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Abstract

Time-variant uncertainties are omnipresent in engineering systems. These significantly
impact the structural performance. The main challenge in this context is how to handle them
in dynamic domain response topology optimization. To tackle this challenge, a new transient
dynamic robust topology optimization (TDRTO) method is proposed to optimize the
topology of continuous structures. This method comprehensively considers the uncertainties
of material property, loading directions, and time-variant stochastic parameters of loading
amplitudes. The time-variant performance function is transformed into a set of independent
instantaneous performance functions, where the stochastic processes are discretized by using
the optimal linear estimation method to simulate the correlations among various time nodes.
The mean and standard deviation of the structural compliance are approximated through a
Taylor expansion. Moreover, the Hilber-Hughes-Taylor a method is employed to address the
structural dynamic problem. The design and stochastic sensitivities are derived by the
“discretize-then-differentiate” and the adjoint methods, thereby improving the
computational efficiency. Three illustrative cases are tested to validate the efficacy of
TDRTO method, which shows its superiority over the traditional robust topology

optimization method for dealing with time-variant stochastic uncertainties.
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1. Introduction

Topology optimization (TO) techniques have evolved significantly since the late 1980s
[1, 2]. The advent of dynamic TO [3] has greatly fueled this advancement, which offers an
indispensable tool in structural design. The widely used static TO methods focus on finding
optimized designs under static loading conditions. However, it becomes imperative to
consider the time-variant characteristics and inertial effects of engineering structures when
dealing with high-frequency excitations [4, 5]. In such scenarios, dynamic response TO
emerges and becomes the popular approach [6-9].

Dynamic response TO is broadly divided into two types: frequency domain optimization
method and time domain optimization method. Frequency domain optimization method
aims to mitigate structural vibration under harmonic or periodic loading conditions. In 1993,
Ma et al. [10] pioneered using the homogenization method to minimize the structural
frequency response. Subsequently, Pan and Wang [11] introduced an adaptive genetic
algorithm to optimize truss structures subjected to the constraints of fundamental frequency,
displacement, and acceleration, thereby effectively reducing the structural weight. Since the
frequency-domain dynamic response computation requires a large amount of computational
effort, Yoon [12] utilized model reduction techniques to compute dynamic responses and
sensitivities efficiently, which include modal superposition, Ritz Vector, and quasi-static
Ritz Vector methods. For further reducing the computation time of harmonic response for
large-scale TO problems, Liu et al. [13] applied the modal displacement method, the modal
acceleration method (MAM), and the full method. In the study of Shang et al. [14], the
improved MAM is put forward to address the limitations of traditional MAM, which was
applied to perform vibro-acoustic coupling analysis under steady-state stochastic excitation.
Moreover, Liu et al. [15] minimized the frequency response of honeycomb composites over
a specific frequency range that offers a broad design space to enhance its dynamic
performance.

Unlike the frequency domain optimization method, dynamic response TO method focuses
on handling the time-variant dynamic behavior. For example, Min et al. [16] firstly explored
the dynamic response TO problem in the time domain, thereby minimizing the average
dynamic compliance through the homogenization techniques. Since dynamic topology
optimization involves time discretization, it results in significant computation and storage
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demands. Thus, it is extremely time consuming. To tackle this issue, Kang et al. [17] and
Jiang et al. [18] converted dynamic loads into equivalent static load (ESL) sets, which
significantly reduces the computational time. Subsequently, Kim and Park [19] extended
ESL to solve nonlinear dynamic TO problem. However, it was reported that ESL algorithm
has limitation for solving dynamic response TO problems, which may result in the
misleading topology layout. Thus, Stolpe [20] put forward an improved ESL method that
calculated the gradient of the displacement vector at each time node, but it results in
expensive computational cost. To enhance computational efficiency, Zhu and Kang [21]
adopted the modal displacement method for calculating the quasi-static response, in which
an efficient transient dynamic TO framework was further developed.

It should be noted that the above-mentioned dynamic TO mainly focuses on deterministic
scenarios, which neglects the impact of inevitable uncertainties incurred by manufacturing
errors, environmental changes, and fatigue wear in practical engineering applications [22-
26]. It was reported that these time-variant uncertainties profoundly affect the mechanical
performance of structures, especially for dynamic structures with different service periods
[27-30]. Therefore, it is necessary to employ robust topology optimization (RTO) to address
these uncertainties[31-34]. Rostami et al. [35] proposed a novel robust topology
optimization method of continuous structures under material and loading uncertainties,
which integrated the evolutionary structural optimization method with the extended finite
element method to enhance the computational efficiency with clear and smooth structural
boundaries. For RTO under uncertain dynamic excitation, Zhang et al. [36] used a non-
probabilistic ellipsoidal convex model to describe the dynamic loads and simplified the RTO
model into a single-loop optimization model through a generalized flexibility matrix,
thereby avoiding complex non-probabilistic calculation. Cai et al. [37] suggested a parallel
RTO method for periodic microstructures, where the uncertainties of probabilistic dynamic
loads were considered. Zheng et al. [38] combined the RTO method and the level set
approach for designing uniform periodic microstructures under stochastic and interval
uncertainties, where a hybrid dimension reduction technique with binary reduction schemes
was applied to estimate the objective function effectively.

However, the aforementioned studies mainly focus on considering the impact of uncertain
dynamic excitation on the structure, while the effects of time-variant characteristics under

actual working conditions are ignored [39, 40]. This may result in the misleading results for
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assessing performance. Thus, how to put forward the time-variant RTO method is crucial.
However, to the best of the author's knowledge, the exploration of RTO with time-variant
uncertainties is very scarce. Moreover, the time-variant RTO requires deriving the design
and stochastic sensitivities, which also is a challenging work.

