Papers in Journals with peer review and impact factor
2025
- Misraji, M., Valdebenito M., Faes, M. (2025)
First Excursion Probability Sensitivity in Stochastic Linear Dynamics by means of Domain Decomposition Method
Mechanical Systems and Signal Processing
Article in press
preprint (available for download)
- Dang, C., Valdebenito, M., Faes, M. (2025)
Time-dependent reliability analysis by a single-loop Bayesian active learning method using Gaussian process regression
Computer Methods in Applied Mechanics and Engineering
Article in press
- Hu, Z., Dang, C., Wang, D., Beer, M., Wan, L. (2025)
Error-informed parallel adaptive Kriging method for time-dependent reliability analysis
Reliability Engineering & System Safety
Article in press
preprint (available for download)
- Acevedo, C., Zhang, X., Valdebenito, M., Faes, M. (2025).
Reliability Analysis Combining Method of Moments with Control Variates
Probabilistic Engineering Mechanics
Article in press
preprint (available for download)
- Jiang, Y., Zhang, X., Beer, M., Faes, M., Papadimitriou, C., Zhou, H. (2025).
First excursion probability of dynamical systems: A review on computational methods
Mechanical Systems and Signal Processing
Volume 232, 1 June 2025, 112751
10.1016/j.ymssp.2025.112751
paper (available for download)
- Meng, Z., Tian, Z., Gao,Y., Faes, M., Li, Q. (2025).
Transient dynamic robust topology optimization methodology for continuum structure under stochastic uncertainties
Computer Methods in Applied Mechanics and Engineering
Volume 442, 1 July 2025, 118019
10.1016/j.cma.2025.118019
preprint(available for download)
- Callens, R., Moens, D., Faes, M. (2025).
Certified interval model updating using scenario optimization.
AIAA Journal.
Article in Press.
- Rashki, M., Faes, M., Wei, P., Song, J. (2025).
Asymptotic Subset Simulation: an efficient extrapolation tool for small probabilities approximation.
Reliability Engineering and System Safety.
Article in Press.
preprint (available for download)
-
Zhang, Y., Dang, C., Xu, J., Beer, M. (2025).
Output probability distribution estimation of stochastic static and dynamic systems using Laplace transform and maximum entropy
Computer Methods in Applied Mechanics and Engineering
Volume 439, 1 May 2025, 117887
10.1016/j.cma.2025.117887
paper (available for download) -
Dang, C., Valdebenito, M.A., Manque Roa, N., Xu, J., Faes, M. (2025).
Response probability distribution estimation of expensive computer simulators: A Bayesian active learning perspective using Gaussian process regression
Structural Safety
Volume 114, May 2025, 102579
10.1016/j.strusafe.2025.102579
paper (available for download) - Wang, G., Faes, M., Shi, T., Cheng, F., Pan, Y. (2025).
Investigation on impact behavior with viscous damping and tensile force inspired by Kelvin-Voigt model in granular system
Mechanical Systems and Signal Processing
Volume 227, 15 March 2025, 112399
10.1016/j.ymssp.2025.112399
paper (available for download)
- Manque Roa, N., Liedmann, J., Barthold, F.-J., Valdebenito, M.A., Faes, M. (2025).
Interval Isogeometric Analysis for Coping with Geometric Uncertainty
Computer Methods in Applied Mechanics and Engineering
Volume 437, 15 March 2025, 117773
10.1016/j.cma.2025.117773
paper (available for download)
- Valdebenito, M.A., Faes, M. (2025).
Exploiting the precision of FORM and the accuracy of importance sampling for estimating failure probability and its sensitivity
Civil Engineering and Environmental Systems
02.01.2025
10.1080/10286608.2024.2446733
preprint (available for download)
- Dang, C., Valdebenito, M.A., Faes, M. (2025).
Towards a single-loop Gaussian process regression based-active learning method for time-dependent reliability analysis
Mechanical Systems and Signal Processing
March 2025
10.1016/j.ymssp.2024.112294
paper (available for download)
- Wei, P., Kitahara, M., Faes, M., Beer, M. (2025).
