

Sensitivity analysis and the optimization with variable screening

The variable sensitivity results are obtained by the interval-based sensitivity index C;, which are
shown in Fig. 8 (E). It should be noted that the interval-based sensitivity analysis is performed based on
a Kriging metamodel, which is built by 500 calls of the aeronautical hydraulic pipeline model in total.
The specific procedure of the metamodel construction can be found in (Liu et al. 2018). In the
application, the optimisation problem was required, by engineering designers, to have no more than 12
design variables. According to Fig. 8 (E), ten most influential design variables can be selected, which
are X,y, X4, X3, X1, Xio, X5, Xos, X, X5 and X, and other design variables have no or
little effect on the maximum standard deviation of stress. Therefore, the 10 influential design variables
are selected for the design optimization with variable screening (i.e., Top 10 optimization), which can

be expressed as
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Find X}op:{X;,Xé,X{z,X]'3,X]'4,X{S,X{Q,XQ,XZVS,XZQ}

to minimize 6, max (Xtop> X-Top)

subject to D, — D <0 (21)
Xiop < Xrop < Xop
X top = X rop>

where Xy, is the selected specific value vector of the noninfluential variables X 1., Gyma and
D.... are directly obtained by the finite element model of the aeronautical hydraulic pipeline.
According to the interval-based sensitivity analysis, the noninfluential variables X,
(j=1,2,4,5,7~11, 16~18,20~23,26,28) are fixed as 34.84, 38.29, 45.51, 60.46, 16.03, 9.82,
10.72, 28.83, 12.10, 3.74, 2.63, 5.67, 37.45, 2.63, 5.68, 19.03, 1.88, 13.33, 1.23, 5.98, and 4.48,
respectively. The optimization results of the traditional optimization method (i.e., all-variable
optimization or the Top 28 optimization) and the optimization results with variable screening (i.e., the
Top 10 optimization) are shown in Fig. 8 (F). The SQP optimizer is employed for the aeronautical
hydraulic pipeline optimization. The optimized maximum standard deviation stress of the Top 28 is
2.42 %107 (Pa) (shown in the right contour results of Fig. 8 (F)), while the optimized maximum
standard deviation stress of the Top 10 is 2.43 X107 (Pa) (shown in the left contour results of Fig. 8

(F)). It should be noted that the Top 10 optimization converges after 181 iterations, while the Top 28

optimization does not converge until the maximum allowable iterations (i.e., 550).

Discussions about the results

By comparing the optimization history of the Top 28 optimization and the Top 10 optimization
(shown in Fig. 8 (F)), it is evident that the optimal result (2.42 <107 (Pa)) of the Top 28 optimization
is almost equal to the optimal result (2.43 X107 (Pa)) of the Top 10 optimization, indicating that the
eliminated 18 design variables have little effect on the maximum standard deviation of stress of the
hydraulic pipeline. Therefore, the interval-based sensitivity index C; is effective to identify these
influential design variables and eliminate the remaining noninfluential design variables. The calculation

cost for SQP optimizer has been reduced from 550 iterations to 181 iterations during the optimization,
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which is a decrease of 68%. It is worth noting that, although variable selection by sensitivity analysis
incurs additional computational cost, engineers do not use the optimization model only once, but rather
use it repeatedly throughout subsequent analyses of the product. Furthermore, for some complex
engineering problems, the result of Top m optimization may be better than the result of the optimization
with all variables (Wang et al. 2018). In addition, it should be noted that when the concerned model is a
complex engineering problem without explicit performance function, such as the aeronautical hydraulic
pipelines in this work, the calculation of sensitivity indices (including Sobol’ indices, Wang’s indices,
and the interval-based sensitivity index) is time-consuming. In this case, the multi-fidelity surrogate
model (Alemazkoor et al. 2022; Meng et al. 2021) may be a suitable choice. First, the sensitivity
indices are obtained by a low-fidelity surrogate model. Then, the high-fidelity finite element model is
used for the optimization.

As can be seen, in the high-dimensional optimization problem, eliminating those noninfluential
design variables can greatly simplify the optimisation problem, and at the same time, relatively
adequate results can also be obtained. Ultimately, engineers can use the simplified models (rather than

the original high-dimensional complex models) in their subsequent work.

Conclusion

This paper introduces the interval-based sensitivity index and shows how the sensitivity analysis
can be used for solving high-dimensional optimization problems. Based on the introduction of the
interval field, the interval-based sensitivity index is reviewed and compared with other existing indices
by an illustrative function. The screening procedure based on this sensitivity index is applied to
high-dimensional design optimization problems involving two illustrative optimization examples and
an aeronautical hydraulic pipeline. The results show that the interval-based sensitivity index can
provide comprehensive effect information of input variables to the model output, thus effectively
screening out influential variables to remodel the high-dimensional optimization problems and

providing the guidance for the determination/realization of value-fixation of noninfluential variables.
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Moreover, compared with Sobol’ and Wang’s indices, the interval-based sensitivity index is easy to use
and has a superior performance.