This study proposes a new transient dynamic robust topology optimization (TDRTO)
model for continuous structure, which can reasonably account for the impact of time-variant
uncertainties. The TDRTO model comprehensively incorporates the uncertainties of
geometric size, material property, loading direction, and time-variant loading amplitude. The
“discretize-then-differentiate” approach and the adjoint method are utilized for deriving
design and stochastic sensitivities, where the Lagrange equation is constructed twice. The
remaining parts of this article are as below. Section 2 introduces the background of transient
dynamic deterministic topology optimization (DTO) model and probabilistic method.
Section 3 presents the proposed TDRTO model and the sensitivity calculation. Section 4
explains the numerical implementation. Section 5 presents three numerical examples.

Conclusions are presented in Section 6.
2. Background

2.1. Problem statement

Topology optimization (TO) of continuum structures aims to determine the optimal

material layout in the design domain [41]. The dynamic compliance f = Ni J.;max Flu(t)dt
t

within a specified time interval [0, t_, ] is widely adopted as the objective function in

transient topology optimization (TO) [42, 43], which quantifies dynamic stiffness through
temporal integration of structural compliance, thereby minimizing energy dissipation under
transient or periodic loading conditions. The mathematical representation of this TO

problem is given as:



- — 1 tmax T
min J_Wtjo FTu(t)dt

Mi(t) + Cu(t) + Ku(t) = F(t)

Ul oo = Ug o
st qul_,=U,
VESAVA

0<p . <le=1,..,Ne
where N, denotes the number of time nodes. F denotes the external excitations. p,

represents the design variables. Ne represents the element number. t ., represents the

X
maximum loading time. M, C, and K represent the mass, damping, and stiffness matrixes.
u represents the displacement vector. U and U represent the velocity and acceleration

vectors. U, and U, represent the initial displacement and acceleration. V' denotes the

material volume with allowable value f,V,. The stiffness matrix and mass matrix are

computed by
N N
M:Zrﬁ\/(pe)ml’ K:ZmE(pe)kl (2)
=1 =]
m, = [ p,NINydx, K, = [ B/D,B,dx ©)
Q Q

where m, and K, are the /-th element mass and stiffness matrices, respectively. N, and
B, are their respective shape functions and strain-displacement matrices. D, represents the

material constitutive matrix for linear isotropic materials. M, and M. define the volume

interpolation function and material interpolation function, respectively [44]. Their
definitions are as follows:
rfl\/(pe):g+(l_g)n1\/(pe) (4)
rl’?]E (pe) =&+ (1_ g)mE (pe)

In Eq. (4), an Ersatz parameter ¢ is used in M, and M. to prevent numerical
instability when p, approaches zero.

The volume interpolation function is computed using a threshold projection function [45]:
_tanh(Bw) + tanh(B(p, — )
tanh( Sw) + tanh(S (1 - w))
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where @ denotes the threshold density. S controls the projection aggressiveness. The
stiffness interpolation function is selected by the rational approximation of material
properties function [44, 46].

m, (2.) (6)
1+ po[l m, (pe)]

where P, is the penalization exponent. The proportional damping is employed to calculate

E(pe)

the damping matrix C=o,M + S, K, where «, and p, are the Rayleigh damping

parameters.
2.2. Uncertainty propagation via Taylor series expansion

To integrate the governing uncertainties in the dynamical TO problem, they need to be
modelled mathematically. Probability has been shown both theoretically and practically to
be a rigorous approach in this context [47-50]. In the context of RTO, there exists the need
to compute the mean and variance of the response to measure the robustness of a design.

These quantities are given by:

#(9(x)) =] {9 (x) £, (x)
o*(9(x))=[,{9" (x) f, (x)x3

where g(X) represents the response function. f, (X) denotes the probability density

()

function. x(g) and o°(g) indicate the mean and variance, respectively.

However, the calculation of complex integral formulas is very challenging in the case of
dynamical problems due to the implicit nature and high dimensions of the corresponding
integral equations. Since we are dealing with an optimization problem over second order
response moments, however, it is sufficient to make accurate predictions in the vicinity of

the current iteration. Therefore, the Taylor series expansion method is employed in this paper.

For the objective func f = (X, a) tion , the Taylor expansion can be obtained by introducing
8=(5,...0,,)" as follow:

f(x+8) = mni%a‘i T )

where x are stochastic variables. Nx represents the number of x. Assuming E[6]=0 and

the structure is linear, the first-order expected value is 0. If these uncertainty factors are
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uncorrelated, the first and second statistical moments [51] of f with respect to (w.r.t.) x

become

a(F0) =3 1 (x)
R ©)
S (FO) =D () of

where ¢ and o denote the mean and standard deviation (SD), respectively.
3. The transient dynamic robust topology optimization method

3.1. Model establishment

Under practical working conditions, the load at each time instant is stochastic [52]. Thus,
it is essential to incorporate time-variant characteristics to form a new TDRTO model. To
achieve this goal, the expansion optimal linear estimation (EOLE) [53] method is applied to
discretize the stochastic process F(t), where the time-variant dynamic compliance is
reformulated as the corresponding instantaneous dynamic compliance, thereby simulating
the dependencies between different time instances. The TDRTO model is constructed as

follows:
min 3= u(c(p,x,F(t),1))+ Bo(c(p, x, F(t).t)
Mi(t)+Cu(t) + Ku(t) = F(t)