Probabilistic Calibration of Model Parameters with Approximate Bayesian Quadrature and Active Machine Learning.
Journal of Reliability Science and Engineering
22 January 2025
10.1088/3050-2454/ad9f62
preprint (available for download)
- Zhang, X.Y., Misraji, M. A., Valdebenito, M.A., Faes, M. (2025).
Directional Importance Sampling for Dynamic Reliability of Linear Structures under Non-Gaussian White Noise Excitation.
Mechanical Systems and Signal Processing
Volume 224, 1 February 2025, 112182
10.1016/j.ymssp.2024.112182
paper (available for download)
- Zhou, T., Guo, T., Dang, C., Jia, L., Dong, Y. (2025).
Parallel active learning reliability analysis: A multi-point look-ahead paradigm
Computer Methods in Applied Mechanics and Engineering
Volume 434, 1 February 2025, 117524
10.1016/j.cma.2024.117524
paper (available for download)
- Luo, Y., Dang, C., Broggi, M., Beer, M. (2025).
Stochastic dynamic response analysis via dimension-reduced probability density evolution equation (DR-PDEE) with enhanced tail-accuracy
Probabilistic Engineering Mechanics
Volume 79, January 2025, 103735
10.1016/j.probengmech.2025.103735
paper (available for download)
- Feng, C., Broggi, B., Hu, Y., Faes, M., Beer, M. (2025).
Interval Fields for Geotechnical Engineering Uncertainty Analysis under Limited Data.
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering.
Volume 11, Issue 2,Jan 20, 2025
10.1061/AJRUA6.RUENG-1467
preprint (available for download)
- Novák, L., Valdebenito, M., Faes, M. (2025).
On Fractional Moment Estimation from Polynomial Chaos Expansion
Reliability Engineering & System Safety
Volume 254, Part A, February 2025, 110594
10.1016/j.ress.2024.110594
paper (available for download)
- Dang, C., Zhou, T., Valdebenito, M., Faes, M. (2025).
Yet another Bayesian active learning reliability analysis method.
Structural Safety.
Volume 112, January 2025, 102539
10.1016/j.strusafe.2024.102539
paper (available for download)
- Manque Roa, N., Phoon, K.-K., Liu, Y., Valdebenito, M., Faes, M. (2025)
Confined seepage analysis of saturated soils using fuzzy fields.
Journal of Rock Mechanics and Geotechnical Engineering.
Volume 17, Issue 3, March 2025, Pages 1302-1320
10.1016/j.jrmge.2024.07.016
paper (available for download)
-
Zhao, H., Zhou, C., Chang, Q., Shi, H., Valdebenito, M., Faes, M. (2025)
Limit-state function sensitivity under epistemic uncertainty: a convex model approach
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 10, Issue 4, December 2024
10.1061/AJRUA6.RUENG-1393
preprint (available for download) -
Li, P.P., Zhao, Y.G., Dang, C., Broggi, M., Valdebenito, M., Faes, M. (2025).
An efficient Bayesian updating framework for characterizing the posterior failure probability
Mechanical Systems and Signal Processing
Volume 222, 1 January 2025, 111768
10.1016/j.ymssp.2024.111768
paper (available for download) -
Bogaerts, L., Faes, M., Moens, D. (2025).
A data driven black box approach for the inverse quantification of set-theoretical uncertainty.
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering.
Volume 11, Issue 3, September 2025
10.1115/1.4066619
preprint (available for download)
2024
- Kilicsoy, A., Liedmann, J., Valdebenito, M., Barthold, F.-J., Faes, M. (2024).
Sobolev Neural Network with Residual Weighting as a Surrogate in Linear and Non-Linear Mechanics
IEEE Access
Volume 12, 2024
10.1109/ACCESS.2024.3465572
paper (available for download)
- Weng, L., Acevedo, C., Yang, J., Valdebenito, M., Faes, M., Chen, J. (2024).
An approximate decoupled reliability-based design optimization method for efficient design exploration of linear structures under random loads.
Computer Methods in Applied Mechanics and Engineering.