It should be noted that the interval-based sensitivity analysis remains largely unexplored, and
related studies are still rare. This paper explores a theoretical foundation for design optimization with
variable screening by interval-based sensitivity analysis. It is admitted that sensitivity analysis is
time-consuming, especially when the concerned models is a complex engineering problem. The
interval-based sensitivity index is heuristic and more efficient computing strategies for evaluating this
index will be further explored.

In this work, we focus on the single-objective optimization problem where we only need to
evaluate the variable importance to a single model output. An important and practical perspective is to
investigate the application of the proposed approach to multi-objective optimization problems by
extending the interval sensitivity index. At the same time, the interval sensitivity index can also be

extended to time-dependent reliability-based design optimization problems.

Appendix A: Extension of the interval sensitivity index to consider the joint effect

of two or more input variables

The case of two variables (X; and X ;) is derived as (Chang et al. 2022)

o — DuGi)+ D)
v Dtotal (U)
_ Duw ) = Drae @) _, Drae (i)
Dtotal (l]) Dloral (l])

o (A22)
1 - u . A I . X ) )
71 4(YL¢YI)/1/l(g (5”51) g (5135]))d51d5]

1 Y .
=1— Z(Y”Yl)/]/lg (51,51)d6,d5/

and the case of m variables (X,,X,,---,X;) is derived by the following expression (Chang et al.

2022):
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where D (i) indicates a two-dimensional domain and D(ij--- k) indicates a m-dimensional domain.

(A23)

1
:1 "'/ (gu(ahéja.”aék)igl(éiaajan'aak))déidaj”'d(sk
1

It should be noted that g indicates interval fields in Egs. (A1) and (A2).

Appendix B: Review of Sobol’ indices

For a model ¥ = /' (X) where all elements of X are independent, the variance decomposition

of the model response Y can be expressed as (Homma and Saltelli 1996; Sobol’ 1993; Sobol’ 2001)
Vo= V4 5, VA Vi, (1)
where ¥V, = Var[E(Y|X,)] and V, = Var[E(Y|X,,X,)]—V,—V,. Dividing both sides of Eq. (B1)
by 7V, yields:
=308 +20, 2,28+ + S0, (B2)

where S, =V;/Vy is the main effect index of X, and S, =1V;/V, is the second order effect

between X, and X ;. Finally, the total effect index S;; is defined as (Homma and Saltelli 1996)

E[Var(Y|X_, Vi
St =8+ Zi;tjsi/' + 4+ Sh= [E/y)] = V{/ .

(B3)

The main index S, and total index S; are often used to measure the importance of each random
input. S;>S; indicates that X, is more important than X'; in the sense of individual contribution
to the model output variance. Similarly, Sy, > Sy, indicates that X, contributes more to the model
output variance than X ;. It should be noted that the total effect index S, is usually used when

screening the influential variables (Cho et al. 2014; Wei et al. 2015). A more detailed description can be

found in (Homma and Saltelli 1996; Sobol’ 1993; Sobol” 2001; Wei et al. 2015).
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Appendix C: Review of Wang’s indices

For a model Y = f(X), the input variables X are intervals and the output Y is also an
interval, i.e., YeY/=[Y',Y*] where Y’ and Y* are the lower and upper bounds of Y’. Its centre
value and radius can be defined as Y= (Y*+Y’)/2 and Y = (Y“—Y')/2, respectively. Then, the
centre value Y and radius Y” can be combined into the following form (Guo and Lu 2015; Guo and

Lu 2001):

j— YC
=7

n (C1)
When X, is fixed at a specific value in its interval, the impact of the uncertainty of X, on 5
will be eliminated. If X, takes different values in its interval, » will also be an interval that can be
expressed as 7| X;. The lower and upper bounds of #|.X; can be expressed as
[;7|X,.]I:miane[X‘,’X‘,,}m/Y,. (C2)
and

[77|Xi]u:max)(le[,\'},x;‘}”lXi' (C3)

The centre value and radius of #|X, are given as

and

[ani]r:[ani] ;[7’/le] ‘ (C5)

Finally, two non-probabilistic sensitivity indices (centre value sensitivity ¢ and radius sensitivity ¢)

can be expressed as (Li et al. 2013; Wang et al. 2018)

Ci= |77*[17|X,-] | (C6)
n
and
_ [7’/|Xi]r
Si— 7 . (C7)

Wang’s two sensitivity indices quantify the effect of the interval variables on # (which is
combined by centre value Y< and radius Y” of model output Y) from the perspective of the centre
value and radius, respectively. A detailed description of Wang’s indices can be found in (Wang et al.