(10)
st Su_ =u,

where c(p,x,F(t),t) represents the dynamic compliance. It is determined by
c(p,x, F(t),t) =F(®) u(p, x, F(t),t) (11)
where F(t) is a stochastic process with mean value 4 (t),SD o (t), and autocorrelation

function p. (t,,t,). The stochastic process F(t) is represented by EOLE as:
r \ Zi T
F(1) = 4t (1) + 2, =@ (Dp, (1) (12)
=LAl X

where /1 denotes the number of dominated eigenvalues that should be less than N,. The
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eigenvalues and eigenvectors of covariance matrix are denoted by y and ®. p.(t)

denotes the time-variant covariance vector and can be calculated by
[o:(t)o-(t)p: (t.1), 0 (D)o () p: (L, 1,),...0- (D)o, (tNt)pﬁ (t,tNt ). Z; represents the j-

th uncorrelated normal stochastic variable of Z = (Zl, ey Zh) with a standard normal

distribution. The parameter /4 controls the accuracy of the stochastic process discretization.
A higher /4 results in a more accurate representation of the dependence between different
instantaneous dynamic compliance values. According to EOLE expansion in Eq. (12), the

time-variant dynamic compliance is determined as below:
c(x, F(t),t) U {c(x, Zt),t, ft,t T k=1---N} (13)
The instantaneous dynamic compliance at t, depends on the values at previous time
nodes. This correlation is explicitly captured by the EOLE method through the inclusion of
p:(t) . Then, the stochastic process F(t) is converted into the independent stochastic
variables Z, and the dynamic compliance C(X, F(t),t) becomes c(X,Z,t). In this way, the
solutions for x(c) and o(c) are computed by using the Taylor expansion for Egs. (9) and

(11), which are formulated as follows:

1 tmax
uM:ELCmKZMt

2 2
oo [ cpx Z et oo™ cox z et (14)
o(c) = ZX: N, % 02+ZZ: N, o’
= Ox, "o oz, g

]

where X; represents stochastic variables. Nx and Nz represent the number of stochastic

variables and independent standard normal stochastic variable, respectively.

1 (e 1 (e

aNt'[O c(p,x, Z,t)dt 8Nt_|.0 c(p,x, Z,t)dt
and

OX. 0L,

[ J

represent the sensitivity w.r.t. time-

invariant stochastic variables x and time-variant stochastic variables Z, which will be
derived in section 3.3.
3.2. Hilber-Hughes-Taylor o method

The (Hilber-Hughes-Taylor o) HHT-a method is an extension of the Newmark-£ method
8



for solving structural dynamic problems [54-56]. It modifies the motion equations by
introducing a parameter o, which accounts the numerical lag between the damping, stiffness,
and external force vectors. The generalized o method is depicted as follows:

M, +C0,, . +Ku,, , =F(,.,) (15)

i+l-a, i+l-a

Ui, = U, +Atui +At? ((%_B)u. +:3Ui+1)

(16)
U, =U; +At(Q-y)U; +yU;,)
where
Uit g, :(:I-_O‘f)um—af Tay;
?mfaf =([1-¢ )l:{mafl:{i +afljj.i (17)
Uig = (1_am)ui+1—amui +o,U;
iy, = A-« )ti+l—afti +at;

where At represents the time step. The update equations of U, U,and U are identical to

those used in the Newmark algorithm.

1 : . .
When o, =0, o, =a,and y = > + a, it degenerates into the HHT-a algorithm.

M., +(1-«)Cu

i+1 +O(Cui +(1—OC) Ku +aKui = (1—0!) F(ti+1)+a|:(ti) (18)

i+1 i+1

where 1€{0,1,..,N, -1} . To guarantee the second-order accuracy and unconditional

stability of the HHT-a method, the following conditions must be satisfied [54].

0<a<1/3
B =0+a)l4 (19)
y=01+2a)/2

To address the dynamic problem, Eq. (18) is computed to obtain U;,,. U;,, and U,,, are
updated for each time step 1=0,...,N, —1. For time step i=0, U, and U, areused from
the initial conditions, and U, is computed by solving MU, =F, -Cu, -Ku,.

3.3. Stochastic sensitivity analysis

In real-word engineering system, the uncertainties mainly include the geometric size,

material property, loading amplitude, and loading direction. When the geometric size and

material property are considered as stochastic variables, a Lagrange function L, is

generated by introducing an adjoint vector A, (t). It is formulated as follows:
9



L, :Nit [ Frudt+ [, Mo +Ca+Ku—F ]dt (20)

Then, the sensitivity of L, w.r.t. X, is as follows:

Oy _ L o a“dt [T [ Dar Lo By gt [, | M By M gy
o% N,-° OX; OX; OX; OX; OX; OX;

1 1
(21)
Because there is no correlation between the initial conditions and structural properties,

the final term in Eq. (21) becomes

o (M M Mgt
0 OX; oX 0%

T ou - T ou - ou
= (%l ) M&t_tm—(xx t_tm) Ma—xmmax+ [ (1) Mo (22)
IV e [ (S PR P

max

Substituting Eq. (22) into Eq. (21), ZLX is calculated as follows:
X

oL oM. oC . oK | 1 = ;- . 0
X:JO A { i+—u+—u }dtJrJ.ot {N—tFTJr(xx)TM—(XX)TC+()»X)TK}_udt

ox, ox o OX % (23)
au T . T ou
+( X lt=t ) 6Xi - + |:( X |t:lmax ) ( Xty oy ) :| 8Xi it

Then, the adjoint conditions are obtained as:

(i, (6) M=(i, (1) € (1)) K = —Nit(lf(t))T
Ml =0 (24)
X =
Therefore, the sensitivity of L, is determined by
o —IW FM +§u+8—Ku}dt (25)
X, ox,  OX

When the loading amplitude of F(t) is considered as the stochastic variable, it is
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converted to Z by using EOLE, and the sensitivity of dynamic compliance ¢ w.r.t. Z is
computed as below:

oc _ac oF,  ac
0z, oF, oz, oF, ‘/z

@, (1), (1) (26)

