Papers in Journals with peer review and impact factor
2024
- Abdollahi, A., Shahraki, H., Faes, M., Rashki, M. (2024)
Soft Monte Carlo Simulation for imprecise probability estimation: A dimension reduction-based approach
Structural Safety
Volume 106, January 2024, 102391
10.1016/j.strusafe.2023.102391
- Song, J., Cui, Y., Wei, P., Valdebenito, M., Zhang, W. (2024)
Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis
Reliability Engineering & System Safety
Volume 241, January 2024, 109613
10.1016/j.ress.2023.109613
preprint (available for download)
2023
- Böddecker, M., Faes, M., Menzel, A., Valdebenito, M. (2023).
Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-plasticity - a variance-based global sensitivity analysis.
Advances in Industrial and Manufacturing Engineering.
Volume 7, November 2023, 100128
10.1016/j.aime.2023.100128
- Hong, F., Wei, P., Song, J., Valdebenito, M.A., Faes, M., Beer, M. (2023).
Collaborative and Adaptive Bayesian Optimization for bounding variances and probabilities under hybrid uncertainties
Computer Methods in Applied Mechanics and Engineering
Volume 417, Part A, December 2023, 116410
10.1016/j.cma.2023.116410
preprint (available for download)
- Ypsilantis, K., Kazakis, G., Faes, M., Ivens, J., Lagaros, N. Moens, D. (2023).
A topology-based in-plane filtering technique for the combined topology and discrete fiber orientation optimization
Computer Methods in Applied Mechanics and Engineering
Volume 417, Part A, 1 December 2023, 116400
10.1016/j.cma.2023.116400
preprint (available for download)
- Valdebenito, M., Yuan, X., Faes, M. (2023)
Augmented first-order reliability method for estimating fuzzy failure probabilities
Structural Safety
Volume 105, November 2023, 102380
10.1016/j.strusafe.2023.102380
preprint (available for download)
- Van Bavel, B., Zhao, Y., Faes, M., Vandepitte, D., Moens, D. (2023).
Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation.
Composite Structures.
Volume 323, 1 November 2023, 117462
10.1016/j.compstruct.2023.117462
preprint (available for download)
- Hong, F., Wei, P., Song, J., Faes, M., Valdebenito, M., Beer, M. (2023).
Combining Data and Physical Models for Probabilistic Analysis: A Bayesian Augmented Space Learning Perspective.
Probabilistic Engineering Mechanics.
Volume 73, July 2023, 103474
10.1016/j.probengmech.2023.103474
preprint (available for download)
- Dang, C., Valdebenito, M., Faes, M., Song, J., Wei, P., Beer, M. (2023).
Structural reliability analysis by line sampling: A Bayesian active learning treatment.
Structural Safety.
Volume 104, September 2023, 102351
10.1016/j.strusafe.2023.102351
preprint (available for download)
- Bogaerts, L., Dejans, A., Faes, M., Moens, D. (2023).
A machine learning approach for efficient and robust resistance spot welding monitoring.
Welding in the World.
10.1007/s40194-023-01519-1
preprint (available for download)
- Rashki, M., Faes, M. (2023).
No-Free-Lunch theorems for reliability analysis.
ASCE/ASME Journal for Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering.
Vol. 9, Issue 3, September 2023,
10.1061/AJRUA6.RUENG-1015
preprint (available for download)
- Yuan, X., Valdebenito, M.A., Zhang, B., Faes, M., Beer, M. (2023).
Efficient decoupling approach for reliability-based optimization based on augmented Line Sampling and combination algorithm.
Computers & Structures.
Volume 280, May 2023, 107003
10.1016/j.compstruc.2023.107003
preprint (available for download)
- van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023).
Robust design optimization of expensive stochastic simulators under lack-of-knowledge.
ASCE/ASME Journal for Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering.
Volume 9(2), 021205.
10.1115/1.4056950
preprint (available for download)
- Behrendt, M., Faes, M., Valdebenito, M.A., Beer, M. (2023).
Estimation of an imprecise power spectral density function with optimised bounds from scarce data for epistemic uncertainty quantification.
Mechanical Systems and Signal Processing
Volume 189, 15 April 2023, 110072.
10.1016/j.ymssp.2022.110072
preprint (available for download)
- Yuan, X., Wang, S., Valdebenito, M.A., Faes, M., Beer, M. (2023).
Sample regeneration algorithm for structural failure probability function estimation.
Probabilistic Engineering Mechanics.
Volume 71, January 2023, 103387
10.1016/j.probengmech.2022.103387
preprint (available for download)
- Fina, M., Lauff, C., Faes, M., Valdebenito, M., Wagner, W., Freitag. S. (2022).
Bounding Imprecise Failure Probabilities in Structural Mechanics based on Maximum Standard Deviation.
Structural Safety.
Volume 101, March 2023, 102293
10.1016/j.strusafe.2022.102293
preprint (available for download)
- Yuan, X., Qian, Y. Chen, J. Faes, M., Valdebenito, M., Beer, M. (2023).
Global failure probability function estimation based on an adaptive strategy and combination algorithm.
Reliability Engineering and System Safety.
Volume 231, March 2023, 108937
10.1016/j.ress.2022.108937
preprint (available for download)
- Van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023).
Robust design optimisation under lack-of-knowledge uncertainty.
Computers & Structures.
Volume 275, 15 January 2023, 106910
10.1016/j.compstruc.2022.106910
preprint (available for download)
- Ding, C., Dang, C., Valdebenito, M., Faes, M., Broggi, M., Beer,M. (2022).