Volume 432, Part A, December 2024, 117312
10.1016/j.cma.2024.117312
preprint (available for download)
- Collela, G., Valdebenito, M., Duddeck, F., Lange, V., Faes, M. (2024)
Crashworthiness Analysis: Exploiting Information of Developed Products with Control Variates
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part B: Mechanical Engineering
Volume 10, December 2024, 041205
10.1115/1.4066079
preprint (available for download)
-
Manque Roa, N., Valdebenito, M., Beaurepaire, P., Moens, D., Faes, M. (2024)
A Reduced-Order Model Approach for Fuzzy Fields Analysis
Structural Safety
Volume 111, November 2024, 102498
10.1016/j.strusafe.2024.102498
paper (available for download) -
Ypsilantis, K., Faes, M., Lagaros, N. , Aage, N., Moens, D. (2024)
Robust topology and discrete fiber orientation optimization under material uncertainty
Computers and Structures
Volume 300, 15 August 2024, 107421
10.1016/j.compstruc.2024.107421
preprint (available for download) -
Jafari,J., Lara Montaño, O., Mirjalili,S., Faes, M. (2024)
A Meta-heuristic approach for Reliability-Based Design Optimization of Shell-and-Tube Heat Exchangers
Applied Thermal Engineering
Volume 248, Part A, 01 July 2024, 123161
10.1016/j.applthermaleng.2024.123161
preprint (available for download) -
Awd, M. , Saeed, L. , Münstermann,S. , Faes, M. , Walther, F. (2024)
Mechanistic machine learning for metamaterial fatigue strength design from first principles in additive manufacturing
Materials and Design.
Volume 241, May 2024, 112889
10.1016/j.matdes.2024.112889
preprint (available for download) -
Chang, Q., Changcong Zhou, C., Faes, M., Valdebenito, M. (2024)
Design Optimization with Variable Screening by Interval-Based Sensitivity Analysis
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering
Volume 10, Issue 3, 21 May, 2024
10.1061/AJRUA6.RUENG-1266
preprint (available for download) -
Dang, C. , Cicirello, A. , Valdebenito, M. , Faes, M., Wei, P., Beer, M. (2024)
Structural reliability analysis with extremely small failure probabilities: A quasi-Bayesian active learning method
Probabilistic Engineering Mechanics.
Volume 76, 03 April 2024, 103613
10.1016/j.probengmech.2024.103613
paper (available for download) -
Dang, C. , Valdebenito, M., Wei, P. , Song, J., Beer, M. (2024)
Bayesian active learning line sampling with log-normal process for rare event probability estimation.
Reliability Engineering & System Safety.
Volume 246, 03 April 2024, 110053
10.1016/j.ress.2024.110053
paper (available for download) -
Feng,C., Valdebenito, M.A. , Chwała, M., Liao,K., Broggi,M., Beer, M. (2024)
Efficient slope reliability analysis under soil spatial variability using maximum entropy distribution with fractional moments
Journal of Rock Mechanics and Geotechnical Engineering.
Volume 16, April 2024, 1140-1152
10.1016/j.jrmge.2023.09.006
paper (available for download) - Dang, C., Faes, M. , Valdebenito, M. , Wei, P., Beer, M. (2024).
Partially Bayesian active learning cubature for structural reliability analysis with extremely small failure probabilities.
Computer Methods in Applied Mechanics and Engineering.
Volume 422 , 15 March 2024, 116828
10.1016/j.cma.2024.116828
preprint (available for download)
- Acevedo, C., Valdebenito, M. , Gonzalez, I., Jensen, H., Faes, M. , Liu, Y. (2024)
Control variates with splitting for aggregating results of Monte Carlo simulation and perturbation analysis
Structural Safety.
Volume 108 , May 2024, 102445
10.1016/j.strusafe.2024.102445
paper (available for download)
- Wang, C., Beer, M., Faes, M. , Feng, D. (2024).
Resilience assessment under imprecise probability.
ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering.
Volume 10, Issue 2 , June 2024, 101061
10.1061/AJRUA6.RUENG-1244
preprint (available for download).
