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Abstract

This paper proposes an efficient solution for solving hybrid reliability problems involving random and
interval variables. To meet this aim, using the soft Monte Carlo (SMC) method, a solution is proposed
that breaks the random variables space into local 1-D coordinates and then, considers 1-D coordinate as an
additional dimension of interval variables. Accordingly, using an optimization in increased interval variables
space, the upper and lower bounds of failure probability for each 1-D problem are estimated. In addition, the
total failure probabilities are presented as the mathematical expectation of the obtained probability bounds
for 1-D coordinates. Then, it is shown that this approach is fit for application of univariate dimension
reduction method to reduce the function calls of analysis in the optimization phase. This approach is
validated by solving benchmark reliability problems as well as the application of the proposed method
for solving real world engineering problems investigated by solving hybrid reliability analysis of reinforced
concrete columns. It is shown that the proposed approach efficiently approximates the failure probability
bound of problems with moderate nonlinear limit state functions with high accuracy.

Keywords: Hybrid reliability analysis, Failure probability, High-dimension model representation,
Imprecise probability, Optimization

1. Introduction

In the analysis and design of most engineering systems, we are faced with different sources of uncertainties,
rooted in incomplete/imprecise knowledge or experimental data, measuring errors, various modeling assump-
tions, operational conditions and, etc. [1] Generally, in engineering applications, these uncertainties can be
classified into two major groups as aleatory and epistemic ones which may be simultaneously in existence
in many real-world engineering problems [2]. The characterization of both mentioned types of uncertainties
with mathematical models is an open field of research in uncertainty quantification (UQ). To describe the
aleatory uncertainty in the response of a numerical model subjected to those uncertainties, several uncer-
tainty propagation approaches (known as structural reliability methods) have been proposed by probability
models, including the Monte Carlo simulation (MCS) method [3], subset simulation [4, 5] , adaptive Monte
Carlo [6], line sampling [7] and importance sampling [8]. In case sufficient data and knowledge are available
to the analyst to model the occuring natural variability, it is without discussion that these well-established
probabilistic techniques should be applied. However, at the same time, it is important to acknowledge that,
especially in engineering practice, such datasets are more often than not unavailable due to constraints on
costs, experimental time or material. On top, when considering for instance early design phases where the
complete structure has not been dimensioned yet, the uncertainty corresponding to key model quantities is
not random in nature, but rather stems from a pure lack of knowledge. In either case, it is questionable
to impose a probability density function to the uncertain quantities since this inevitable includes subjective
knowledge into the analysis. This knowledge may or may not be adequate. Therefore, in literature, some
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techniques such as fuzzy theory [9], P-boxes [10, 11, 12, 13], interval models [14, 15, 16, 17, 18] and evi-
dence theory [19] are utilized to quantify the epistemic uncertainties. From an engineering perspective, these
methods should be interpreted as systemized and rigorous approaches to study the effect of these epistemic
uncertainties on the result of the probabilistic reliability analyses.

Aimed at providing such estimation of the sensitivity of reliability estimates to epistemic uncertainty,
several hybrid reliability analysis (HRA) methods are proposed for handling both aleatory and epistemic
uncertainties concurrently [19, 20]. The hybrid reliability analysis with both random and interval variables
(HRA-RI) offers a way to compute the upper and lower bounds of failure probability estimation [21, 22].
Among the existing reliability approaches, MCS is a reference method to approximate the upper and lower
bounds of failure probability. However, this approach is impractical for time-consuming numerical simulations
such as finite element analysis to solve real-world systems. To overcome this drawback, several alternative
approaches such as FORM-UUA are proposed which combines unified uncertainty analysis (UUA) method
with first order reliability method (FORM) [21]. Although FORM-UUA is efficient to estimate the small
failure probabilities, this UQ approach is unable to yield accurate and acceptable results for high-nonlinear
or performance functions with multiple design points. Xiao et al. [23] proposed a novel UUA based on mean
value first order saddle point approximation (MVFOSPA-UUA). In some cases, MVFOSPA-UUA has two
major drawbacks due to the linearization and approximation at the mean value points. However, FORM-
based methods [21] contain the linearization error. Consequently, the FORM-based results are more accurate
than the MVFOSPA-UUA in cases with requirement to the MPP search. The operator norm theory [24],
Non-intrusive Imprecise Stochastic Simulation (NISS) [16] and Bayesian quadrature methods [25] are pro-
posed as efficient and rigorous methods for hybrid uncertainties. Recently, Faes et. al [26] proposed an
efficient framework based on operator norm theory to estimate the bounded failure probability for linear
systems which are subjected to combination of aleatory and epistemic uncertainties at the same time. This
framework is tailored for linear models in conjunction with aleatory uncertainties within linear map, but was
also extended to mildly non-linear systems [27]. KSS is an accurate and efficient technique for rare event es-
timation of engineering problems but the weakness is related to the high-dimensional performance functions.
Zhang et al. [22] developed HRA-RI method coupling projection outline based active learning (POAL) and
Kriging named POAL-Kriging. They mentioned that the proposed method with Kriging surrogate model
may not be proper for high-dimensional performance functions. Adduri and Penmetsa [28] applied response
surface method to estimate the implicit limit state functions (LSF) as a closed-form expression in terms of
the uncertain variables. This method is applicable for different series or parallel systems with multiple failure
criteria. The issue with many of these approaches on top is the sampling-based nature that is integrated
in the procedure for integrating the epistemic part of the uncertainty. Especially MCS-based approaches
for propagating epistemic uncertainty are problematic from a conceptual and practical standpoint. Con-
ceptually, they assume the epistemic uncertainty to follow a predescribed distribution, which violates the
interval paradigms. Practically, they converge to the bounds on the response quantity of interest with the
convergence rate of a Monte Carlo simulator, if they converge at all [20].

Table 1 summarizes the reviewed papers related to HRA-RI. As can be seen, studies are classified based
on their proposed HRA-RI framework, type of reliability method, and publication time.