2018). In addition, it should be pointed out that Wang’s two sensitivity indices described in Egs.
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(C2-C7) have the same form and definition as Li’s importance measures (Li et al. 2013), although Li’s

measures are concerned with a non-probabilistic reliability index rather than system output response.
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Table

Table 1 Two cases for the four-variable function with corresponding inputs and outputs

X' X" X rx Xy f1(x)
Case 1 (5,5,5,5,) (6,6,6,6) 2450 5112 3781 1331
Case2 (-0.5,-05,-0.5,-05) (0.5,05,0505)  -2.25 2.75 0.25 25

Algorithm 1 Pseudocode of the strategy to calculate the interval-based sensitivity index C;

1 Generate initial points {d;q), ", 3:0.)
2 Call surrogate optimisation algorithm
3 Obtain the corresponding lower/upper bounds {g’(6;q)), **>&" (Simy) }K 2" (i), > 2" (Ficu) }
4 Use the training data set to construct a metamodel of g’ (6,)/g*(5;)
5  While n,; + foe <7, 0Or maxe?(d,) > o2
% n;,; + Moy 1S the total number of model calls
% maxas?(d;) isthe maximum of mean square error
6 Use an adaptive sampling criterion to sample a new point ;..
7 Call surrogate optimisation algorithm
8 Obtain its corresponding lower/upper bound g’ (5;mew) /2" (Jinew))
9 Update training data set by involving ;) aNd g7 (Sitnew) /€ (Simewy) TESPECtiveEly
10 End While
11 Export final metamodels of the lower/upper bound g’ (5,)/g* (6,)
12 The final metamodels g'(d,) and g“(5;) are used to obtain A (7)

13 C;=1— Awp (l)/ Avosar
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Table 2 Section of input variables and their initial value, lower bounds, and upper bounds.

Variables X1 Xo X5 Xa X5 X X7 Xg  Xo Xwo Xu X Xz Xu
Position 14X 17X 20X 23X 26X 30X 33X 36X 39X 40X 42X 45X 452 51X
X°(mm) 43 35 93 55 56 110 158 88 93 290 117 30 30 67
X'(mm) 34 28 72 43 47 97 147 68 78 287 111 25 25 53
XY(mm) 52 42 114 67 65 123 169 108 108 293 123 35 35 81
Variables X5  Xis Xiz Xis  Xie Xao X Xz Xes Xaao X5 Xoe Xor Xos
Position 54% 59% 62X 62Y 65% 69X 69Y 72X 72Y 75X 75Y 82X 82Y 827
X(mm) 63 36 29 59 56 187 20 111 13 78 7 54 28 50
X'(mm) 53 29 26 48 50 183 18 88 12 61 5 43 25 40
X4(mm) 73 43 32 70 62 191 22 134 14 95 9 65 31 60

* The superscript X, Y and Z of the position number are the coordinate of the hoops.
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Fig 6

Centra value sensitivity ¢ The proposed index C
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Figure Caption List

Fig. 1 Illustration of the interval field for variables: (A) is an interval field 7/(X,); (B) isa
normalized interval field g’ (5,); (C) and (D) are two special interval field cases where the interval-
based sensitivity index C;=0 and C; =1, respectively; (E) is a normalized interval field used to

define the interval-based sensitivity index C;.

Fig. 2 The sensitivity results in Case 1: (A) the interval-based sensitivity index C;; (B) Wang’s indices;

(C) Sobol’ indices; (D) normalized interval fields to obtain C;-C,.

Fig. 3 The sensitivity results in Case 2: (A) the interval-based sensitivity index C;; (B) Wang’s indices;

(C) Sobol’ indices; (D) normalized interval fields to obtain C;-C,.

Fig. 4 The general process of the design optimization with variable screening

Fig. 5 The sensitivity results and optimization results: (A) the interval-based sensitivity index C;; (B)
Wang’s indices; (C) Sobol’ indices; (D) normalized interval field to obtain C;; (E) normalized interval
field to obtain Cys; (F) the maximum and minimum value (with its corresponding function calls) in the

case of Top 1 to Top 10.

Fig. 6 The sensitivity results where (A) the interval-based sensitivity index C;, (B) Wang’s indices and

(C) Sobol’ indices



Fig. 7 The maximum and minimum values (with its corresponding function calls) obtained by three

types of sensitivity indices (five indices in total) in the case of Top 1-6 and Top 20.

Fig. 8 Results of the aeronautical hydraulic pipeline where (A) shows the finite element model and its

parameters; (B) node indices of hoops; (C) acceleration PSD function of stochastic excitation; (D)

contour result of stress standard deviation before optimization; (E) the results of the interval-based

sensitivity index; (F) the optimization history of maximum standard deviation of stress.