First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach.
Mechanical Systems and Signal Processing.
Volume 185, 15 February 2023, 109775.
https://doi.org/10.1016/j.ymssp.2022.109775
preprint (available for download)
- Bartsoen, L., Faes, M.G.R., Skipper Andersen, M., Wirix-Speetjens, R., Moens, D., Jonkers, I., Vander Sloten, J. (2023).
Bayesian parameter estimation of ligament properties based on tibio-femoral kinematics during squatting.
Mechanical Systems and Signal Processing,
Volume 182, 1 January 2023, 109525.
10.1016/j.ymssp.2022.109525
preprint (available for download)
- Zheng, Z., Valdebenito, M.A., Beer, M., Nackenhorst, U.
A stochastic finite element scheme for solving partial differential equations defined on random domains.
Computer Methods in Applied Mechanics and Engineering.
Volume 405, 15 February 2023, 115860.
10.1016/j.cma.2022.115860
preprint (available for download)
- Wang, X., Yang, L., Xie, M., Valdebenito, M.A., Beer, M.
Bayesian maximum entropy method for stochastic model updating using measurement data and statistical information
Mechanical Systems and Signal Processing
Volume 188, 1 April 2023, 110012
10.1016/j.ymssp.2022.110012
preprint (available for download)
- Feng, C., Faes, M., Broggi, M., Dang, C., Yang, K., Zheng, Z., Beer, M. (2023).
Application of interval field method to the stability analysis of slopes in presence of uncertainties.
Computers & Geotechnics.
Volume 153, January 2023, 105060
10.1016/j.compgeo.2022.10506
preprint (available for download)
- Z. Zheng and M. Valdebenito and M. Beer and U.Nackenhorst (2023)
Simulation of random fields on random domains
Probabilistic Engineering Mechanics
Volume 73, July 2023, 103455
10.1016/j.probengmech.2023.103455
preprint (available for download)
2022
- Bartsoen, L., Faes, M.G.R., Wirix-Speetjens, R., Moens, D., Jonkers, I., Vander Sloten, J. (2022).
Probabilistic planning for ligament-balanced TKA - identification of critical ligament properties.
Frontiers in Bioengineering and Biotechnology.
Volume 10.
10.3389/fbioe.2022.930724
preprint (available for download)
- Dang, C., Valdebenito, M., Faes, M.G.R., Wei, P., Beer, M. (2022).
Structural Reliability Analysis, a Bayesian perspective,
Structural Safety,
Volume 99, November 2022, 102259.
10.1016/j.strusafe.2022.102259
preprint (available for download)
- Wang, G., Faes, M.G.R., Shi, T., Peng, G. (2022).
Extension of Dashpot Model with Elastoplastic Deformation and Rough Surface in Impact Behavior,
Chaos, Solitons and Fractals,
Volume 162, September 2022, 112402.
10.1016/j.chaos.2022.112402
- Dang, C., Wei, P., Faes, M.G.R., Beer, M. (2022).
Bayesian probabilistic propagation of hybrid uncertainties: Estimation of response expectation function, its variable importance and bounds,
Computers & Structures,
Volume 270, 1 October 2022, 106860.
10.1016/j.compstruc.2022.106860
preprint (available for download)
- Ypsilantis, K.I., Faes, M.G.R., Ivens, J., Laragos, N., Moens, D. (2022).
An Approach for the Concurrent Homogenization-based Microstructure Type and Topology Optimization Problem,
Computers & Structures,
Volume 272, November 2022, 106859
10.1016/j.compstruc.2022.106859
preprint (available for download)
- Dang, C., Wei, P., Faes, M., Valdebenito, M. A., Beer, M. (2022).
Parallel adaptive Bayesian quadrature for rare event estimation,
Reliability Engineering and System Safety,
Volume 225, September 2022, 108621.
10.1016/j.ress.2022.108621
preprint (available for download)
- Zhao, Y., Yang, J., Faes, M., Bi, S., Wang, Y. (2022).
The sub-interval similarity: A general uncertainty quantification metric for both stochastic and interval model updating,
Mechanical Systems and Signal Processing,
Vol.178, 109319,
10.1016/j.ymssp.2022.109319
preprint (available for download)
- Faes, M., Broggi, M., Chen, G., Phoon, K.-K., Beer, M. (2022).
Distribution-free P-box processes based on translation theory: definition and simulation.
Probabilistic Engineering Mechanics,
Vol. 69, 103287
10.1016/j.probengmech.2022.103287
preprint (available for download)
- Faes, M., Broggi, M., Spanos, P.D., Beer, M. (2022).
Elucidating appealing features of differentiable auto-correlation functions: a study on the modified exponential kernel.
Probabilistic Engineering Mechanics,
Vol. 69, 103287
10.1016/j.probengmech.2022.103269
preprint (available for download)
- Callens, R., Faes, M., Moens, D. (2022).
Multilevel Quasi-Monte Carlo For Interval Analysis.
International Journal For Uncertainty Quantification,
Issue 12(4). pp. 1–19.
doi: 10.1615/Int.J.UncertaintyQuantification.2022039245
- Dang, C., Wei, P., Faes, M., Valdebenito, M., Beer, M. (2022).
Interval uncertainty propagation by a parallel Bayesian global optimization method.
Applied Mathematical Modelling,
Vol. 128, Pp. 220-235
10.1016/j.apm.2022.03.031
preprint (available for download)