- Yuan, X., Zheng, W., Zhao, C., Valdebenito, M. , Faes, M., Dong, Y. (2024).
Line sampling for time-variant failure probability estimation using adaptive combination approach.
Reliability Engineering and System Safety.
Volume 243 , March 2024, 109885
10.1016/j.ress.2023.109885
preprint (available for download) .
- Jerez, D. Fragkoulis, V., Ni, P., Mitseas, I., Valdebenito, M., Faes, M., Beer, M. (2024).
Operator norm-based determination of failure probability of nonlinear oscillators with fractional derivative elements subject to imprecise stationary Gaussian loads.
Mechanical Systems and Signal Processing.
Volume 208 , 15 February 2024, 111043
10.1016/j.ymssp.2023.111043
preprint (available for download).
- Abdollahi, A., Shahraki, H., Faes, M., Rashki, M. (2024)
Soft Monte Carlo Simulation for imprecise probability estimation: A dimension reduction-based approach
Structural Safety
Volume 106 , January 2024, 102391
10.1016/j. strusafe.2023.102391
preprint (available for download)
- Song, J., Cui, Y., Wei, P., Valdebenito, M. , Zhang, W. (2024)
Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis
Reliability Engineering & System Safety
Volume 241 , January 2024, 109613
10.1016/j.ress.2023.109613
preprint (available for download
2023
- Böddecker, M., Faes, M. , Menzel, A., Valdebenito, M. (2023).
Effect of uncertainty of material parameters on stress triaxiality and Lode angle in finite elasto-plasticity - a variance-based global sensitivity analysis.
Advances in Industrial and Manufacturing Engineering.
Volume 7 , November 2023, 100128
10.1016/j.aime.2023.100128
preprint (available for download)
- Hong, F., Wei, P., Song, J., Valdebenito, MA , Faes, M. , Beer, M. (2023).
Collaborative and Adaptive Bayesian Optimization for bounding variances and probabilities under hybrid uncertainties
Computer Methods in Applied Mechanics and Engineering
Volume 417, Part A , December 2023, 116410
10.1016/j.cma.2023.116410
preprint (available for download)
- Ypsilantis, K., Kazakis, G., Faes, M. , Ivens, J., Lagaros, N. Moens, D. (2023).
A topology-based in-plane filtering technique for the combined topology and discrete fiber orientation optimization
Computer Methods in Applied Mechanics and Engineering
Volume 417, Part A , 1 December 2023, 116400
10.1016/j.cma.2023.116400
preprint (available for download)
- Valdebenito, M., Yuan, X., Faes, M. (2023)
Augmented first-order reliability method for estimating fuzzy failure probabilities
Structural Safety
Volume 105, November 2023, 102380
10.1016/j.strusafe.2023.102380
preprint (available for download)
- Van Bavel, B., Zhao, Y., Faes, M., Vandepitte, D., Moens, D. (2023).
Efficient quantification of composite spatial variability: A multiscale framework that captures intercorrelation.
Composite Structures.
Volume 323, 1 November 2023, 117462
10.1016/j.compstruct.2023.117462
preprint (available for download)
- Hong, F., Wei, P., Song, J., Faes, M., Valdebenito, M., Beer, M. (2023).
Combining Data and Physical Models for Probabilistic Analysis: A Bayesian Augmented Space Learning Perspective.
Probabilistic Engineering Mechanics.
Volume 73, July 2023, 103474
10.1016/j.probengmech.2023.103474
preprint (available for download)
- Dang, C., Valdebenito, M., Faes, M., Song, J., Wei, P., Beer, M. (2023).
Structural reliability analysis by line sampling: A Bayesian active learning treatment.
Structural Safety.
Volume 104, September 2023, 102351
10.1016/j.strusafe.2023.102351
preprint (available for download)
- Bogaerts, L., Dejans, A., Faes, M., Moens, D. (2023).
A machine learning approach for efficient and robust resistance spot welding monitoring.
Welding in the World.