Overall, one may note that although several HRA frameworks have been successfully developed to esti-
mate the upper and lower bounds of failure probability, the problem of lack of efficiency still requires to be
focused and can be considered a challenging problem in this topic. This paper aims to develop an efficient
and accurate method for HRA in context of soft Monte Carlo (SMC) approach [43] and dimension reduction
method (DRM) [44, 45] that also abides by the formalisms of the interval paradigm. To properly meet the
aim of this study, the remaining parts of this paper are organized as follows: Section 2 briefly explains HRA-
RI. Section 3 presents background theory of high dimension model representation. Section 4 describes soft
Monte Carlo method and its advantages in comparison to the other reliability methods. Section 5 introduces
a robust HRA by employing soft Monte Carlo technique. Section 6 showcases the superiority of the proposed
methodology in comparison to other UQ techniques via some numerical examples and real-world engineering
applications. Section 7 presents discussions about main findings and finally Section 8 summarizes the major
steps in conjunction with main findings of this UQ study.
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Table 1: Proposed methods for hybrid reliability analysis with both aleatory uncertainties and interval variables

No. Proposed HRA-RI Reliability method Year [Ref]
1 Framework consists of two components: Direct reliability analysis + Inverse

reliability analysis
Gradient-based 2007 [29]

2 Response surface method+ Fast Fourier transforms (FFT) Gradient- and
simulation-based

2007 [28]

3 FORM-UUA: FORM-based Unified Uncertainty Analysis Gradient-based 2008 [21]
4 Equivalence model: Changing interval variables to the corresponding Uniform

distributions
Gradient-based 2012 [30]

5 MVFOSPA-UUA: Unified Uncertainty Analysis (UUA) method based on the
Mean Value First Order Saddlepoint Approximation (MVFOSPA)

Gradient-based 2012 [23]

6 ALK-HRA: Active Learning Kriging (ALK) model + MCS Simulation-based 2014 [31]
7 Two separate loops for interval analysis and probability analysis +

Karush–Kuhn–Tucker (KKT) convergency condition
Gradient-based 2015 [32]

8 P-NP-HRA-DS-ERSDM: Probabilistic and Nonprobabilistic Hybrid Reliability
Analysis based on Dynamic Substructural Extremum Response Surface Decou-
pling Method

Gradient-based 2017 [33]

9 POAL-Kriging: POAL + Kriging metamodel where POAL is a novel Projection
Outline-based Active Learning method

Simulation-based 2018 [22]

10 KSS: Kriging-based Subset Simulation Simulation-based 2019 [34]
11 Multiplicative Dimensional Reduction Method (M-DRM) + second-order Tay-

lor expansion + FORM
Gradient-based 2019 [35]

12 UPSORM: Uncertain-Polar Coordinates SORM Gradient-based 2020 [36]
13 Active learning method based on Kriging model Simulation-based 2020 [37]
14 Single-loop method where sensitivity factor is computed based on the hybrid

conjugate gradient direction and adaptive step length
Gradient-based 2021 [19]

15 Kriging-assisted SSIS where SSIS refers to Subset Simulation Importance Sam-
pling

Simulation-based 2021 [38]

16 FORM + Kriging + Karush-Kuhn-Tucker condition Gradient- and
Simulation-based

2021 [39]

17 Edgeworth series in which using dimension-reduction method and Taylor ex-
pansion

Gradient-based 2022 [40]

18 Improved Hasofer–Lind and Rackwitz–Fiessler method Gradient-based 2022 [41]
19 aAK-MCS: Advanced Adaptive Kriging model-based MCS Simulation-based 2022 [42]

2. Hybrid reliability analysis with both random and interval variables (HRA-RI)

The failure probability (Pf ) estimation for structural reliability problems with random variables is cal-
culated as follows:

Pf = P {g(x ) ≤ 0} =

∫
g(x)≤0

f(x) dx , (1)

where g(x ) indicates a performance function with random variables x and f(.) is the joint probability density
function (PDF). It is well-documented in many practical engineering problems [9, 1, 20, 46] that the presence
of both random and interval variables is indispensable. Classic probability-based reliability methods in this
particular case are not sufficiently capable of dealing with this kind of information, since both sources of
uncertainties have to be kept separated meticulously [47].

To overcome this shortcoming, and supplement classical reliability analysis, hybrid reliability analysis
methods incorporate both random and interval variables in the performance function, as graphically illus-
trated in Figure 1. Precisely, this extended performance function is considered as g(x ,y), where yI represents
m-dimensional vector as:

yI ∈
[
yL,yU

]
yI =

[
yI
1,y

I
2, ...,y

I
m

]
, (2)

where yL and yU are lower and upper bounds of interval variables y . In this essence, the failure probability
can be defined in an interval style due to existence of interval variables as:

Pmin
f = P

{
max

yL<y<yU
g(x ,y) ≤ 0

}
=

∫
max

yL<y<yU
g(x ,y)≤0

φu(u) du

Pmax
f = P

{
min

yL<y<yU
g(x ,y) ≤ 0

}
=

∫
min

yL<y<yU
g(x ,y)≤0

φu(u) du ,
(3)
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Figure 1: Schematic representation of HRA

where Pmin
f is the minimum failure probability corresponding to the maximum performance function over the

interval uncertainty. In addition, Pmax
f denotes maximum failure probability due to minimum performance

function. φu(.) describes the joint PDF of independent standard normal random variables (ui), based on
which the individual random variables (xi) are defined as:

xi = F−1
xi|y(Φ(ui)), i = 1, 2, ..., n, (4)

where F−1
xi|y

(.) is the inverse of marginal CDF of xi and Φ (.) refers to the CDF of a ui. Generally, HRA-IR

requires two loops known as inner and outer loops. In the former, minimum/maximum response function
with respect to interval variables y is found and then the failure probability is estimated in the latter. In this

context, upper and lower bounds of failure probability
[
PL
f , PU

f

]
can be estimated via different reliability

methods. In Section 5, an accurate and efficient UQ framework to approximate the PL
f and PU

f will be
presented.