. oc . .
For computing a_|f , a Lagrange equation L, is constructed as
j

L, =Nij; ﬁTudt+j;"‘“xfT[Mu+cu+Ku—ﬁ]dt 27)
t

The sensitivity of L, w.r.t. loading amplitude is as below:

—:—jm“[fT Ly U }dt fT{Maaé‘ +C§E+K§F —f [dt (28)
J i i

in which / and m represent the /-th

Im »

oF .
where f represents - It is a vector composed of f
i
and m-th time instants. It satisfies the following conditions:

f. ={1 =m (29)

0 I#m

Because there is no correlation between the initial conditions and loading amplitude, the
finial term in Eq. (28) is transformed through integration by parts into
aLf 1 trax T tmax T Tnax 1 ~T A" T N T T aU
o e [ ) e (i) M) e o) [

j

T 6 T T (30)
+(xf ) M- +[(xf ) C—(Xf ) M}a—g
t=tmax OF. =t t=tmax OF.
H ity Pty
Then, the adjoint conditions are obtained.
.. T . T T 1 /=~ T
(i (1) M=(4; (1)) C+(r (1)) K:—W(F(t))
t
e, = 0 (31)

max

=0

Ay

t=tax

Therefore, the sensitivity of L, is described as below:
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aLf _ﬁ_i toax ¢ T 3 tmax T
[ @

The sensitivity of ¢ w.r.t. Z, is

6C ac aF max max
fTudt - fdt t) o, (t 33
&z F [Nt [ ]J;? 2(Opy ©) (33)

Similarly, when the loading direction is treated as a stochastic variable, the Lagrange

equation L, is constructed as follows:
B 1 (to =7 trax » T . . ~
LQ_WIIO Frudt+ [ ™ &,"[ Ma+Cu+Ku—F |dt (34)

Then, the sensitivity of L, w.r.t. loading direction is evaluated as follows:

a, a1 Wf

— e A, — dt (35)
00 00 N,
The adjoint conditions are as follows:

.. T . T 1/~ T

(s (1)) M=(iy (1)) C+(2 (1)) K== (F(1))
t

ol = 0 (36)

holo, = 0

3.4. Design sensitivity analysis
To tackle the TDRTO problem by using gradient-based optimization methods, the
computation of design sensitivity is vital. Based on Eq. (10), the design sensitivity of

objective function J w.r.t. p, is as below:

ad _ ou LB oo (37)

. . ou L
To reduce the high computational cost of ——, a Lagrange function is constructed by

e

incorporating an adjoint vector A (t).
_ 1 tax ~T tmax T .o . —
LP_EL Fludt+ [ ™2, Mi+Cu+Ku—F ]dt (38)

The sensitivity of L, w.rt. p, isas below:
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oL, )
e j Ll A T L c kXMt (39)
6pe op. op.  Op, Pe ape op.

Because there is no correlation between the initial conditions and design variables, the

finial term in Eq. (39) is simplified as below:

Omaxl {M ou iC ou +K 8u}dt

op, op, op

ou ou tax ou
=(xp t_tm) Ma_/?et_tm —(xp t_tm) Ma_Pet_tmerjo (%, ) Ma_pedt (40)
T _ou e [ \T ~ OU x ou
+(xpt_tw) ca—pet:t [ (i) Ca—pedt+_[; (xp)TKa—pedt

oL
Substituting Eq. (40) into Eq. (39), a—’” becomes

e

oL, i
It . {GM acu+a|<u}dt

op, op.  Op,  Opy
tax 1~T o N\T N T ou
+[ {WF +(k,) M=(i,) C+(4,) K}gdt (41)
T T . T
+(xp ) o (x ) C—(x ) m |4
t=tax 8pe t=t L t=tmax p t=tmax ape et

Since Eq. (41) applies forany 4, (t) , the adjoint vector is found by addressing the adjoint

problem below:

=0 (42)

t=tax

=0

max

Ple=t

Therefore, the sensitivity of L, w.rt. p, is evaluated by

oL, _oc :8;1:]%% {GM L9 LK “3)

dp.  op, dp.  p. op,
After computing the sensitivity of dynamic compliance w.r.t. p,, the sensitivity of SD

w.r.t. p, is calculated by
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n 2 m 2
ZZ o ﬁO'EJrZ:Z o E(722_
0o ‘o OXop, 0% " ‘I 0L jape oz i

= 44
op, 20 (44)
- ac? oc’ :
Therefore, it is necessary to solve and , where the Lagrange equation
0X,0p, 0Z;0p,
should be constructed twice.
2
For computing , the Lagrange equation L, is constructed as
i pe
L, = tmaxxx M 5+ 20 K lae+ max)VXT[MU+C1'J+KU—I~:]dt (45)
podo ox,  oX  OX p
Then, the sensitivity of L, w.r.t. p, isas below:
- Y
= .[ u+ u+ u |dt
8X 0pe ox0p,  OX%0p, |
+J‘ max )\’ aM 6U aC au aK aU dt (46)
0 oX; 0p, 8X op, 6X Gpe
jLJ-tmax)M 8M 6Cu+8Ku+M6u +C6u+K6u dt
0 6pe op.  Op. op.  Op.  Op,

Because there is no correlation between the initial conditions of structural properties and
design variables, the finial term in the equation is transformed through integration by parts

into

x oM*  oC* . oOK? ([OM . oC . oK
_J' u+ u+ ul+i,, U+—u+—u | (dt
ape 0 5Xi op.  OX0p,  OX0p, op.  Op. 0P,
+j‘m“ xgﬂmgm xTaCm JC |+ A — oK +3,, K Lt
0 OX; r OX; OX; ape
T oM T ou
t=t ) _+(;“xp t=t ) M}_u
. aXi e 8pe =
T oC
t=tax )

i T . T .
4 (xx ) ) Cl- (xx ) a—M+(xx
=] 5X t=tmax t=tmax 8Xi P lt=

From the above, the adjoint equation is derived as

(47)