10.1007/s40194-023-01519-1
preprint (available for download)
- Rashki, M., Faes, M. (2023).
No-Free-Lunch theorems for reliability analysis.
ASCE/ASME Journal for Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering.
Vol. 9, Issue 3, September 2023,
10.1061/AJRUA6.RUENG-1015
preprint (available for download)
- Yuan, X., Valdebenito, M.A., Zhang, B., Faes, M., Beer, M. (2023).
Efficient decoupling approach for reliability-based optimization based on augmented Line Sampling and combination algorithm.
Computers & Structures.
Volume 280, May 2023, 107003
10.1016/j.compstruc.2023.107003
preprint (available for download)
- van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023).
Robust design optimization of expensive stochastic simulators under lack-of-knowledge.
ASCE/ASME Journal for Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering.
Volume 9(2), 021205.
10.1115/1.4056950
- Behrendt, M., Faes, M., Valdebenito, M.A., Beer, M. (2023).
Estimation of an imprecise power spectral density function with optimised bounds from scarce data for epistemic uncertainty quantification.
Mechanical Systems and Signal Processing
Volume 189, 15 April 2023, 110072.
10.1016/j.ymssp.2022.110072
preprint (available for download)
- Yuan, X., Wang, S., Valdebenito, M.A., Faes, M., Beer, M. (2023).
Sample regeneration algorithm for structural failure probability function estimation.
Probabilistic Engineering Mechanics.
Volume 71, January 2023, 103387
10.1016/j.probengmech.2022.103387
preprint (available for download)
- Fina, M., Lauff, C., Faes, M., Valdebenito, M., Wagner, W., Freitag. S. (2022).
Bounding Imprecise Failure Probabilities in Structural Mechanics based on Maximum Standard Deviation.
Structural Safety.
Volume 101, March 2023, 102293
10.1016/j.strusafe.2022.102293
preprint (available for download)
- Yuan, X., Qian, Y. Chen, J. Faes, M., Valdebenito, M., Beer, M. (2023).
Global failure probability function estimation based on an adaptive strategy and combination algorithm.
Reliability Engineering and System Safety.
Volume 231, March 2023, 108937
10.1016/j.ress.2022.108937
preprint (available for download)
- Van Mierlo, C., Persoons, A., Faes, M., Moens, D. (2023).
Robust design optimisation under lack-of-knowledge uncertainty.
Computers & Structures.
Volume 275, 15 January 2023, 106910
10.1016/j.compstruc.2022.106910
preprint (available for download)
- Ding, C., Dang, C., Valdebenito, M., Faes, M., Broggi, M., Beer,M. (2022).
First-passage probability estimation of high-dimensional nonlinear stochastic dynamic systems by a fractional moments-based mixture distribution approach.
Mechanical Systems and Signal Processing.
Volume 185, 15 February 2023, 109775.
https://doi.org/10.1016/j.ymssp.2022.109775
preprint (available for download)
- Bartsoen, L., Faes, M.G.R., Skipper Andersen, M., Wirix-Speetjens, R., Moens, D., Jonkers, I., Vander Sloten, J. (2023).
Bayesian parameter estimation of ligament properties based on tibio-femoral kinematics during squatting.
Mechanical Systems and Signal Processing,
Volume 182, 1 January 2023, 109525.
10.1016/j.ymssp.2022.109525
preprint (available for download)
- Zheng, Z., Valdebenito, M.A., Beer, M., Nackenhorst, U.
A stochastic finite element scheme for solving partial differential equations defined on random domains.
Computer Methods in Applied Mechanics and Engineering.
Volume 405, 15 February 2023, 115860.
10.1016/j.cma.2022.115860
preprint (available for download)
- Wang, X., Yang, L., Xie, M., Valdebenito, M.A., Beer, M.
Bayesian maximum entropy method for stochastic model updating using measurement data and statistical information
Mechanical Systems and Signal Processing
Volume 188, 1 April 2023, 110012
10.1016/j.ymssp.2022.110012
preprint (available for download)
- Feng, C., Faes, M., Broggi, M., Dang, C., Yang, K., Zheng, Z., Beer, M. (2023).