3. High dimension model representation

High dimensional model representation (HDMR) tools have received attention to approximate expensive-
to-evaluate problems with plenty of input parameters with inexpensive-but-accurate metamodels. In other
words, the core idea behind HDMR is to find an affordable, yet accurate, input-output mapping derived
from the original model. In general, there exist two groups of HDMR expansions namely cut- and random
sampling (RS)-HDMR. The former defines the model in reference to a specified cut point in the domain,
whereas the latter relies on the mean value of model over the whole domain [48]. This study utilizes the
cut-HDMR decomposition with first-order truncation.

3.1. Univariate dimension reduction (UDR) method

Univariate dimension reduction method (UDR) was proposed by Rahman [45]. The main task of UDR
is to transform a multi-dimensional response function into multiple one-dimensional functions to compute
the statistical moments. Within the arithmetic moments, the response function, g(x ), is estimated into
N (number of variables) one-dimensional functions employing an additive decomposition approach. Then
the original N-dimensional integral of the statistical moment is replaced by a number of one-dimensional
integrals to enhance the computational efficiency[44]. Moreover, UDR can accurately estimate the statistical
moments of the performance function of design variables with both non-normal and normal distributions
[49]. On the negative side, the UDR is not recommended for highly nonlinear LSFs and high-dimensional
problems. Therefore, the UDR may fail to accurately predict the bounds of intervals for the mentioned
complex problems. The ath statistical moment of the g(x ) can be computed with the following integration
[44]:

E [ga(x )] =

∫
· · ·

∫
ga(x1, x2, ..., xN )fx(x1, x2, ..., xN )dx1dx2...dxN , a = 0, 1, 2, .., (5)
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where a is the order of the moment and fx is a joint probability density function (PDF) of the random
parameter x . Actually, it is impractical to compute the statistical moments of the performance function
using Eq. 5 especially for high dimensional problems. To approximate g(x ), additive decomposition concept
is utilized:

g(x ) ∼= ĝ(x ) ≡
n∑

i=1

g(µ1, ..., µi−1, xi, µi+1, ..., µn)− (n− 1)g(µ1, µ2, , ..., µn), (6)

where µ = [µ1, µ2, . . . , µn]
T

is vector of mean value for random variables. For example, the performance
function of two-dimension problem is estimated as follows:

g(x ) ∼= ĝ(x ) ≡ g(x1, µ2) + g(µ1, x2)− g(µ1, µ2). (7)

Frequently, UDR uses 2N + 1 or 4N + 1 axial sampling points to approximate the performance function. It
should be mentioned, 4N + 1 sampling points are recommended to use for highly nonlinear problems [50].
Figure 2 shows 2D and 3D problems with 2N + 1 and 4N + 1 axial sampling points. Choosing 2N + 1 or
4N + 1 axial sampling points depends on the level of the nonlinearity of the problem.
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Figure 2: 2D and 3D axial design of experiments (DOEs) via (2N + 1) and (4N + 1) points

3.2. Numerical interpolation to approximate the response function

To approximate the response function, numerical interpolation methods can map a high-dimensional
function to a problem with a desired target dimension, and then generate data from the mapped function
at a quite low computational expense [51]. The univariate component function in Eq. 6 can be estimated
with function values at a set of univariate sample points as follow [52]:

g(x ) = g(µ1, ..., µi−1, xi, µi+1, ..., µn) =

m∑
j=1

aj(Xi).g(µ1, ..., µi−1, x
(j)
i , µi+1, ..., µn), (8)

where m refers to the size of univariate sample (x
(1)
i , x

(2)
i , . . . , x

(m)
i ). The function aj(Xi) indicates the

jth interpolation basis function which is named Lagrange polynomial. The function aj(Xi) has a form in
Lagrange interpolation as:

aj(Xi) =

∏m
k=1,k ̸=j(Xi − x

(k)
i )∏m

k=1,k ̸=j(x
(j)
i − x

(k)
i )

. (9)

By applying interpolation for all univariate component functions, an explicit function approximation is
provided for the response function:

g(x) =
N∑
i=1

m∑
j=1

aj(Xi).G(µ1, ..., µi−1, x
(j)
i , µi+1, ..., µn)− (N − 1)G(µ). (10)

If the same size of sample pointsm is considered for the Lagrange interpolation of all univariate component
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functions, therefore (m− 1)N +1 function evaluations are required for the UDR. Conforming the mentioned
process, Lagrange interpolation can be used for the UDR with two or higher-order component functions.

4. Soft Monte Carlo method

The crude MCS is a robust and simple method to estimate the failure probability of complex systems.
However, since this approach requires many simulations to approximate the failure probability, it is not
the best candidate for the reliability analysis of problems with small failure probabilities. To improve
the efficiency of the crude MCS for small failure probabilities, soft Monte Carlo (SMC) is proposed which
mathematically provides a general accuracy identical to crude MCS [43]. The main idea of the proposed
method, that can be seen as a generalized version of the Line sampling (LS) methodology [53, 54], is to
generate a few random PDFs as an alternative to a huge number of random samples. This approach presents
suitable flexibilities in probability estimation shown in Ref. [21], that the well-known LS and FORM are a
special case of this method. To estimate probabilities by soft MCS approach, 1-D random PDFs should be
generated in the u-space based on the joint PDF of random variables. Each 1-D PDF consists of two main
features: random location and direction. By generating a typical random sample u ′, a random direction for
the 1-D PDF in u-space can be presented as α = u ′/

∥∥u ′/
∥∥ [43]. Here, a line that connects origin to the

sample u ′ represents the direction of sampline. Accordingly, the random direction α should be transferred to
a random location u (by generating a new random sample in the standard normal space). For the proposed
generated random line, the support point (which is the mean point of 1-D random PDF) is determined to
be the shortest sampline distance from the origin which reads:

usp = x − ⟨u ,α⟩ .α, (11)

where usp refers to the location of support point. Here, considering the random PDF as a 1-D local
coordinate, the axis (u′′) is called “sampline” and the failure probability for the obtained 1-D problem can
be estimated as P̂f =

∫
Ig (u

′′)ϕ (u′′) du′′ where Ig is the indicator function. Once several random PDFs are
generated in u-space, Eq. 1 estimates the failure probability of the problem as follow:

P̂f =
∫
Ig (u

′′)ϕ (u′′) du′′,

E(Pf ) = E(P̂f ),

Pf = E(P̂f ),

(12)

where P̂f is the estimated failure probability for generated 1-D PDFs. The main feature of this ap-
proach is that any favorite 1-D integration method can be used to estimate the one-variable integral
P̂f =

∫
Ig (u

′′)ϕ (u′′) du′′, while the result has the accuracy as same as the crude MCS. Figure 3 illustrates
different strategies of the soft MCS and crude MCS for solving a rare-event problem.