+ (kx

Xp

+(x
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ML ™ |- L cl+ ATy TR Y _p
OX; OX; OX; ape
(2,

g

T oM
t:tmax) ox. +()\'p =
As shown in Eq. (24), since kazt =

T
. ) M =0 (48)
oC T : oM (s i
= ) 6X +()\' XP lt=t, ) Cj_((;\'x t=t ) 0_)(i+()\’x'0 t=t ) Mj =0

v, =0, the Eq. (48) is simplified as

below:

axi ape
~0 (49)

(Xjﬂmxpwlj [wacu ch [xXT K, Kj N _g
OX

i

)

Then, the sensitivity of L, ~w.rt. p, isexpressed as

Oy Oy M 0CT | 0K
+

= u u+ u]dt
op, X Gpe 0 8X .0p, 0X,0p, OX,0p, (50)
™ T[a'vI 0+ 2% 0+ 2 ot
© v op, P Op
2
For computing , differentiating Eq. (33) yields
h pe
2 2 oF, Lok oF 2
oc®  oc (51)

0z,0p, 0OF0p, 0Z, aF 0Z,.0p.,
Since p, and Ifj are independent, the last term in Eq. (51) equals zero. For the first term

in Eq. (51), the Lagrange equation L, is constructed as
_ 1 tmax T tmax T Tmax T .o . —
L, _Wtjo flude— ™ () fdt+[ ™2, T[Ma+Cu+Ku—F |dt (52)

The sensitivity of L, wrt. p, isas follows:
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_ maxfT dt J'max |: +C6U+K8U:|dt
p.

p. P,

+ t“*x T aMu+aCu+aKu dt
op, Op, Op,

(53)

Because there is no correlation between the initial conditions and loading amplitude and

design variables, the finial term in Eq. (53) is transformed through integration by parts into

”’ _IW M+ 2C 0+ Ky ot
6pe 0

op. P,
x| 1 o7 s NT . T T ou
*L {N—tf +(i,,) M=(i,,) C+(x,,) K}a—pedt (54)
T A T
+(fo ) W (xf ) C—(xf ) m |
t=tmax 0 0, L P lt=t a P lt=tyax 0 0, »

From the above, the adjoint conditions are derived as

(30, (O) M=(i, (1) C (i, (1) K=—F

t
hiph, =0 (55)
Moyl =0

So, the sensitivity of L, ~w.rt. p, is as follows:

oL 2
th _ ?C _ J-tmax aM L oC 0+ oK u ldt (56)
op, OFop, ° Gpe ape op,

And the sensitivity of 887(: w.rt. p, is computed as
h

2 2 aﬁ max
& _ & L= [0, M+ L 4+ Ky ldt— o, (), (1) (57)
9Z,0p, OF0p, 0L, °° 0pe p. P, N2

2

For computing , the Lagrange equation L, is stated as follows:

e

J- max aF J‘ max ;\‘QT % dt + Otmax )\‘ng [MU +Cu+Ku- Ii]dt (58)

Therefore, the sensitivity of L, w.rt. p, isas follows:
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oL 2
w_ & j; by, M 3+ 2 0+ Ky gt (59)

op.  0Gop,

The adjoint equation is derived as

1 oF'
(i) M=(4,,) C+(1,,) K N %
i), =0 (60)
Ml =0

Therefore, the sensitivities of SD w.r.t. p, can be obtained by substituting Egs. (25),
(33), (35), (50), (57), and (59) into Eq. (44).
3.5. Numerical implementation

A pseudocode is illustrated to explain the computation process, as shown in Table 1. The
moving asymptote algorithm (MMA) [57] is applied for updating design variables. Based
on practical experience, parameter oo = 0.05 is selected to ensure the accuracy and stability
of the HHT-o. method [58]. The density filter technique is applied to eliminate the

checkerboard pattern [59], which transforms the design variables as follows:

R :L 61)

where % denotes the modified design variables. H,, =max (0,1, —d(e,1)). d(e,)

! 'min

denotes the center distance. [, represents the filtering radius.

Table 1 Pseudocode of TDRTO

Algorithm 1 Transient dynamic robust topology optimization

Input: design domain, design variables and uncertain parameters: structural properties, loading

amplitude, loading directions, and maximum loading time t .
Define maxlter, set k=0.
Initialize ¢, .

While ¢ <tol and k<maxlIter do

iter=iter + 1.
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Initialize the acceleration vector by solving the equation M, = (F, —Cu, —Ku,).

for i=1: Ndo
Compute U; using Eq. (18).
Update U; and u; using Eq. (16).
end
Perform the sensitivity analysis using adjoint method. The sensitivities of stochastic and design
variables are computed by Egs. (43), (25), (33), and (35).
Compute the robust objective function using Eq. (10)and its sensitivities using Eq. (37).
Calculate the mean and variance using Eq. (14).
Perform the density filter using Eq. (61).
Update the design variables with MMA.

o= max(¢new - ¢0Id ) .

end

4. Examples

This section presents three test examples, where the damping coefficients are denoted as
a,=10 and B =1x10"°. For the 2D cases, the uncertainties of material property, loading

direction, and time-variant loading magnitude are considered. For the 3D case, the
uncertainties of geometric size, material property, loading direction, and time-variant
loading amplitude are considered. To ensure stable convergence and clear topological

structures, the penalty factor is fixed at 9 [59]. The minimum density filter radius r;, is

1.5 times the element length. All these codes are performed on the computer with
configuration: Intel Core 19-10940X @3.4 GHz and 128GB RAM.
4.1. An L-shaped beam

An L-shaped beam is selected. The design domain is divided into 14,400 isoperimetric
quadrilateral elements, as illustrated in Fig. 1. Its length A and width L o are 1 and 0.6 m,
respectively. Stochastic variables, including material property, loading direction, and the
loading amplitude, are assumed to follow a normal distribution. Their mean values,

coefficients of variation (COVs), and SDs are shown in Table 2. The allowable volume

fraction ratio is 50%. Three load cases, including t, ., = 0.003, 0.005, and 0.1, are
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considered.