Application of interval field method to the stability analysis of slopes in presence of uncertainties.
Computers & Geotechnics.
Volume 153, January 2023, 105060
10.1016/j.compgeo.2022.10506
preprint (available for download)
- Z. Zheng and M. Valdebenito and M. Beer and U.Nackenhorst (2023)
Simulation of random fields on random domains
Probabilistic Engineering Mechanics
Volume 73, July 2023, 103455
10.1016/j.probengmech.2023.103455
preprint (available for download)
2022
- Bartsoen, L., Faes, M.G.R., Wirix-Speetjens, R., Moens, D., Jonkers, I., Vander Sloten, J. (2022).
Probabilistic planning for ligament-balanced TKA - identification of critical ligament properties.
Frontiers in Bioengineering and Biotechnology.
Volume 10.
10.3389/fbioe.2022.930724
preprint (available for download)
- Dang, C., Valdebenito, M., Faes, M.G.R., Wei, P., Beer, M. (2022).
Structural Reliability Analysis, a Bayesian perspective,
Structural Safety,
Volume 99, November 2022, 102259.
10.1016/j.strusafe.2022.102259
preprint (available for download)
- Wang, G., Faes, M.G.R., Shi, T., Peng, G. (2022).
Extension of Dashpot Model with Elastoplastic Deformation and Rough Surface in Impact Behavior,
Chaos, Solitons and Fractals,
Volume 162, September 2022, 112402.
10.1016/j.chaos.2022.112402
- Dang, C., Wei, P., Faes, M.G.R., Beer, M. (2022).
Bayesian probabilistic propagation of hybrid uncertainties: Estimation of response expectation function, its variable importance and bounds,
Computers & Structures,
Volume 270, 1 October 2022, 106860.
10.1016/j.compstruc.2022.106860
preprint (available for download)
- Ypsilantis, K.I., Faes, M.G.R., Ivens, J., Laragos, N., Moens, D. (2022).
An Approach for the Concurrent Homogenization-based Microstructure Type and Topology Optimization Problem,
Computers & Structures,
Volume 272, November 2022, 106859
10.1016/j.compstruc.2022.106859
preprint (available for download)
- Dang, C., Wei, P., Faes, M., Valdebenito, M. A., Beer, M. (2022).
Parallel adaptive Bayesian quadrature for rare event estimation,
Reliability Engineering and System Safety,
Volume 225, September 2022, 108621.
10.1016/j.ress.2022.108621
preprint (available for download)
- Zhao, Y., Yang, J., Faes, M., Bi, S., Wang, Y. (2022).
The sub-interval similarity: A general uncertainty quantification metric for both stochastic and interval model updating,
Mechanical Systems and Signal Processing,
Vol.178, 109319,
10.1016/j.ymssp.2022.109319
preprint (available for download)
- Faes, M., Broggi, M., Chen, G., Phoon, K.-K., Beer, M. (2022).
Distribution-free P-box processes based on translation theory: definition and simulation.
Probabilistic Engineering Mechanics,
Vol. 69, 103287
10.1016/j.probengmech.2022.103287
preprint (available for download)
- Faes, M., Broggi, M., Spanos, P.D., Beer, M. (2022).
Elucidating appealing features of differentiable auto-correlation functions: a study on the modified exponential kernel.
Probabilistic Engineering Mechanics,
Vol. 69, 103287
10.1016/j.probengmech.2022.103269
preprint (available for download)
- Callens, R., Faes, M., Moens, D. (2022).
Multilevel Quasi-Monte Carlo For Interval Analysis.
International Journal For Uncertainty Quantification,
Issue 12(4). pp. 1–19.
doi: 10.1615/Int.J.UncertaintyQuantification.2022039245
- Dang, C., Wei, P., Faes, M. , Valdebenito, M. , Beer, M. (2022).
Interval uncertainty propagation by a parallel Bayesian global optimization method.
Applied Mathematical Modeling,
Vol. 128, Pp. 220-235
10.1016/j.apm.2022.03.031
preprint (available for download)