5. Proposed approach

5.1. Soft MCS-based hybrid reliability analysis

In this section, we propose a robust solution for application of soft MCS in hybrid reliability analysis. By
employing random PDFs in the simulation process, we present a hybrid reliability problem into two spaces,
namely; random space, and optimization space in which the former is used to draw random PDFs from
random variables in u-space while the latter is utilized to determine the bounds of preference function for
the generated PDFs using interval variables. According to the proposed approach, once a random sampline
is generated in random space, its probability bounds can be estimated as 1-D reliability problem with local
axis u′′ follows:

P̂min
f = P

{
max

yL<y<yU
g(u′′) ≤ 0

}
=

∫
max

yL<y<yU
g(u′′)≤0

φu′′(u′′) du′′,

P̂max
f = P

{
min

yL<y<yU
g(u′′) ≤ 0

}
=

∫
min

yL<y<yU
g(u′′)≤0

φu′′(u′′) du′′,
(13)
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Figure 3: Comparison between the performance of Soft-MCS and crude MCS via solving rare event problem

where the location of a point on local coordinate u′′ can be presented in global coordinate (uGb) as:

uGb = usp + u′′.α. (14)

Therefore, the performance function for a point in local coordinate g(u′′) can be estimated from global
coordinate as g(uGb) = g(usp + u′′.α).
Estimating the probability bounds of sufficient randomly generated samplines in random space, the proba-
bility bounds of the problem then can be estimated as follows:

Pmin
f = E(P̂min

f ),

Pmax
f = E(P̂max

f ).
(15)

For estimating the probability bounds of a generated sampline (estimating Eq. 13), the maximum/min-
imum values of performance function, gU = argmax

y∈y I

(g(u′′,y)) or gL = argmin
y∈y I

(g(u′′,y)), should be assess-

able for each desired point on the sampline. To meet this aim, this study suggests to create optimization
space consist of interval variables (y) and adding the axis of random PDF (u′′: sampline) as an extra di-
mension to interval variables. As a result, considering reliability problem involving n random variables (X:
aleatory variables) and m interval variables (y), the proposed random space and optimization space would
be n and m+ 1 dimensional spaces, respectively. The proposed implementations are illustrated in Figure 4
for a reliability problem with two random variables (n = 2) and one interval variable (m = 1).

5.2. Metamodel-based hybrid reliability analysis

To reduce the computational burden of analysis in both reliability and optimization spaces, any desired
metamodels can be used for analysis. Nonetheless, this paper suggested application of univariate dimension
reduction (UDR) method in analysis that is fit to reduce the computational costs in soft MCS-based reliability
analysis.

To accelerate the engine of optimization phase, only few DOEs are required to be located on the axis of
random PDF and interval variable axes (See Figure 2). Hence, the performance function for each desired
point in optimization process can be predicated as Eq. 10 in which the position of each DOE on the sampline
can be determined as x′′DOE = µn+1 ± rσ = usp ± αrσ where r = [r1, r2, . . . , rk]. ri is the distance of DOEs
from usp and parameter σ equals 1.0 which is the standard deviation of standard normal PDF.

According to the proposed approach, once the location of x′′DOE being determined and UDR-based meta-
model formed, the bounds of the performance functions (gL and gU ) can be determined for each point
on the sampline gL =argmin(g(u′′,y)) and gU =argmax(g(u′′,y)). Using the proposed approach, the total
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function calls of method for each sampline would be (k−1)×n+1 where k is the number of DOEs on each axis.

To ease the comprehension of the proposed approach for HRA, in the following, the required steps of the
proposed approach for a problem with two random variables, u′′, (n = 2) in random space and one interval
variable (m = 1) in optimization space are provided in the following:

1. Generating a random PDF (sampline), u′′, in the random space as a random variable (RV) using soft
MCS method (See Figure 4(a)) and drawing one interval variable in optimization space in Figure 4(b).

x1

x2

Sampline

u''  

x1

x2

Sampline

u''  

(a) 2-D random variable (u′′) in random
space

y

Interval variable

y

Interval variable

(b) One interval variable in optimiza-
tion space

Figure 4: Illustration samples in reliability and optimization spaces

2. Adding the sampline, u′′, in the optimization space as a new dimension to the interval variable (See
Figure 5). The location of mid-point (µ1, µ2) is shown in this Figure.

y

u'' 

(µ1, µ2)

Sampline

Interval

y

u'' 

(µ1, µ2)

Sampline

Interval

Figure 5: Adding sampline (u′′) as a new dimension to interval variables in optimization spaces

3. The DOEs are added to optimization space according to Section 3.1. It should be mentioned that the
number of DOEs in the interval variables is taken 2N +1 samples (See Figure 6). (Note: The number
of DOEs should be considered odd numbers.)

4. Constructing UDR metamodel to predict the gL =argmin(g(u′′,y)) and gU =argmax(g(u′′,y)) for
each samples on sampline x′′

DOE . In this step, instead of employing original performance function, the
proposed surrogate model UDR can be applied in analysis. In fact, we do the 1-D optimization in each
blue line. The desired line is shown with a red box in the Figure 7 in form of 2D and 3D plots. In the
next step, the continuing process is explained on the desired line.