Fig. 2 illustrates two different categories of stochastic loading amplitude. Both of them
follow normal distributions and are generated by Monte Carlo simulation (MCS). The
standard deviations of half-cycle sinusoidal loads are 100 and their means can be expressed
as follows [58]:

F = Foxsin(tixteJ (62)

where t, represents the e-th time instant. F, represents the load amplitude at the e-th time

instant. t . represents the maximum loading time.

Fig. 2(a) demonstrates five half-cycle sinusoidal loads where time-variant stochasticity is
not considered. In other words, the fluctuations of load amplitude only vary with the sine
cycle and do not change over time. In contrast, the load amplitude in Fig. 2(b) considers
time-variant stochasticity. The time-variant stochasticity is described by the autocorrelation
function, which represents the correlation between different time points. The detailed

description is as follows:

o (tl,tz):COS(tl—OXﬂx(tz—tl)J (63)

max

where t and t, represent different time instants. t., is the maximum loading time. The

X

Gaussian process F(t) is decomposed by EOLE with 101 time nodes. For all methods, the

maximum iteration is 400. The optimization cases are summarized as follows:
- Case 1: DTO;
- Case 2: RTO with COV=0.05 and f=1;

- Case 3: RTO with COV=0.05 and £ =2;

- Case 4: RTO with COV=0.1 and f=1;

- Case 5: RTO with COV=0.1 and f=2;

- Case 6: TDRTO with COV=0.05 and f=1;
- Case 7: TDRTO with COV=0.05 and [ =2;
- Case 8: TDRTO with COV=0.1 and p=1;
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- Case 9: TDRTO with COV=0.1 and £ =2.

Table 3 presents the optimal objective function values for DTO, RTO, and TDRTO, and
Table 4 presents their optimal layouts. The convergence histories for RTO and TDRTO
designs are presented in Fig. 3, and the validation results are obtained by MCS with 1x10°

samples. The results are summarized in Table 5. J and J,,.s denote the objective function

values and verification values of MCS, and ¢ represents the relative error. The conclusions
are drawn as below:

(1) As shown in Table 3 and Table 4, the objective function values of Case 1 (DTO) are
0.0318, 0.0501, and 0.0346 for t_, =0.003,0.005, and 0.1, respectively. The results of Case

9 (TDRTO, COV=0.1, S =2) are 0.0383, 0.0607, and 0.0433 for t ,, = 0.003, 0.005, and

0.1, respectively. Significant differences can be obtained between the optimal layouts of
DTO and those of TDRTO, which highlight the importance of considering uncertain factors.
(2) Table 3 and Table 4 show that the TDRTO results considering time-variant

characteristics are significantly different from those of RTO. For example, the objective

function values of Case 5 (RTO, COV=0.1, S =2)are 0.0437,0.0628, and 0.0498 for t,,

=0.1, 0.5, and 1, respectively, while the corresponding results of Case 9 (TDRTO, COV=0.1,
f=2) results are 0.0383, 0.0607, and 0.0433. Additionally, Table 4 shows that the main

structure of TDRTO is thicker than that of RTO, and the objective function is generally
smaller. This indicates that TDRTO exhibits better structural stiffness than RTO, thereby
improving the robustness.

(3) As shown in Table 3 and Table 4, the objective function values of Case 6 (TDRTO,
COV=0.05, g =1) are 0.0335, 0.0538, and 0.0370 for t., = 0.003, 0.005, and 0.1,

respectively, while their values of Case 8 (TDRTO, COV=0.1, g =1) are 0.0351, 0.0578,

and 0.0391. Under the same loading time, the structure demonstrates a certain degree of
correlation. However, the perturbations caused by uncertainties increase with the increase
of the COV, which amplifies the horizontal component of the load. To ensure the structural
stability and mitigate the impact of these horizontal forces, additional horizontal elements
are added to enhance the stiffness of the structure, thereby maximizing the robustness of the
structure.

(4) Fig. 3 demonstrates that the objective function converges stably, where the iteration

20



curve is smooth after sufficient iterations. This verifies the good convergence of the TDRTO

method. According to Table 5, it is apparent that all relative error indicators are smaller than

2%, which indicates the accuracy of the TDRTO method is acceptable.
/

N
- ft)
H

Fig. 1. Design domain of example 1.
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Fig. 2. Half-cycle sinusoidal loading amplitude of two different cases for example 1.

Table 2. The means and SDs of stochastic variables for example 1.

Variables E(GPa) p (kg/m*) F(KN) ()

Means 200 7800 1000 7112
SDs (COV=5%) 10 390 50 7180
SDs (COV=10%) 20 780 100 7140

Table 3. Objective functions of t . =0.003, 0.005, and 0.1 for example 1.

Objective values (x107?)

Methods Cases
t. =0.003 t.. =0.005 tox =0.1
DTO Case 1 3.178 5.005 3.459
Case 2 3.372 4.757 3.843
RTO
Case 3 3.539 5.676 4219
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Case 4 3.895 5.676 4.219

Case 5 4.365 6.284 4.976

Case 6 3.348 5.382 3.696

Case 7 3.507 5.781 3914
TDRTO

Case 8 3.507 5.781 3914

Case 9 3.827 6.065 4.332

Table 4. DTO, RTO, and TDRTO results of t = 0.003, 0.005, and 0.1 for example 1.

t . =0.003 t . =0.005
Case 1 §
Case 2 5 ! ;
Case 3 5 ' i
Case 4 ; ' i
Case 5 § i §
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Fig. 3. Convergence curves of RTO and TDRTO for example 1.