5. The minimum and maximum values of performance function should be determined in this step, noting
that instead of calculating the original performance function, the developed surrogate model of previous
step can be used in analysis. Here, as an alternative to using an optimization algorithm (that may
fail in local optima), in this step many samples on the desired lines are generated and UDR can
be employed to predict the value of performance function for samples on blue lines (See Figure 8).
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y

u'' 

DOEs

y

u'' 

DOEs

Figure 6: Adding DOEs on the optimization space according to UDR method

y

u'' 

(a) 2D optimization space

g(u'', y)

y

u'' 

g(u'', y)

y

u'' 

(b) 3D optimization space

Figure 7: Constructing UDR method to predict the minimum and maximum of performance function on optimization space

Then, minimum and maximum values of predicted performance function, gL = argmin(g(x ,y)) and
gU = argmax(g(x ,y)), for each sample on the red line are calculated. For the case of problems with
many interval variables (a high dimension search space), the obtained solution may be used as the
initial search point and a local search optimization can be performed to achieve more accurate results.

y

g(u'', y)

u'' 

y

g(u'', y)

u'' 

max g

min g

(a) Finding the minimum and maxi-
mum values of performance function on
desired line in optimization space

x1

x2

x1

x2

(b) Representing the maximum value
of performance function on sampline in
random space

x1

x2

x1

x2

(c) Representing the minimum value of
performance function on sampline in
random space

Figure 8: Finding the minimum and maximum values of performance function using UDR for the first desired line in optimization
space)
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6. Repeating the previous step for the second line in optimization space. For each sampline this process
is done to determine the P̂min

f and P̂max
f for that sampline. Finally, the upper and lower bounds of

failure probability, Pmax
f and Pmin

f , are computed as the mathematical expectation of the obtained

probability bounds (P̂min
f and P̂max

f ) for 1-D coordinates based on Eq. 15.

y

g(u'', y)

u'' 

min g

max g

y

g(u'', y)

u'' 

min g

max g

(a) Find minimum and maximum value
of performance function on desired line
in optimization space

x1

x2

(b) Represent maximum value of perfor-
mance function on sampline in random
space

x1

x2

(c) Represent minimum value of perfor-
mance function on sampline in random
space

Figure 9: Finding the minimum and maximum value of performance function using UDR (Second line)

7. After computing the lower and upper bounds of failure probability, the predefined convergence criteria,
assumed to be number of samplines NSLine, should be check. If the desired convergence criteria
are satisfied, we can stop algorithm; else, go to step 1. Figure 10 graphically summarizes the steps
necessitated for the proposed HRA method, SMC-UDR.

6. Numerical Examples

In this section, two numerical examples and one real-world engineering application, a reinforced concrete
(RC) column, are employed to assess the efficiency and accuracy of proposed method. In example 1, a
nonlinear performance function is considered with two random variables and one interval variable. In the
second example, a roof structure is presented. To verify the performance of SMC-UDRmethod, it is compared
with MCS, FORM-UUA in terms of efficiency and accuracy. For both mathematical examples, the SMC-
UDR results are presented for 50 replicants. To extend the application of our proposed method to real-world
engineering examples, an RC column also is studied.

6.1. Example 1-A mathematical example

A nonlinear performance function is given as [22, 37]:

g(x,y) = sin(
5x1

2
)− (x2

1 + 4)(x2 − 1)

20
+ y (16)

where x1 and x2 are random and independent normal variables, i.e, x1 ∼ N(µ = 1.5, σ = 1) and x2 ∼
N(µ = 2.5, σ = 1). y is an interval variable within the region y ∈ [2 , 2.5]. Table 2 shows the HRA-RI
results for MCS, FORM-UUA and SMC-UDR. To estimate the upper and lower bounds of reliability index[
βmin, βmax

]
, MCS requires 2 × 108 function calls (Ncall) where 200 samples are used for obtaining the

minimum and maximum of performance function over the interval variable and 106 samples are provided
according to the distribution for random variables [22]. The upper and lower bounds of reliability index
for MCS are achieved 2.56 and 1.86, respectively. The relative errors, ε

(
βmin

)
and ε(βmax), in comparison
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Generate sampline (𝑢′′(i)) in RS

based on SMC

Map 𝑢′′(i) in OS as a new dimension

Add DOEs according to UDR rules

Predict the 𝑔(𝑢′′(i), 𝑦) value using UDR 

Perform optimization to find 

𝑚𝑖𝑛 and 𝑚𝑎𝑥 of 𝑔(𝑢′′(i), 𝑦)

Calculate ෠𝑃𝑓
𝑚𝑖𝑛(𝑖) and ෠𝑃𝑓

𝑚𝑎𝑥(𝑖)

Output: 𝑃𝑓
𝑚𝑖𝑛 and 𝑃𝑓

𝑚𝑎𝑥

Calculate the mathematical expectation:

𝑃𝑓
𝑚𝑖𝑛 = 𝔼( ෠𝑃𝑓

𝑚𝑖𝑛) and 𝑃𝑓
𝑚𝑎𝑥 = 𝔼( ෠𝑃𝑓

𝑚𝑎𝑥)

Start

End

Check convergence criteria

Number of sampline = 𝑁𝑆𝐿𝑖𝑛𝑒;
𝑖 = 1, 𝑖 ≤ 𝑁𝑆𝐿𝑖𝑛𝑒

Yes

No

𝑖 = 𝑖 + 1

Figure 10: The flowchart of the proposed HRA method (SMC-UDR)

MCS are obtained for FORM-UUA and SMC-UDR.
The SMC-UDR results in Table 2 are the average of 50 independent runs. According to Table 2, the upper
and lower bounds of reliability index are obtained by the SMC-UDR 2.50 and 1.85, with the relative errors
of 0.023 and 0.005, respectively. In the SMC-UDR, only 10 samplines with 19 DOEs are considered to
approximate βmin and βmax. Thus, the Ncall for SMC-UDR is 190. To capture the effect of using different
seed numbers, this example is replicated 20 times and the coefficient of variations (COVs) for lower and
upper bounds are calculated about 0.084 and 0.11, respectively.
The minimum and maximum reliability index via FORM-UUA are obtained 1.18 and 2.40, respectively where
FORM-UUA used 1555 samples for HRA-RI. The accuracy of FORM-UUA in the estimation of reliability
index is not acceptable in this example. According Table 2, the relative errors for SMC-UDR are smaller
than FORM-UUA. Therefore, it confirms that the performance of SMC-UDR is very close to the MCS in
this example.