Table 5. Comparisons of different methods of t_,, = 0.003, 0.005, and 0.1 for example 1.

Cases

Objective values (x107)

t_ =0.003

t,, =0.005

‘J MCS

‘] MCs
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Case 2 3372 3380 0.23% 4757 4702  1.17% 3.843 3.798 1.18%

Case 3 3.539 3.606 1.86% 5676  5.699  0.40% 4219 4258 0.92%
Case 4 3.8905 3.819 1.46% 5676  5.641  0.62% 4219 4127 0.52%
Case 5 4365 4380 0.34% 6.284 6.315 0.49% 4976 4992 0.32%
Case 6 3348 3316 0.97% 5382 5373 0.17% 3.696 3.672  0.65%
Case 7 3.507  3.494  0.37% 57781 5755 0.45% 3914 3946 0.81%
Case 8 3.507 3519  0.34% 57781 5763 0.31% 3914 3931 0.43%
Case 9 3.827 3.819 0.21% 6.065 6.090 0.41% 4332 435 0.55%

4.2. A Clamped beam

A fixed beam experiences a half-cycle cosine force is applied at the midpoint of its lower
span, as illustrated in Fig. 4. Its length L and width H are 12 and 2 m, respectively. The
structure contains 15,606 elements. Stochastic variables are presented in Table 6. The

allowable volume fraction ratio is 50%. Three load cases, i.e., t,,, = 0.1, 0.5, and 1, are

considered. Fig. 5 presents two types of loading amplitudes with t_., =1, and both of them

are generated by MCS. The standard deviations of five half-cycle cosine loads are 100 and
their means are expressed as follows:
F =K xcos(tixtej (64)
Fig. 5(a) represents five half-cycle cosine loads without considering time-variant
stochasticity, while Fig. 5(b) represents five half-cycle cosine loads with time-variant
stochasticity. The autocorrelation function is as follows:
Pe (tl,t2)=cos(t1—0><7zx(t2—tl)] (65)
max
The stochastic process is discretized into 101 time nodes. The maximum iteration number
1s 400. The optimization cases are summarized as follows:
- Case 1: DTO;
- Case 2: RTO with COV=0.05 and f=1;

- Case 3: RTO with COV=0.05 and f =2;
- Case 4: RTO with COV=0.1 and f=1;
- Case 5: RTO with COV=0.1 and [ =2;
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- Case 6: TDRTO with COV=0.05 and f=1;

- Case 7: TDRTO with COV=0.05 and [ =2;

- Case 8: TDRTO with COV=0.1 and p=1;

- Case 9: TDRTO with COV=0.1 and £ =2.

Table 7 presents the optimal objective function values for DTO, RTO, and TDRTO. Table
8 presents their optimal layouts. The convergence histories for RTO and TDRTO design are
shown in Fig. 6. The optima are validated by MCS with 1x10° samples, and the verification
results are presented in Table 9.

As shown in Table 7 and Table 8, the objective function values of Case 1 (DTO) are 0.0088,
0.0086, and 0.0086 for t = 0.1, 0.5, and 1, respectively. The results of Case 8 (TDRTO,

COV=0.1, p=1) are 0.0115, 0.0098, and 0.0096 for t .= 0.1, 0.5, and 1, respectively.

Significant differences are seen between the optimal layouts of DTO and TDRTO, which
highlight the importance of considering uncertain factors. Additionally, the structural layout
adaptively adjusts to ensure stability as the COV increases.

Table 7 and Table 8 show that the structures optimized by TDRTO have a more robust
layout and smaller objective function values, which indicates that TDRTO achieves better
structural stiffness than RTO. This emphasizes the importance of time-variant characteristics
in enhancing structural robustness. Fig. 6 shows the iterative curve of the TDRTO method
is stable. Furthermore, the relative error consistently remains below 2%, which shows the
TDRTO method can provide enough accuracy, as demonstrated in Table 9.

le L »l

™~ »

i%\ f(t) |

Fig. 4. Design domain of example 2.
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Fig. 5. Half-cycle cosine loading amplitude of two different cases for example 2.

Table 6. The means and SDs of stochastic variables for example 2.

Variables E(GPa) p (kg/m*) F(KN) ()

Means 200 7800 1000 7110
SDs (COV=5%) 10 390 50 7 150
SDs (COV=10%) 20 780 100 l25

Table 7. Objective functions of t,, =0.1, 0.5, and 1 for example 2.

Objective values (x107?)

Methods Cases
o =0.1 t. =05 to =1
DTO Case 1 0.883 0.860 0.857
Case 2 1.089 0.949 0.945
Case 3 1.106 1.040 1.041
RTO
Case 4 1.106 1.040 1.041
Case 5 1.321 1.246 1.231
Case 6 1.045 0.895 0.909
Case 7 1.151 0.980 0.957
TDRTO
Case 8 1.147 0.979 0.956
Case 9 1.163 1.111 1.083

Table 8. DTO, RTO, and TDRTO results of t . =0.1,0.5, and 1 for example 2.

t =01 t =05 t =1
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Fig. 6. Convergence curves of RTO and TDRTO for example 2.

Table 9. Comparisons of different methods of t,, =0.1, 0.5, and 1 for example 2.
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Objective values (x107?)