Table 2: Comparison between the performance of three applied HRA-RI approaches for example 1- Scenario I

Method βmin βmax ε
(
βmin

)
ε (βmax) Ncall

MCS+Optimization [22] 1.86 2.56 - - 2× 108

FORM-UUA [22] 1.18 2.40 0.366 0.063 1555
SMC-UDR 1.85 2.50 0.005 0.023 190

On the other hand, to demonstrate the role of having intervals with wider bounds, we added another
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hypothetical modification named scenario II in which the bounds are artificially increased to [2, 3] and [2 , 4]
for case A and B, respectively, in Table 3. As can be seen, the proposed SMC-UDR method can dramatically
reduce the computational burden without compromising accuracy in both cases.

Table 3: Comparing the performance of the reference and proposed HRA methods for the artificially increased bounds of the
interval variable in example 1 problem, scenario II

Method βmin βmax ε
(
βmin

)
ε (βmax) Ncall Case

MCS+Optimization 1.86 2.78 - - 2× 106 A
MCS+Optimization 1.86 3.22 - - 2× 106 B

SMC-UDR 1.82 2.74 0.02 0.014 190 A
SMC-UDR 1.86 3.29 0.0 0.0217 190 B

6.2. Example 2-A roof truss structure

A roof truss structure is evaluated in this example as shown in Figure 11. The top boom and compression
bars are reinforced by concrete. The bottom boom and the tension bars are made by steel. The truss roof
is subjected to distributed load q uniformly. The vertical deflection at point C can be computed as [22, 31]:

∆C =
ql2

2
(
3.81

AcEc
+

1.13

AsEs
), (17)

where Ec and Es are the Young’s moduli of concrete and steel bars, respectively. Ac and As represent their
cross-sectional areas, respectively. The vertical deflection at node C is limited to 0.025m. The performance
function for this structure is considered as g (x ,y) = 0.025 − ∆C . The random and interval variables for
this performance function are listed in Table 4.

In this case study, the cross-sectional areas of the concrete Ac and steel bars As are modelled as interval-
valued parameters to represent the geometrical tolerances that result from the respective casting processes.
Within these tolerance bounds, we do not know the accurate values of Ac and As. In fact, we only know
them to be located in a certain range, e.g., Ac = [0.0330.035] and As=[9.3× 10−4 9.5× 10−4]). Accordingly,
rather than assuming Ac and As to be random variables, it is more appealing to treat them as interval
variables, since modeling the pure lack of knowledge and having tolerances on the dimensions as a result of
the casting process by intervals is closer to the actual nature of the uncertainty.

In Table 5, the HRA-RI results of MCS, FORM-UUA and SMC-UDR are presented for truss structure.
MCS estimates the upper and lower bounds of reliability index 2.09 and 2.39 using 2 × 108 function calls,
respectively [22]. In MCS method, 200 samples are drawn for obtaining the minimum and maximum of
performance function over the interval variable and 106 samples are provided according to the distribution for
random variables. FORM-UUA estimates βmin and βmax in an efficient, yet inaccurate way in comparison
MCS. The βmin and βmax values are achieved approximately 2.07 and 2.39 by SMC-UDR employing 20
samplines.

As a sidenote, it should be pointed out that the interval [2.07 2.39] is more to be regarded as a measure
for the sensitivity of our probabilistic computation of the reliability index to the epistemic uncertainty that
is present in the system [20]. In this example, since the the interval is comparatively wide, what it actually
tells us is that the reliability index that we are computing is very sensitive to the epistemic uncertainty
we are faced with. This, in its turn, in practice guides us to collecting more information as to reduce the
epistemic uncertainty in the system. Practically speaking, in this case specifically, the recommendation is
to either control the casting process such that the tolerances are finer, or to invest in post-casting quality
control with sufficiently high resolution.

In SMC-UDR method, the relative errors for the upper and lower bounds of reliability index are obtained
0.0 and 0.01, respectively. In Figure 12, the curve of convergency for the proposed method respect to
different number of samplines [10:110] are depicted. After 30 samplines, the SMC-UDR converges to MCS
reliability indexes. According to Table 5, the relative errors of SMC-UDR to estimate the upper and lower
bound of reliability index are lower than FORM-UUA. Thus, the proposed HRA-RI method outperforms in
comparison to other state-of-the-art approaches in terms of efficiency and accuracy. Similar to example 1
with 20 replications, the COVs for lower and upper bounds are obtained about 0.078 and 0.066, respectively.
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Figure 11: Schematic view of the roof truss structure

Table 4: Random and interval variables for truss structure

Variable Distribution Parameter 1 Parameter 2
l[m] Normal µ = 12 σ = 0.24

Es[N/m2] Normal µ = 1.2× 1011 σ = 8.4× 109

Ec[N/m2] Normal µ = 3× 1010 σ = 2.4× 109

As[m2] Interval AL
s = 9.3× 10−4 AU

s = 9.5× 10−4

Ac[m2] Interval AL
c = 0.033 AU

c = 0.035

Table 5: HRA-RI results for truss structure

Method βmin βmax ε
(
βmin

)
ε (βmax) Ncall

MCS+Optimization 2.09 2.39 - - 2× 108

FORM-UUA 2.6 3.01 0.244 0.259 227+227
SMC-UDR 2.07 2.39 0.01 0 1140

20 40 60 80 100
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Figure 12: Convergence curve for SMC-UDR

6.3. Application of SMC-UDR in RC columns

Reinforced concrete column is addressed to examine the robustness of HRA-RI for solving real-word
structural problems. The focus here is only on the RC short column and the effect of column slenderness is
not taken into account in this analysis. Figure 13 shows the cross-section of a circular RC column with five
reinforcement layers and a hypothetical strain distribution. Layer 1, with strain εs1, area As1 and distance d1
from the extreme compression, is closest to the minimum compression and layers i with strain εsi, area Asi is
at distances di. The strain distribution is defined by setting the maximum strain of concrete εcu = 0.003 and
assuming a value for λ (εs1 = λεy), where the positive and negative values of λ correspond, respectively, to
the compression and tension stresses in layer 1, and the balanced failure conditions correspond to λ = −1.0.
For each given strain distribution, the nominal axial-force capacity (Pn) can be found as follows:
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Pn = 0.85f ′
cAc +

5∑
i=1

Fsi, (18)

where f ′
c is the specified concrete strength in compression, Ac = D2

4 (θ − sinθcosθ) is the area of the com-
pressive zone of concrete with height a in the circular section (Figure 13) and Fsi is the force corresponding
to the ith reinforcement layer:

Fsi =

{
fsiAsi, a < di

(fsi − 0.85f ′
c)Asi, a ≥ di,

(19)

fsi is stress in the ith reinforcement layer: fsi = Esεsi for |εsi| < εy and fsi = fy for |εsi| ≥ εy, where fy

2θ

+

D

y

a
c

N.A.

P.A.

εcu = 0.003

εs2

a

0.85f '
c

f s2

d5
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Figure 13: Cross-section of the circular RC column with the distribution of strains and stresses

and εy are the steel yield stress and yield strain, respectively, and Es is the modulus of elasticity. εsi and
the depth of the neutral axis c for a given strain distribution are calculated as:

εsi =
(
c−di

c

)
0.003,

c =
(

0.003
0.003−λεy

)
d1.

(20)

The nominal bending moment capacity (Mn) of the RC column for the assumed strain distribution can
be computed with the following equation:

Mn = 0.85f ′
cAcȳ +

∑n
i=1 Fsi (0.5D − di),

ȳ = (Dsinθ)3

12Ac
,

(21)

where ȳ is the distance of the centroid of Ac to the center axis of the section and D is the diameter of the
cross-section. In accordance with ACI 318-14 [55], it is necessary that (φPn , φMn) ≥ (Pu , Mu) where Pu

is the factored load, Mu is the factored moment and φ is the strength reduction factor that depends on the
failure type, and is considered based on Ref.[55]. Pu and Mu are calculated as [55]:

U = max

{
1.4DL,

1.2DL+ 1.6LL,
(22)

the DL and LL are dead and live loads,respectively. PDn, PLn, MDn and MLn are calculated based on
LL/DL = 0.7 by equating design capacities and load effects, finally, the mean and standard deviation are
evaluated for P and M caused by DL and LL . The P and M interaction in the RC column for a set of strain
distributions is shown in Figure 14; points inside this diagram, e.g. SP, mean loads less than the section
resistance and, therefore, will not cause failure (safe zone), and those outside this diagram, e.g. FP, indicate
the failure zone. The performance function g(x) of the RC column is formulated based on the interaction

14



diagram and the factored loads:

g(x) = ER

√
P 2
R(x) +

M2
R(x )

D
−

√
P 2
u(x ) +

M2
u(x)

D
, (23)

where are PR = φPn and MR = φMn are axial and bending strength of RC column and ER is the resistance
modeling error. A normal distribution is used for ER with a mean of 1.0 (µER

= 1.0) and a coefficient
of variation of 0.065(COVER

= 0.065) for the compression failure range (C0 − C1 − B in Figure 14), and

µER
= 1.0 and COVER

= 0.03 + (0.065−0.03)eB
ei

for the transition and tension failure ranges (B − T1 − T0 in
Figure 14), where eB is the balanced failure-related eccentricity [56, 57].
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Figure 14: Interaction diagram of the circular RC column

HRA-RI based on SMC-UDR with 40 samplines is used for the circular RC column shown in Figure
15 with the reinforcement ratio R = 1.7%, the probabilistic models in Table 6, and the variable λ in 5
intervals as Iλ1 = (0.21, 0.45), Iλ2 = (−0.83,−0.58) , Iλ3 = (−1.17,−0.98) , Iλ4 = (−1.45,−1.27) and
Iλ5 = (−1.96,−1.85) which correspond to the eccentricity intervals IE1 = (5, 30), IE2 = (105, 130) ,
IE3 = (150, 175) , IE4 = (190, 215) and IE5 = (280, 305) mm, respectively.

In this practical case study, several parameters can be treated as random variables (please refer to Ta-
ble 6). In parallel, this study suggests that the load eccentricity and reinforcement ratio should be treated as
interval variables during the early-stage design of structures. The reasoning for this is the following. During
the modeling of the load eccentricity in reinforced concrete structures [58, 55], the only available informa-
tion in standards is the given 25-millimeter maximum allowable deviation from being plumb. Therefore,
this lack of knowledge and source of uncertainty can be captured via interval variables, as opposed to the
recommendations for the nominal value representation in design codes.

Moreover, by virtue of the HRA framework to model this parameter as interval, it is possible to study
the sensitivity of the Pf estimation on potential mismatches in the eccentricity due to misplacement. Since
we do not have any knowledge on the distribution of such misalignment, we opt to use an interval to model
the worst and best-case behavior. Accordingly, by considering +25 mm, the eccentricity intervals (IE) are
defined. It is worth noting that IE1 and IE2 belong to the compression failure zones, and IE3, and IE5

refer to the balanced and tension failure zones, respectively. Moreover, IE4 represents the transition range.
ACI 318-14 [55] recommended that a designer is allowed to design a structure between upper and lower

bounds for the reinforcement ratio (R). To capture this source of randomness in early-design phases when
no prior knowledge is available, we modeled it by interval variables. In this setting, a designer is allowed
to calculate it between upper and lower thresholds. Three different interval ratios (IR) are assumed in this
study, namely 1.4, 2.1 and 3.4 with an increase interval of 0.3 for each of which. In this context, the IRs are
expressed in a way that the values are within 1.0 and 4.0.

Comparison of HRA-RI results based on SMC-UDR and MCS (Ncall = 2 × 108) in Figure 16 show
that βmin and βmax calculated by SMC-UDR at intervals Iλ1 and Iλ2 are very close the MCS results (error
less than 0.7%) and the maximum error of βmin and βmax in the other three ranges of λ are 1.1% (Iλ5)
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and 2.33% (Iλ4) , respectively. Figure 16 reveal that the interval (βmin, βmax) shrinking based on both
SMC-UDR and MCS as the eccentricity of load changes from Iλ1 to Iλ5.