Cases t =01 tx =05 too =1
J Jvics & J Jes & J Jcs &

Case 2 1.089 1.100 1.00% 0.949 0936 1.39% 0.945 0953 0.84%
Case 3 1.106  1.118 1.07% 1.040 1.052 1.14% 1.041 1032 0.87%
Case 4 1.106 1100 0.55% 1.040 1.031 0.87% 1.041 1060 1.79%
Case 5 1.321  1.309  0.92% 1.246 1257 0.88% 1231 1234 0.24%
Case 6 1.045 1.060 1.42% 0.895 0.899  0.44% 0.909 0914 0.55%
Case 7 1.151  1.159  0.69% 0980 0992 1.21% 0.957 0.967 1.03%
Case 8 1.147 1131 141% 0.979 0.963 1.66% 0956 0974 1.85%
Case 9 1.163 1176 1.11% L.111 1125 1.24% 1.083 1.075 0.74%

4.3. A 3D cantilever beam

A typical 3D structure is optimized. The boundary conditions and design domain are
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illustrated in Fig. 7(a). Four corners on the left end of the structure are fixed. A stochastic
half-period sinusoidal load is exerted at the center of the right edge. The angle of the load is
depicted in the Fig. 7(b). Its length L, width D, and thickness H are 320, 240, and 240 mm,

respectively. The design domain is divided into 32x24x24 8-node isoperimetric

hexahedral elements. The volume fraction ratio is limited to 40%. Two load cases, i.e. t,,

= 0.1 and 1, are considered. Table 10 presents the means and SDs of stochastic variables,
including geometric size, material property, loading amplitude, and loading direction. It
should be noted that the description of vector forces in three-dimensional structures typically
requires two angles, as shown in Fig. 7. By using the angle & at the z-axis and the angle
& at the x-axis, the force can be decomposed by
F, =Fsindcosg
F, =Fsindsing (66)
F, =Fcosé&
Fig. 8 presents two types of loading amplitudes with t , =1, and they are generated

by MCS. The standard deviations of five half-cycle cosine loads are 100 and their means are
expressed as follows:
F.=F xsin[ixteJ (67)
Fig. 8(a) represents five half-cycle cosine loads without considering time-variant
stochasticity, while Fig. 8(b) represents five half-cycle cosine loads with time-variant
stochasticity. The autocorrelation function is as follows:
Pe (tl,t2)=cos(t1—0><7zx(t2—tl)] (68)
max
The stochastic process is discretized into 101 time nodes. The maximum iteration number
1s 180. The optimization cases are summarized as follows:
- Case 1: DTO;
- Case 2: RTO with COV=0.1 and f=1;

- Case 3: RTO with COV=0.1 and f=2;
- Case 4: RTO with COV=0.1 and [ =4;
- Case 5: TDRTO with COV=0.1 and p=1;
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- Case 6: TDRTO with COV=0.1 and f=2;

- Case 7: TDRTO with COV=0.1 and f =4;

Table 11 presents the optimal objective function values for DTO, RTO, and TDRTO, and
Table 12 presents their optimal layouts. The convergence histories for RTO and TDRTO are
shown in Fig. 9.

As shown in Table 11 and Table 12, it is evident that the optimal layouts of DTO and
TDRTO show obvious differences, which highlight the importance of considering uncertain
factors. As observed from Table 12, the objective function values of TDRTO, which accounts
the time-variant characteristics, are significantly lower than those for RTO. These findings
demonstrate that the consideration of time-variant characteristics contributes to maintain
structural robustness. It also confirms the influence of uncertainty and time-variant
characteristics on structural performance is obvious. Besides, the iterative curve in Fig. 9

demonstrates that the TDRTO method converges stably.

Fig. 7. The design problem of the 3D cantilever beam of example 3.
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Fig. 8. Loading amplitude of two different cases for example 3.
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Table 10. The means and SDs of stochastic variables for example 3.

Variables a(m)  b(m) c(m) E(GPa) pkg/m’) FEKN) 6(°) @ ()

Means 0.32 0.24 0.24 200 7800 1000 11z 0.57
SDs 0.064 0.048 0.048 40 1560 200 110 7110

Table 11. Results of optimization of t,, = 0.1 and 1 for example 3.

Objective values (x107?)

Methods Cases
tox =0.1 tox =1
DTO Case 1 0.268 0.467
Case 2 0.384 0.760
RTO Case 3 0.500 1.040
Case 4 0.734 1.611
Case 5 0.320 0.688
TDRTO Case 6 0.372 0.906
Case 7 0.473 1.342

Table 12. DTO and RTO results of t,,, =0.1 and 1 for example 3.

t =01 t =1

'max max

Case 1

Case 2
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Case 3

Case 4

Case 5

Case 6

Case 7
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Fig. 9. Convergence curves of RTO and TDRTO for example 3.

5. Conclusions

In this study, the TDRTO model is proposed to address transient dynamic RTO problems,
which comprehensively considers the uncertainties in material parameters, loading direction,

and time-variant loading amplitude. To discretize the time-variant loading amplitude, the
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EOLE method is used, which can simulate the correlation of dynamic loads at different time
instants. The design and stochastic sensitivities are derived by adjoint method and the
"discretize-then-differentiate" approach, where the Lagrange equation is constructed twice.
Besides, the HHT-a method is employed to address structural dynamic problems, thereby
improving the computational efficiency.

Three numerical examples are examined to confirm the accuracy and efficiency of the
TDRTO method by comparing its results with those of the RTO approach. The results show
that time-variant uncertainties significantly impact the topology layout of structures, in
which the structural layout tends to change for enhancing stiffness, thereby improving
robustness. However, high-resolution large-scale computation remains a major challenge in
dynamic topology optimization. In the future, some efficient frameworks or models, such as
the second-order Arnoldi reduction approach [60] or dimensionality reduction methods [61],

can be employed to decrease the computational cost for dynamic TO.
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