Table 6: Probability models of random variables for the circular RC column

Variable Distribution Bias factor COV Ref
f ′
c=34.5MPa Normal 1.19 0.135 [59, 60]
fy=414MPa Lognormal 1.13 0.03 [59, 60]

ER
1 Normal 1.0 0.065 [56, 57]

ER
2 Normal 1.0 0.03 +

(0.065−0.03)eB
ei

[56, 57]

DL Normal 1.05 0.1 [59, 61]
LL Extreme type I 1.0 0.18 [59]

1: Compression failure
2: Tension failure

D=450mm

45°

d'=66mm

Figure 15: Cross-section of the RC column
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Figure 16: HRA-RI results of the RC column for different intervals of λ.

In another case, HRA-RI is performed for the RC column using SMC-UDR (40 samplines) and MCS
(Ncall = 2 × 108) with probabilistic models in Table 6, variable R in 3 intervals as IR1 = (1.4, 1.7),
IR2 = (2.1, 2.4) and IR3 = (3.5, 3.8) percent and variable λ in 5 intervals including Iλ1 = (0.21, 0.45),
Iλ2 = (−0.83,−0.58) , Iλ3 = (−1.17,−0.98) , Iλ4 = (−1.45,−1.27) and Iλ5 = (−1.96,−1.85) . Figure 17
indicated that the maximum error βmin and βmax based on SMC-UDR are 2.47% (βmin,IR3Iλ3) and 3.08%
(βmax,IR2Iλ3

), respectively, while the error is less than 0.5% for βmin,IR2(Iλ3,Iλ4,Iλ5), βmin,IR3(Iλ1,Iλ2,Iλ5),
βmax,IR1(Iλ1,Iλ2,Iλ5), βmax,IR2(Iλ1,Iλ2) and βmax,IR3(Iλ1,Iλ2,Iλ3,Iλ4). As shown in Figure 17, increasing the
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eccentricity of the load leads to a reduction in βmin and βmax of the RC column for IR1, which is significant
for Iλ4 and Iλ5 while this trend is lower for IR2 and IR3 . βmin of the circular RC column using SMC-UDR
and MCS is 3.1270 and 3.0882 corresponding to IR1Iλ5 while βmax based on both SMC-UDR and MCS is
4.7534 corresponding to IR1(Iλ1, Iλ2), IR2(Iλ1, Iλ2) and IR3(Iλ1, Iλ2, Iλ3, Iλ4).

This engineering example illustrates our argument that allocating a probabilistic definition, by using a
probability density function for uncertain parameters, when there exists a pure lack of knowledge can lead to
misleading judgments. Using intervals, rather, we obtain an objective measure for the effect of the epistemic
uncertainty on the probabilistic calculations we are interested in. To put it another way, the interval bounds
can serve as a measure for the sensitivity of the reliability index to the epistemic uncertainty. This also can
help engineers in the early stage of structural design to make targeted decisions.
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Figure 17: HRA-RI results of the RC column for different intervals of λ and R.

7. Discussion and future study

We should clarify here that, because of application of a metamodel in analysis, the proposed approach
is fit to solve only a certain class of problems because: In the optimization phase, for reducing the function
calls of analysis, we applied UDR approach that requires very few DOEs to provide a surrogate function
for predicting the performance function of the problem. For the problems with highly nonlinear LSF (e.g.,
the noisy functions), the UDR may present inaccurate prediction at the bounds of intervals. For the case
of solved examples, we have used problems with moderate nonlinear performance functions. For the case
of very complex problems, more accurate high dimension model representation (HDMR) models such as
bi-variate dimension reduction method (BDRM) or other meta models such as Kriging and artificial neural
network can be used in analysis. In addition, as it can be seen from the solved examples, the proposed
approach works very efficient only for the problems with few random variables. For those including many
random variables, many samplines may be required to accurately solve the problem that makes the method
inefficient. For reducing the function calls of analysis, we should find the importance failure regions and
then, instead of fully random samplines we should use semi-random sampline in analysis (as clarified in the
original reference [43]).

Remark 1. If we prevent using a meta model in analyzes (perform global optimization, accurately), we
can anticipate accurate results for the problem at the expense of increasing computational costs since the
accuracy of soft Monte Carlo is mathematically as same as crude Monte Carlo simulation [43].

Remark 2. Solving problems in the context of probability boxes is an interesting topic for further
investigations.

8. Conclusion

This paper proposes a novel hybrid reliability analysis with both random and interval variables (HRA-
RI) framework based on coupling soft Monte Carlo simulation and unified dimension reduction methods
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(SMC-UDR) to handle hybrid structural reliability problems which deals with random and interval variables
concurrently. SMC-UDR is an accurate and efficient UQ methodology to estimate the lower and upper
bounds of failure probability. In fact, accuracy is ensured thanks to similar behavior of SMC simulation
in comparison to MCS, while efficiency is guaranteed via applying UDR technique which an N-D integral
is replaced by an inexpensive-to-evaluate 1-D one. To meet this aim, the proposed HRA-RI framework is
presented into two spaces including optimization space and random space. First, the generated 1-D random
sampline (i.e, random PDF) in the random space is added to optimization space as a new dimension of
interval variable. Second, by adding DOEs in the augmented optimization space, we utilized UDR technique
to predict the value of performance function. Third, the minimum and maximum values of performance
function are computed to obtain the upper and lower bounds of failure probability. Finally, for each random
sampline, this process will be repeated until satisfying the considered criteria. Both accuracy and efficiency
of the suggested algorithm are challenged with mathematical and real-world problems.

In this study, the practical need to handle hybrid uncertainties is also scrutinized via the proper classifi-
cation of interval and random variables based on the nature of real-world engineering problems. Negligible
calculated relative errors for both upper and lower bounds of failure probabilities in comparison to other
HRA-RI techniques reveals the accuracy of SMC-UDR method. It should be emphasized that because of
limitations of the cut-HDMR decomposition approach with first-order truncation, the suggested approach
may not be a good alternative for solving high dimensional problems with significant interaction effects
among variables.
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